
TAU GPU architecture diagram

TauGpu(.h/.cpp): Backbone of the GPU measurement system. Uses TAU 'fake' tasks and a user clock to 
record events taking place on a GPU after they have already occurred.

*Adapter*(.h/.cpp): Programing model specifics, each adapter implements a subclass of GpuEvent 
defined in TauGpu.h. 

CuptiAcitivty(.h/.cpp): Component directly in contact with CUPTI, must be compiled with GCC and 
use only C interface functions to the rest of the TAU library.

CuptiLayer(.h/.cpp): Based on the approach taking by PAPI, allows to the querying and recording of 
CUDA counters.

CUPTI counter scheme:

There is a lot of particulars/limitations to recording counters and assigning their value to a particular 
kernels. 1. counter values are only recorded at kernel launch and kernel synchronization. 2. counter 
values are device-wide and could the result of any particular kernel running. Here are three potential 
scenarios and how the counters are assigned to kernels

One important point to keep in mind is the performance results are provided on a per kernel basis as the 
best guess for what the counter value would be for a single run of that kernel. For example if we record 
for given interval (which contains 10 kernels of the same name) 200,000 instructions executed we will 

TauGpu

TauGpuAdapterCuda

TauGpuAdapterCupti

TauGpuAdapterOpenCL

CuptiActivity

CuptiLayerTauCAPI



report the inclusive/exclusive instructions as 20,000 (averaged).

The first scenario has two kernels of the same type with run synchronously and the values recorded are 
0 (first launch), 300 (first sync), 300 (second launch), and 600 (second sync) the kernel will get an 
value of 300 (2 calls).

The second scenario has two kernel launched one after the other and a synchronization point for both of 
them later. We have no way to determine which kernel accounts for how much of the recorded GPU 
counter so we just provided the averaged result. To obtain the total one must divide the 
inclusive/exclusive time from the reported averaged because in theory either kernel could account for 
the reported counts. 

K1 K1

300 600 Sync Points

Launch Points0 300

Calls Count
2 300 K1



Thirdly, we could have the same situation with multiple kernels and once again any of the kernels could 
account for the recorded counter values.

K1 K1

500 Sync Points

Launch Points0 20

Calls Count
2 500 K1 (averaged)



K1 K2

500 Sync Points

Launch Points0 20

Calls Count
1 500 K1 (averaged) (upper bound)
1 500 K2 (averaged) (upper bound)


