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Tumor tissue slides have been used by clinicians to assess cancer patient’s condition and indicate 

prognosis. Several recent studies have suggested that distribution of important immunological 

markers on tumor tissue slides might help predict survival outcome [1] [2] [3] [4]. These studies 

rely upon non-parametric Kaplan-Meier survival analysis with Log-rank test to extract statistical 

insights, which, however, has several disadvantages such as prediction ambiguity and inability to 

directly model continuous variables.  

 

In this study, we engineered 676 features encoding cellular distribution information from multi-

spectral tumor tissue images collected from 118 HPV-negative oral squamous cell cancer 

patients. We leveraged statistical methods and predictive models to explore the predictive power 



 

of these features. We identified 18 features as potential survival predictors through Kolmogorov-

Smirnov test. Our best model, random forest model, has achieved 58.54% prediction accuracy 

rate on independent validation dataset. Although the model does not suggest strong predictive 

power of selected features, evaluation on large scale training data is still needed to further tune 

model parameters and generate more concrete results. 
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Chapter 1. INTRODUCTION 

Recent advancement in Machine Learning and Artificial Intelligence (AI) has shown great 

promise in various fields in healthcare and life sciences such as drug discovery, automated 

disease diagnosis and biomedical imaging processing [5]. In this study, we have leveraged 

various statistical and machine learning methods to explore the predictive power of multi-

spectral tumor tissue images from patients with human papillomavirus (HPV)-negative oral 

squamous cell carcinoma (OSCC).  

 

According to the most recent data from the American Cancer Society (ACS), head and neck 

cancers account for about 4% of all cancers in the United States (U.S) [6]. Over 90% of head and 

neck tumors are squamous carcinomas [7]. Traditionally, healthcare providers and researchers 

have relied upon the standard staging system established by the American Joint Committee on 

Cancer–International Union Against Cancer -- TNM (tumor size, spread to lymph nodes and 

metastasis) system [8] to indicate cancer prognosis and help plan treatment strategies. Several 

recent studies, however, have suggested the ineffectiveness of this system and proposed to 

leverage important immunological markers such as immune cell location patterns to provide 

more accurate prediction for prognosis and indicate response to therapy [9] [10] [11]. For 

example, increased cytotoxic CD8+ T cell infiltration within the tumor region has been proved to 

be positively correlated with prolonged survival in various cancer types [2] [3] [4]. In contrast, 

increased presence of intratumoral FOXP3+ T regulatory cells has been linked to poor clinical 

outcome in various cancers [10][12][13][14]. However, there are few studies on HPV-negative 

OSCC.  
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Multiple research projects have used statistical methods such as Kaplan-Meier survival analysis 

to study immunological features. For example, Eerola and colleagues have used Kaplan-Meier 

survival analysis and Log-rank test to find out that high number of intratumoral T cells and 

CD8+ T cells indicates favorable survival outcome compared with patient groups with either low 

number of intratumoral T cells or CD8+ T cells (P = 0.007 / 0.02) [2] in small cell lung 

carcinoma (SCLC) patients.  

 

Kaplan-Meier survival analysis with Log-rank test has been widely used in the biomedical field 

to provide statistical insights on the differences between groups [15]. However, this method 

suffers from several disadvantages: 

1) Kaplan-Meier survival analysis requires input data to be categorical. If the input dataset is 

numerical, people have to group the whole dataset into different categories based on 

empirical or other subjective evidence, which is not always readily available nor accurate.   

2) Kaplan-Meier survival analysis produces qualitative results instead of quantitative 

survival estimation. For example, in the aforementioned study by Eerola, the results 

generated from Kaplan-Meier survival analysis suggest that patients with higher number 

of intratumoral T cells and CD8+ T cells are associated with better survival outcome. 

However, this analysis is unable to specify exact survival time and therefore introduces 

ambiguity. 

3) Kaplan-Meier survival analysis focuses on survival outcome at the group level instead of 

at individual level, which results in the situation that an observation found at the group 

level does not always apply to each patient. For example, although the Kaplan-Meier 
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curve is able to present statistically significant differentiation of survival probability in 

two patient groups, the survival chance of an individual patient requires further analysis.  

4) It is difficult to study the interplay of different variables using Kaplan-Meier survival 

analysis. For example, in a clinical trial, if a researcher wants to study the interaction of a 

certain drug with patients’ demographics information such as gender, age, etc., the 

researcher has to assign patients into different groups accordingly. The assignment 

operation is not only laborious, but will also result in multiple groups and thus fewer 

observations in each group. 

 

Therefore, it is necessary to leverage other modeling and analytical methods to overcome these 

shortcomings. Machine learning methods, particularly classification methods, can be used to take 

clinical data as input and output survival probability at a specific time, which generates a more 

quantitative survival time prediction than the Kaplan-Meier model does. Machine learning 

methods can also automatically model linear or nonlinear relationship among different variables 

within the dataset and enjoy great flexibility of model different types of variables. 

 

Multispectral tumor tissue images in this study were obtained through staining tumor tissue 

slides with multiple biochemical products and analyzed via the PerkinElmer Vectra imaging 

platform (http://www.perkinelmer.com/) for further analysis. Details about staining and analysis 

were described by our collaborator, Dr. Zipei Feng, in his publication “Multiparametric Analysis 

of Tumor Immune Environment” [16].  
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Chapter 2. DATA 

In total, 157 multi-spectral tumor tissue images from 118 patients with HPV-negative OSCC 

were included in this study. Figure 1 shows the Kaplan-Meier survival curve of the population in 

this study. More Detailed information about the 118 patients can be found in Appendix 1.   

 

Tumor tissue materials were prepared and handled by our collaborators at the Earle A. Chiles 

Research Institute in Portland, Oregon, USA [20].  Raw images were processed by them with 

PerkinElmer inForm (http://www.perkinelmer.com/) software to extract cell location information 

(See details in Appendix 1).  

 

 

Figure 1. Kaplan-Meier Survival Curve  
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Item Proportion Item Proportion 

Male 75.4% Female 24.6% 

Death (at last follow-
up) 

53.3% Alive(at last follow-
up) 

46.6% 

Stage I 14.4% Stage II 19.5% 

Stage III 11.9% Stage IV 54.2% 
 

Table 1. Summary Statistics of Participants 

 

 

 

 Age (years) Survival Time (months) 

Minimum 25 3 

1st Quantile 51 15 

Median 58 26 

Mean 58.68 30.99 

3rd Quantile 68 48.75 

Maximum value 83 65 

Number of missing values 11 0 

 

Table 2. Summary Statistics of Participants. Table 1 together with Table 2 provides an 

overview of the patient cohort in this study.  

 

We programmed MATLAB (https://www.mathworks.com/) code to generate features that 

describe cellular distribution based upon cell location dataset. Figure 2 illustrates the workflow 
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of how features were calculated. In the end, we introduced 676 features. Appendix 2 contains a 

list of  all the names of features included in this study. 

 

 

 

 

Figure 2. Workflow of Feature Generation. In this figure, marker X or Y can be any one of 

CD-4, CD-8, PD-L1, CD-163, FOXP3 or DAPI. Regions can be tumor region, stroma region or 

the whole image region. For example, the feature named as ‘mean_cd8_foxp3_100_t’ means the 

averaged proportion of FOXP3+ cells within 100 micron of each CD-8+ cell. 

 

1. Missing Values and Infinite Values 

Missing values (denoted as ‘NA’ in R) and infinite values (denoted as ‘Inf’) were generated 

during the feature calculation process. For example, feature ‘mean_cd4_r_foxp3_tumor’ means 

the ratio of the number of CD4+ cells and the number of FOXP3+ cells in the tumor region. If the 
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numerator (the number of CD4+ cells)  and the denominator (the number of FOXP3+ cells) are 

both zero, a ‘NA’ value is introduced. However, if the numerator is a non-zero integer while the 

denominator is zero, an ‘Inf’ value will be generated.  

 

We investigated the proportion of missing values and infinite values across the entire feature set. 

Figure 3 and Figure 4 shows the boxplot of the proportion of missing values and infinite values 

within each feature. Both missing and infinite values were transformed to be 0 in the analysis to 

encode that there is no information associated with its corresponding feature. 

 

 

Figure 3. Histogram of proportion of NA values (1%/bin). The highest percentage is 27.12 %, 

average percentage is 3.34% and median percentage is 0.85%. 
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Figure 4. Histogram of proportion of Inf values (1%/bin). The highest percentage is 61.86 %, 

average percentage is 1.11% and median percentage is 0%. 
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Figure 5. Histogram of proportion of NA or Inf values (1%/bin). The highest percentage is 

62.71 %, average percentage is 4.45% and median percentage is 1.70%. 

 

 

2. Linear Correlation 

We used Pearson correlation score to study linear correlation between each feature pair. Figure  5 

is a heatmap showing the correlation structure within the feature set.  
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Figure 5. Heatmap of Linearity Across Features. In this figure, blue color indicates negative 

linear correlation while red color indicates positive linear correlation. This figure shows that 

correlation structure exists within the feature set.  
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3. Follow-up Time Distribution 

Figure 6 provides an overview of follow-up time. The longest overall follow-up time is 65 

months while the shortest is 3 months with the median of 26 months and the mean of 30.99 

months.  

 

The number of patients included in this study is 118 in total. 55 out of these patients have been 

identified as deceased at the last follow-up and 63 were alive at the time of follow-up.  

 

 

Figure 6. Follow-up Time Distribution. The dashed line denotes the 30th month. The red dots 

represent patients who died at follow-up during the study. The green dots represent patients who 

were still alive at the last follow-up. 
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Chapter 3. MODELING 

When using machine learning methods for classification, it is often important to have each class 

roughly equal-sized because an unbalanced dataset would cause the learning algorithm biased 

towards the majority class. We noted that at around 30th month of follow-up time, the number of 

patients whose status was alive almost equals the number of patients who were deceased (50:51). 

Therefore, we set our prediction goal to be predicting patients’ 30th month survival rate. We first 

tried a simple machine learning method -- Logistic Regression as a baseline model and then used 

a more complicated model -- Random Forest to predict 30-month survival probability.  

 

Tools 

All the analysis and plots were done on an iMac computer (21.5-inch, late 2013) with R 

programming language (version: 3.2.1, https://cran.r-project.org/) and Rstudio (version: 0.99.447, 

https://www.rstudio.com/) as an integrated programming environment (IDE).  

 

Kaplan-Meier curve was plotted using the package ‘survminer’ (version: 0.3.1, https://cran.r-

project.org/web/packages/survminer/index.html). Other plots were done using the package 

‘ggplot2’ (version: 1.0.1, https://cran.r-project.org/web/packages/ggplot2/).  

 

Logistic regression modeling was done using R built-in package ‘stats’ (version: 3.1.3) and the 

package ‘boot’ (version: 1.3-15, https://cran.r-project.org/web/packages/boot/) [18] for cross-

validation. Random forest modeling was done with the package ‘randomForest’ (version 4.6-10, 

https://cran.r-project.org/web/packages/randomForest/) [19] and ‘caret’ (version 6.0-47, 

https://cran.r-project.org/web/packages/caret/) for parameter tuning.   
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Cox proportional hazards model was trained using R built-in package ‘survival’ (version: 2.38-1, 

https://cran.r-project.org/web/packages/survival/index.html) [20].  

 

Feature Selection 

The whole feature set was split into two groups according to patients’ one-year survival status 

and compared using the two-sided Kolmogorov–Smirnov test (K-S test) [17]. Only features with 

P-values less than 0.025 (95% confidence level) were included in the following analysis. With 

K-S test, we reduced 676 features in total to 54 features. 

 

Features were then further reduced by manually selecting one representative feature from each 

similar feature sub-groups. For example, consider three features: ‘mean_cd8_cd8_60’, 

‘mean_cd8_cd8_60_s’ and ‘mean_cd8_cd8_100’. All of them were calculated based on the 

averaged mutual distance of CD8+ cells, but within different radii. The feature 

‘mean_cd8_cd8_60’ was calculated within the radius of 60 microns of each CD8 + while 

‘mean_cd8_cd8_60_s’ was calculated likewise but only within the stroma region of the image. 

Feature ‘mean_cd8_cd8_100’, on the other hand, was calculated within the radius of 100 

microns. Although the scope under which these three features were generated vary, these 

features often ended up with the same or very similar numeric values. Figure 7 shows the 

similarity of the distributions of these three features. To reduce this redundancy, we only select 

the feature with the lowest P-value from these three to represent this feature sub-group. We also 

went over every single distribution plot within each feature sub-group to confirm if their 

distribution looks similar. If there was more than one feature having the same lowest P-value, we 
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selected the feature that has been calculated at the largest scale. For example, if both feature 

‘mean_cd8_cd8_60_s’ and ‘mean_cd8_cd8_100’ have the same lowest P-value, we only 

considered ‘mean_cd8_cd8_100’ because it was calculated within a 100 micron radius of each 

CD8+ cell while the feature ‘mean_cd8_cd8_60_s’ was calculated at the scale of 60 microns and 

within the stroma region. 

 

 

Figure 7. Density Plot of Three Features with Similar Numeric Values. This figure indicates 

that although feature of ‘mean_cd8_cd8_60’, ‘mean_cd8_cd8_60_s’ and ‘mean_cd8_cd8_100’ 

were calculated within different radii, they have quite similar numeric values. 

After applying the K-S test and further feature reduction, the total feature set was reduced to 18 

features. Table 3 lists all these 18 features and their corresponding P-value. Density plots of 

these features can be seen in Figure 8. 
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Feature Name  P-value 

mean_cd8_stroma 0.017553809 

mean_macs_pdl1_30 0.028789376 

mean_cd4_cd8_100_s 0.009021174 

mean_pdl1mac_other_30_s 0.040316014 

mean_foxp3_cd8_100 0.001351267 

mean_tumor_other_100_s 0.011544996 

mean_macs_tumor_30 0.031185923 

mean_other_tumor_30 0.018668997 

mean_pdl1mac_cd8_100_s 0.011944919 

mean_cd8_r_foxp3_stroma 0.031705197 

mean_cd8_r_pdl1mac 0.002411018 

mean_cd8_r_other 0.018668997 

mean_cd8_r_tumor 0.028460621 

mean_cd4_r_pdl1mac 0.032265628 

mean_pdl1_cd8_100 0.003814411 

mean_other_cd8_100 0.017553809 

mean_tumor_cd8_100_s 0.009587529 

mean_cd8_cd8_30_s 0.001042085 
 

Table 3. A List of 18 Features Selected by K-S Test (95% significant level) and Further 

Dimension Reduction.  
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Figure 8. Density Plots of 18 Final Feature Set 

 

 

Data Processing 

Patients who were still alive and whose last follow-up ended before the 30th month were 

excluded from modeling because of uncertainty about final status. In the end, there were 101 

observations included in this 30-month survival prediction study in total. The whole dataset was 

randomly split into training and testing datasets. 60 observations were selected for the training 

dataset while 41 observations for the testing dataset. 

 

Logistic Regression Model 

Logistic Regression model was trained on the training dataset with 5-fold cross-validation to 

mitigate over-fitting. The trained model was then tested on the independent testing dataset. 

Results are presented in Chapter 5. 

  

Random Forest Model 

Model performance results from the Logistic Regression model suggests that the selected 18 

features are not able to provide an accurate prediction of patients’ 30-month survival. This 

indicates that none of the 18 features can be considered as a strong predictor of survival. With 

this observation taken into consideration, we tried the Random Forest method, which has been 

designed to combine multiple predictors in an ensembling fashion in order to generate more 

accurate predictions [21]. We used the R package, ‘randomForest-4.6-10’ for random forest 

modeling and ‘caret-6.0-47’ for parameter tuning.  
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There are two hyper-parameters in random forest model, ‘mtry’ -- number of variables randomly 

sampled as candidates at each split, ‘ntree’ -- number of trees to grow [19]. The possible value 

for ‘mtry’ has been set to be any integer within 1-18 range while ‘ntree’ can be any any integer 

of the set -- 1, 10, 20, 30, 50, 80, 100, 120, 150, 200. We used grid search method to exhaust all 

the possible parameter combinations and leveraged train function in ‘caret’ package to automate 

the process.  

 

With each model evaluated using 5-fold cross validation, we found the model with ‘mtry’ been 

set to be 1 and ‘ntree’ been set to be 20 enjoys a high accuracy rate (~63.33%) and a low 

variation during cross validation (~ 0.046 standard deviation).  

 

We then trained our random forest model with ‘mtry’ equals to 1 and ‘ntree’ equals to 20 and 

evaluated model performance on the testing dataset. The confusion matrix that has been used to 

assess the model performance on the testing dataset can be found at Table 5.  

 

Cox Proportional Hazards Model 

To further investigate other modeling methods and compare the performance of classification 

model and survival model. We used the same feature set that has been used in the classification 

models and trained a Cox proportional hazards model [20]. Training and testing dataset are the 

same as the dataset used in the classification models. Model performance was evaluated by 

looking at the prediction accuracy on the testing dataset given the longest follow-up time of the 

testing dataset. 
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Cox proportional hazards model was trained with 5-fold cross-validation. However, the low 

accuracy score suggests under-fitting of the model during the training process. In order to 

include more data to better fit the model, we decided to have the model trained with the entire 

training dataset. Model performance will be discussed in the results section. 
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Chapter 4. RESULTS 

1, Logistic Regression   

 

 Prediction 

  Truth 0 (alive) 1 (dead) 

0 (alive) 11 9 

1 (dead) 10 11 

 

Table 4. Shows the performance of Logistic Regression model on the testing dataset. The overall 

accuracy rate is 53.66%. 

 

2, Random Forest 

 

 Prediction 

Truth 0 (alive) 1(dead) 

0(alive) 10 10 

1(dead) 7 14 
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Table 5. Confusion matrix for random forest model on the testing dataset. The overall accuracy 

rate is 58.54%. 

 

3, Cox Proportional Hazards Model 

 

 Prediction 

Truth 0 (alive) 1(dead) 

0(alive) 9 11 

1(dead) 10 11 

 

Table 6. Confusion matrix for random forest model on the testing dataset. The overall accuracy 

rate is 48.78%. 
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Chapter 5. CONCLUSION AND FUTURE WORK 

We engineered 676 features in total from the cellular location data. We used the K-S test to 

select 18 features from the 676 features at 95% significance level and used logistic regression 

and random forest models to predict 30-month survival probability. The model performance was 

tested on the randomly selected testing dataset and achieved an overall accuracy rate of 53.66% 

and 58.54%, respectively.  We also tried Cox proportional hazards model and evaluated model 

performance with the same testing dataset as we have used for the logistic regression and random 

forest model. The accuracy rate for Cox proportional hazards model was 48.78%. 

 

It is quite clear that none of logistic regression model, random forest model or Cox proportional 

hazards model is able to provide accurate prediction for survival outcome given that the best 

prediction accuracy score is 58.54% from the random forest model.  One of the major challenges 

that limits us from achieving more accurate results and making further exploration is the small 

sample size. The whole data set been used in this study has only 101 observations. There is a 

high possibility that our current models were under-fitted. The small data size also prevents us 

from trying out more complicated models such as deep neural network and XGBoost.  

 

Our collaborators previously found several cellular distribution patterns to be indicative of 

survival outcome using the same dataset [16]. They used Kaplan-Meier survival analysis coupled 

with log-rank test to determine if a certain feature is able to provide statistically significant 

prediction of long-term survival or short-term survival. This method has been previously 

discussed in the introduction section of this paper, which has several limitations including the 

lack of quantitative measurement about long-term and short-term survival time, etc. Some of the 
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features that have been found to be statistically significant predictors are: density of CD8+ cells 

in tumor region and stroma region (P-value = 0.01, 0.023), density of FoxP3+ cells in stroma 

region (P-value = 0.08), number of FoxP3+ cells within 30 µm of CD8+ cells in tumor region (P-

value = 0.005) and number of PD-L1 + cells within 30 µm of CD8+ cells in stroma region (P-

value < 0.0005). 

 

Some of the features identified by the K-S test align with these findings. For example, we also 

found the distribution of the density of CD8+ cells in stroma region to be a statistically 

significant predictor in determining if a patient can survive 30 months (P-value = 0.0175, 

significant at 95% confidence level). However, none of our prediction models was able to 

provide accurate prediction based upon these features. We also hesitate to conclude that none of 

these features are strong indicators of survival because the small data size might underfit the 

model and thus fail to show clear signal. 

 

We also note that the Kaplan-Meier survival analysis has been widely used in publications. 

Although this analysis is able to generate meaningful statistical insights on survival probability, 

researchers and clinicians have to be careful when interpreting results. For example, patients 

might be assigned to a long-term survival group with a significant P-value at a certain confidence 

level. This result, however, should not be simply interpreted as all the patients within such group 

having a higher probability of long-term survival compared with patients in other groups because, 

as our previous analysis and others have shown, certain patients in long-term survival group 

might have a shorter survival time than some of the patients in the short-term survival group.  
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During this project, we have established workflow and programmed code for feature engineering, 

data cleaning and modeling with multi-spectral tumor tissue image data. As our collaborators 

continue to collect more tumor tissue images and better data collection process to have high-

quality data, we can apply similar analytical methods on the new data and update our findings. 

We will test our methods on the larger dataset and include more features such as demographical 

data and treatment data to have more concrete results. We will also expand our modeling 

exploration by predicting 1-year, 2-year or m-year survival probability instead of focusing on 3-

year survival rate.  
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APPENDIX 

 

Appendix 1. Patients Information 

Gender 
(1 - male, 2 - female) 

Status 
(0 - Alive, 1 - Dead) 

Survival Time 
(Months) 

Stage 

1 0 65 1 

1 0 16 1 

2 0 17 2 

2 1 6 4 

2 0 8 4 

2 0 17 2 

2 0 18 4 

1 0 60 2 

2 1 11 2 

1 0 15 4 

2 1 28 2 

1 1 25 1 

2 0 61 3 

1 0 60 3 
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1 1 6 4 

1 0 34 1 

1 0 60 4 

1 0 60 3 

1 0 65 1 

2 0 65 1 

1 0 59 4 

1 0 65 1 

1 1 18 4 

1 1 23 4 

1 0 30 2 

1 0 60 1 

1 1 17 4 

2 0 65 3 

1 0 60 4 

1 0 6 4 

1 1 17 2 

1 1 11 2 
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2 0 41 3 

1 1 3 4 

1 1 7 4 

1 0 17 4 

1 1 13 2 

1 1 15 4 

1 1 28 4 

2 1 22 2 

2 0 28 4 

1 1 6 4 

1 1 6 4 

1 0 65 2 

2 1 13 4 

1 1 7 4 

1 1 23 4 

1 1 44 4 

2 0 54 1 

1 0 26 2 
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1 1 8 4 

1 1 10 4 

1 0 65 4 

1 0 65 2 

1 1 51 1 

2 0 48 2 

1 0 65 2 

1 1 20 4 

1 0 65 1 

1 0 49 4 

1 0 38 4 

1 1 8 4 

1 1 8 3 

1 1 4 4 

2 1 42 1 

1 1 8 4 

1 1 59 4 

1 0 65 2 
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2 0 56 4 

1 1 6 4 

1 1 23 4 

1 1 20 4 

1 0 48 1 

1 0 42 1 

1 0 57 2 

2 0 30 4 

1 0 37 2 

1 0 39 3 

1 0 50 1 

2 1 25 4 

1 0 3 4 

1 0 57 4 

1 1 26 4 

1 0 58 3 

1 1 9 4 

2 0 65 4 
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1 1 18 4 

1 0 35 3 

2 1 13 3 

2 1 6 4 

2 1 18 4 

1 1 7 4 

1 0 48 3 

2 1 4 4 

2 1 26 4 

1 0 36 1 

1 1 14 4 

1 0 35 4 

1 0 35 4 

1 0 26 4 

2 0 48 2 

1 1 27 3 

1 1 3 4 

1 1 15 4 
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1 0 33 2 

1 1 11 3 

1 0 21 2 

1 0 33 4 

1 1 16 4 

1 1 17 4 

2 1 16 4 

1 1 21 4 

1 0 65 2 

1 0 32 4 

1 0 31 3 

2 0 26 1 

1 0 30 4 

1 1 16 2 

 

 

Appendix 2. Feature List 

1 mean_cd8_tumor mean_foxp3_cd8_30_t 

mean_tumor_tumor_100_

s mean_pdl1_cd4_100_s 
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2 mean_cd8_stroma mean_tumor_macs_30 mean_tumor_tumor_100_t mean_pdl1_cd4_100_t 

3 mean_cd8_cd8_60 

mean_tumor_macs_30_

s mean_cd8_r_cd4 mean_macs_cd4_30 

4 mean_cd8_cd8_60_s mean_tumor_macs_30_t mean_cd8_r_cd4_tumor mean_macs_cd4_30_s 

5 mean_cd8_cd8_60_t mean_tumor_macs_60 mean_cd8_r_cd4_stroma mean_macs_cd4_30_t 

6 

mean_other_pdl1mac

_60 

mean_tumor_macs_60_

s mean_cd8_r_foxp3 mean_macs_cd4_60 

7 

mean_other_pdl1mac

_60_s mean_tumor_macs_60_t mean_cd8_r_foxp3_tumor mean_macs_cd4_60_s 

8 

mean_other_pdl1mac

_60_t mean_tumor_macs_100 

mean_cd8_r_foxp3_strom

a mean_macs_cd4_60_t 

9 

mean_other_pdl1mac

_100 

mean_tumor_macs_100

_s mean_cd8_r_pdl1mac mean_pdl1_tumor 

10 

mean_other_pdl1mac

_100_s 

mean_tumor_macs_100

_t 

mean_cd8_r_pdl1mac_tum

or mean_pdl1_stroma 

11 

mean_other_pdl1mac

_100_t mean_cd8_other_30 

mean_cd8_r_pdl1mac_stro

ma mean_macs_cd4_100 

12 

mean_tumor_pdl1mac

_30 mean_cd8_other_30_s mean_cd8_r_pdl1 mean_macs_cd4_100_s 

13 

mean_tumor_pdl1mac

_30_s mean_cd8_other_30_t mean_cd8_r_pdl1_tumor mean_macs_cd4_100_t 

14 

mean_tumor_pdl1mac

_30_t mean_cd8_other_60 mean_cd8_r_pdl1_stroma mean_other_cd4_30 
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15 

mean_tumor_pdl1mac

_60 mean_cd8_other_60_s mean_cd8_r_macs mean_other_cd4_30_s 

16 

mean_tumor_pdl1mac

_60_s mean_cd8_other_60_t mean_cd8_r_macs_tumor mean_other_cd4_30_t 

17 

mean_tumor_pdl1mac

_60_t mean_cd8_other_100 mean_cd8_r_macs_stroma mean_other_cd4_60 

18 

mean_tumor_pdl1mac

_100 mean_cd8_other_100_s mean_cd8_r_other mean_other_cd4_60_s 

19 

mean_tumor_pdl1mac

_100_s mean_cd8_other_100_t mean_cd8_r_other_tumor mean_other_cd4_60_t 

20 

mean_tumor_pdl1mac

_100_t mean_cd4_other_30 mean_cd8_r_other_stroma mean_other_cd4_100 

21 mean_cd8_pdl1_30 mean_cd4_other_30_s mean_cd8_r_tumor mean_other_cd4_100_s 

22 mean_cd8_pdl1_30_s mean_cd4_other_30_t mean_cd8_r_tumor_tumor mean_other_cd4_100_t 

23 mean_cd8_pdl1_30_t mean_cd4_other_60 

mean_cd8_r_tumor_strom

a mean_tumor_cd4_30 

24 mean_cd8_pdl1_60 mean_cd4_other_60_s mean_cd4_r_foxp3 mean_tumor_cd4_30_s 

25 mean_cd8_pdl1_60_s mean_cd4_other_60_t mean_cd4_r_foxp3_tumor mean_tumor_cd4_30_t 

26 mean_cd8_pdl1_60_t mean_cd4_other_100 

mean_cd4_r_foxp3_strom

a mean_tumor_cd4_60 

27 mean_cd8_pdl1_100 mean_cd4_other_100_s mean_cd4_r_pdl1mac mean_tumor_cd4_60_s 

28 

mean_cd8_pdl1_100_

s mean_cd4_other_100_t 

mean_cd4_r_pdl1mac_tum

or mean_tumor_cd4_60_t 
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29 

mean_cd8_pdl1_100_

t mean_foxp3_other_30 

mean_cd4_r_pdl1mac_stro

ma mean_tumor_cd4_100 

30 mean_cd4_pdl1_30 mean_foxp3_other_30_s mean_pdl1_cd8_30 mean_tumor_cd4_100_s 

31 mean_cd4_pdl1_30_s mean_foxp3_other_30_t mean_pdl1_cd8_30_s mean_tumor_cd4_100_t 

32 mean_cd4_pdl1_30_t mean_foxp3_cd8_60 mean_pdl1_cd8_30_t mean_cd8_foxp3_30 

33 mean_cd4_pdl1_60 mean_foxp3_cd8_60_s mean_cd4_r_pdl1 mean_cd8_foxp3_30_s 

34 mean_cd4_pdl1_60_s mean_foxp3_cd8_60_t mean_cd4_r_pdl1_tumor mean_cd8_foxp3_30_t 

35 mean_cd4_pdl1_60_t mean_foxp3_other_60 mean_cd4_r_pdl1_stroma mean_cd8_foxp3_60 

36 mean_cd8_cd8_100 mean_foxp3_other_60_s mean_cd4_r_macs mean_cd8_foxp3_60_s 

37 mean_cd8_cd8_100_s mean_foxp3_other_60_t mean_cd4_r_macs_tumor mean_cd8_foxp3_60_t 

38 mean_cd8_cd8_100_t mean_foxp3_other_100 mean_cd4_r_macs_stroma mean_cd8_foxp3_100 

39 mean_cd4_pdl1_100 

mean_foxp3_other_100

_s mean_cd4_r_other mean_cd8_foxp3_100_s 

40 

mean_cd4_pdl1_100_

s 

mean_foxp3_other_100

_t mean_cd4_r_other_tumor mean_cd8_foxp3_100_t 

41 

mean_cd4_pdl1_100_

t 

mean_pdl1mac_other_3

0 mean_cd4_r_other_stroma mean_macs_tumor 

42 mean_foxp3_pdl1_30 

mean_pdl1mac_other_3

0_s mean_cd4_r_tumor mean_macs_stroma 

43 

mean_foxp3_pdl1_30

_s 

mean_pdl1mac_other_3

0_t mean_cd4_r_tumor_tumor mean_cd4_foxp3_30 

44 

mean_foxp3_pdl1_30

_t 

mean_pdl1mac_other_6

0 

mean_cd4_r_tumor_strom

a mean_cd4_foxp3_30_s 
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45 mean_foxp3_pdl1_60 

mean_pdl1mac_other_6

0_s mean_foxp3_r_pdl1mac mean_cd4_foxp3_30_t 

46 

mean_foxp3_pdl1_60

_s 

mean_pdl1mac_other_6

0_t 

mean_foxp3_r_pdl1mac_t

umor mean_cd4_foxp3_60 

47 

mean_foxp3_pdl1_60

_t 

mean_pdl1mac_other_1

00 

mean_foxp3_r_pdl1mac_st

roma mean_cd4_foxp3_60_s 

48 

mean_foxp3_pdl1_10

0 

mean_pdl1mac_other_1

00_s mean_foxp3_r_pdl1 mean_cd4_foxp3_60_t 

49 

mean_foxp3_pdl1_10

0_s 

mean_pdl1mac_other_1

00_t mean_foxp3_r_pdl1_tumor mean_cd4_foxp3_100 

50 

mean_foxp3_pdl1_10

0_t mean_pdl1_other_30 

mean_foxp3_r_pdl1_strom

a mean_cd4_foxp3_100_s 

51 

mean_pdl1mac_pdl1_

30 mean_pdl1_other_30_s mean_foxp3_r_macs mean_cd4_foxp3_100_t 

52 

mean_pdl1mac_pdl1_

30_s mean_pdl1_other_30_t 

mean_foxp3_r_macs_tumo

r mean_foxp3_foxp3_30 

53 

mean_pdl1mac_pdl1_

30_t mean_pdl1_other_60 

mean_foxp3_r_macs_stro

ma mean_foxp3_foxp3_30_s 

54 

mean_pdl1mac_pdl1_

60 mean_pdl1_other_60_s mean_foxp3_r_other mean_foxp3_foxp3_30_t 

55 

mean_pdl1mac_pdl1_

60_s mean_pdl1_other_60_t 

mean_foxp3_r_other_tum

or mean_foxp3_foxp3_60 

56 

mean_pdl1mac_pdl1_

60_t mean_pdl1_other_100 

mean_foxp3_r_other_stro

ma mean_foxp3_foxp3_60_s 
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57 

mean_pdl1mac_pdl1_

100 mean_pdl1_other_100_s mean_foxp3_r_tumor mean_foxp3_foxp3_60_t 

58 

mean_pdl1mac_pdl1_

100_s mean_pdl1_other_100_t 

mean_foxp3_r_tumor_tum

or mean_foxp3_foxp3_100 

59 

mean_pdl1mac_pdl1_

100_t mean_macs_other_30 

mean_foxp3_r_tumor_stro

ma mean_foxp3_foxp3_100_s 

60 mean_pdl1_pdl1_30 mean_macs_other_30_s mean_pdl1mac_r_pdl1 mean_foxp3_foxp3_100_t 

61 mean_pdl1_pdl1_30_s mean_macs_other_30_t 

mean_pdl1mac_r_pdl1_tu

mor mean_pdl1mac_foxp3_30 

62 mean_pdl1_pdl1_30_t mean_macs_other_60 

mean_pdl1mac_r_pdl1_str

oma 

mean_pdl1mac_foxp3_30_

s 

63 mean_pdl1_pdl1_60 mean_macs_other_60_s mean_pdl1_cd8_60 

mean_pdl1mac_foxp3_30_

t 

64 mean_pdl1_pdl1_60_s mean_macs_other_60_t mean_pdl1_cd8_60_s mean_pdl1mac_foxp3_60 

65 mean_pdl1_pdl1_60_t mean_foxp3_cd8_100 mean_pdl1_cd8_60_t 

mean_pdl1mac_foxp3_60_

s 

66 mean_pdl1_pdl1_100 mean_foxp3_cd8_100_s mean_pdl1mac_r_macs 

mean_pdl1mac_foxp3_60_

t 

67 

mean_pdl1_pdl1_100

_s mean_foxp3_cd8_100_t 

mean_pdl1mac_r_macs_tu

mor mean_pdl1mac_foxp3_100 

68 

mean_pdl1_pdl1_100

_t mean_macs_other_100 

mean_pdl1mac_r_macs_st

roma 

mean_pdl1mac_foxp3_100

_s 

69 mean_cd4_cd8_30 mean_macs_other_100_ mean_pdl1mac_r_other mean_pdl1mac_foxp3_100
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s _t 

70 mean_cd4_cd8_30_s 

mean_macs_other_100_

t 

mean_pdl1mac_r_other_tu

mor mean_pdl1_foxp3_30 

71 mean_cd4_cd8_30_t mean_other_other_30 

mean_pdl1mac_r_other_st

roma mean_pdl1_foxp3_30_s 

72 mean_macs_pdl1_30 mean_other_other_30_s mean_pdl1mac_r_tumor mean_pdl1_foxp3_30_t 

73 

mean_macs_pdl1_30_

s mean_other_other_30_t 

mean_pdl1mac_r_tumor_t

umor mean_other_tumor 

74 

mean_macs_pdl1_30_

t mean_other_other_60 

mean_pdl1mac_r_tumor_s

troma mean_other_stroma 

75 mean_macs_pdl1_60 mean_other_other_60_s mean_pdl1_r_macs mean_pdl1_foxp3_60 

76 

mean_macs_pdl1_60_

s mean_other_other_60_t mean_pdl1_r_macs_tumor mean_pdl1_foxp3_60_s 

77 

mean_macs_pdl1_60_

t mean_other_other_100 

mean_pdl1_r_macs_strom

a mean_pdl1_foxp3_60_t 

78 mean_macs_pdl1_100 

mean_other_other_100

_s mean_pdl1_r_other mean_pdl1_foxp3_100 

79 

mean_macs_pdl1_100

_s 

mean_other_other_100

_t mean_pdl1_r_other_tumor mean_pdl1_foxp3_100_s 

80 

mean_macs_pdl1_100

_t mean_tumor_other_30 

mean_pdl1_r_other_strom

a mean_pdl1_foxp3_100_t 

81 mean_other_pdl1_30 

mean_tumor_other_30_

s mean_pdl1_r_tumor mean_macs_foxp3_30 
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82 

mean_other_pdl1_30

_s 

mean_tumor_other_30_

t 

mean_pdl1_r_tumor_tumo

r mean_macs_foxp3_30_s 

83 

mean_other_pdl1_30

_t mean_tumor_other_60 

mean_pdl1_r_tumor_stro

ma mean_macs_foxp3_30_t 

84 mean_other_pdl1_60 

mean_tumor_other_60_

s mean_macs_r_other mean_macs_foxp3_60 

85 

mean_other_pdl1_60

_s 

mean_tumor_other_60_

t 

mean_macs_r_other_tumo

r mean_macs_foxp3_60_s 

86 

mean_other_pdl1_60

_t mean_tumor_other_100 

mean_macs_r_other_stro

ma mean_macs_foxp3_60_t 

87 

mean_other_pdl1_10

0 

mean_tumor_other_100

_s mean_macs_r_tumor mean_macs_foxp3_100 

88 

mean_other_pdl1_10

0_s 

mean_tumor_other_100

_t 

mean_macs_r_tumor_tum

or mean_macs_foxp3_100_s 

89 

mean_other_pdl1_10

0_t mean_cd8_tumor_30 

mean_macs_r_tumor_stro

ma mean_macs_foxp3_100_t 

90 mean_tumor_pdl1_30 mean_cd8_tumor_30_s mean_other_r_tumor mean_other_foxp3_30 

91 

mean_tumor_pdl1_30

_s mean_cd8_tumor_30_t 

mean_other_r_tumor_tum

or mean_other_foxp3_30_s 

92 

mean_tumor_pdl1_30

_t mean_cd8_tumor_60 

mean_other_r_tumor_stro

ma mean_other_foxp3_30_t 

93 mean_tumor_pdl1_60 mean_cd8_tumor_60_s mean_pdl1_cd8_100 mean_other_foxp3_60 

94 mean_tumor_pdl1_60 mean_cd8_tumor_60_t mean_pdl1_cd8_100_s mean_other_foxp3_60_s 



 42 

_s 

95 

mean_tumor_pdl1_60

_t mean_cd8_tumor_100 mean_pdl1_cd8_100_t mean_other_foxp3_60_t 

96 

mean_tumor_pdl1_10

0 mean_cd8_tumor_100_s mean_macs_cd8_30 mean_other_foxp3_100 

97 

mean_tumor_pdl1_10

0_s mean_cd8_tumor_100_t mean_macs_cd8_30_s mean_other_foxp3_100_s 

98 

mean_tumor_pdl1_10

0_t mean_pdl1mac_cd8_30 mean_macs_cd8_30_t mean_other_foxp3_100_t 

99 mean_cd8_macs_30 

mean_pdl1mac_cd8_30_

s mean_macs_cd8_60 mean_tumor_foxp3_30 

100 mean_cd8_macs_30_s 

mean_pdl1mac_cd8_30_

t mean_macs_cd8_60_s mean_tumor_foxp3_30_s 

101 mean_cd8_macs_30_t mean_cd4_tumor_30 mean_macs_cd8_60_t mean_tumor_foxp3_30_t 

102 mean_cd4_cd8_60 mean_cd4_tumor_30_s mean_macs_cd8_100 mean_tumor_foxp3_60 

103 mean_cd4_cd8_60_s mean_cd4_tumor_30_t mean_macs_cd8_100_s mean_tumor_foxp3_60_s 

104 mean_cd4_cd8_60_t mean_cd4_tumor_60 mean_macs_cd8_100_t mean_tumor_foxp3_60_t 

105 mean_cd8_macs_60 mean_cd4_tumor_60_s mean_other_cd8_30 mean_tumor_tumor 

106 mean_cd8_macs_60_s mean_cd4_tumor_60_t mean_other_cd8_30_s mean_tumor_stroma 

107 mean_cd8_macs_60_t mean_cd4_tumor_100 mean_other_cd8_30_t mean_tumor_foxp3_100 

108 mean_cd8_macs_100 mean_cd4_tumor_100_s mean_other_cd8_60 mean_tumor_foxp3_100_s 

109 

mean_cd8_macs_100

_s mean_cd4_tumor_100_t mean_other_cd8_60_s mean_tumor_foxp3_100_t 
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110 

mean_cd8_macs_100

_t mean_foxp3_tumor_30 mean_other_cd8_60_t mean_cd8_pdl1mac_30 

111 mean_cd4_macs_30 

mean_foxp3_tumor_30_

s mean_other_cd8_100 mean_cd8_pdl1mac_30_s 

112 mean_cd4_macs_30_s 

mean_foxp3_tumor_30_

t mean_other_cd8_100_s mean_cd8_pdl1mac_30_t 

113 mean_cd4_macs_30_t mean_foxp3_tumor_60 mean_other_cd8_100_t mean_cd8_pdl1mac_60 

114 mean_cd4_macs_60 

mean_foxp3_tumor_60_

s mean_foxp3_tumor mean_cd8_pdl1mac_60_s 

115 mean_cd4_macs_60_s 

mean_foxp3_tumor_60_

t mean_foxp3_stroma mean_cd8_pdl1mac_60_t 

116 mean_cd4_macs_60_t mean_foxp3_tumor_100 mean_tumor_cd8_30 mean_cd8_pdl1mac_100 

117 mean_cd4_macs_100 

mean_foxp3_tumor_100

_s mean_tumor_cd8_30_s mean_cd8_pdl1mac_100_s 

118 

mean_cd4_macs_100

_s 

mean_foxp3_tumor_100

_t mean_tumor_cd8_30_t mean_cd8_pdl1mac_100_t 

119 

mean_cd4_macs_100

_t 

mean_pdl1mac_tumor_

30 mean_tumor_cd8_60 mean_cd4_pdl1mac_30 

120 mean_foxp3_macs_30 

mean_pdl1mac_tumor_

30_s mean_tumor_cd8_60_s mean_cd4_pdl1mac_30_s 

121 

mean_foxp3_macs_30

_s 

mean_pdl1mac_tumor_

30_t mean_tumor_cd8_60_t mean_cd4_pdl1mac_30_t 

122 mean_foxp3_macs_30 mean_pdl1mac_tumor_ mean_tumor_cd8_100 mean_cd4_pdl1mac_60 
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_t 60 

123 mean_foxp3_macs_60 

mean_pdl1mac_tumor_

60_s mean_tumor_cd8_100_s mean_cd4_pdl1mac_60_s 

124 

mean_foxp3_macs_60

_s 

mean_pdl1mac_tumor_

60_t mean_tumor_cd8_100_t mean_cd4_pdl1mac_60_t 

125 

mean_foxp3_macs_60

_t 

mean_pdl1mac_tumor_

100 mean_cd8_cd4_30 mean_cd4_pdl1mac_100 

126 

mean_foxp3_macs_10

0 

mean_pdl1mac_tumor_

100_s mean_cd8_cd4_30_s mean_cd4_pdl1mac_100_s 

127 

mean_foxp3_macs_10

0_s 

mean_pdl1mac_tumor_

100_t mean_cd8_cd4_30_t mean_cd4_pdl1mac_100_t 

128 

mean_foxp3_macs_10

0_t mean_pdl1_tumor_30 mean_cd8_cd4_60 mean_foxp3_pdl1mac_30 

129 

mean_pdl1mac_macs

_30 mean_pdl1_tumor_30_s mean_cd8_cd4_60_s 

mean_foxp3_pdl1mac_30_

s 

130 

mean_pdl1mac_macs

_30_s mean_pdl1_tumor_30_t mean_cd8_cd4_60_t 

mean_foxp3_pdl1mac_30_

t 

131 

mean_pdl1mac_macs

_30_t mean_pdl1mac_cd8_60 mean_cd8_cd4_100 mean_foxp3_pdl1mac_60 

132 

mean_pdl1mac_macs

_60 

mean_pdl1mac_cd8_60_

s mean_cd8_cd4_100_s 

mean_foxp3_pdl1mac_60_

s 

133 

mean_pdl1mac_macs

_60_s 

mean_pdl1mac_cd8_60_

t mean_cd8_cd4_100_t 

mean_foxp3_pdl1mac_60_

t 
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134 

mean_pdl1mac_macs

_60_t mean_pdl1_tumor_60 mean_cd4_cd4_30 mean_foxp3_pdl1mac_100 

135 mean_cd4_cd8_100 mean_pdl1_tumor_60_s mean_cd4_cd4_30_s 

mean_foxp3_pdl1mac_100

_s 

136 mean_cd4_cd8_100_s mean_pdl1_tumor_60_t mean_cd4_cd4_30_t 

mean_foxp3_pdl1mac_100

_t 

137 mean_cd4_cd8_100_t mean_pdl1_tumor_100 mean_cd4_cd4_60 mean_cd8_cd8_30 

138 

mean_pdl1mac_macs

_100 

mean_pdl1_tumor_100_

s mean_cd4_cd4_60_s mean_cd8_cd8_30_s 

139 

mean_pdl1mac_macs

_100_s 

mean_pdl1_tumor_100_

t mean_cd4_cd4_60_t mean_cd8_cd8_30_t 

140 

mean_pdl1mac_macs

_100_t mean_macs_tumor_30 mean_cd4_cd4_100 

mean_pdl1mac_pdl1mac_

30 

141 mean_pdl1_macs_30 

mean_macs_tumor_30_

s mean_cd4_cd4_100_s 

mean_pdl1mac_pdl1mac_
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