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Abstract—Detection of cracks on bridge decks is a vital task
for maintaining the structural health and reliability of concrete
bridges. Robotic imaging can be used to obtain bridge surface
image sets for automated on-site analysis. We present a novel
automated crack detection algorithm, the STRUM (spatially
tuned robust multifeature) classifier, and demonstrate results on
real bridge data using a state-of-the-art robotic bridge scanning
system. By using machine learning classification, we eliminate the
need for manually tuning threshold parameters. The algorithm
uses robust curve fitting to spatially localize potential crack re-
gions even in the presence of noise. Multiple visual features that
are spatially tuned to these regions are computed. Feature com-
putation includes examining the scale-space of the local feature
in order to represent the information and the unknown salient
scale of the crack. The classification results are obtained with real
bridge data from hundreds of crack regions over two bridges. This
comprehensive analysis shows a peak STRUM classifier perfor-
mance of 95% compared with 69% accuracy from a more typical
image-based approach. In order to create a composite global view
of a large bridge span, an image sequence from the robot is aligned
computationally to create a continuous mosaic. A crack density
map for the bridge mosaic provides a computational description
as well as a global view of the spatial patterns of bridge deck
cracking. The bridges surveyed for data collection and testing
include Long-Term Bridge Performance program’s (LTBP) pilot
project bridges at Haymarket, VA, USA, and Sacramento, CA,
USA.

Note to Practitioners—The automated crack detection algorithm
can analyze an image sequence with full video coverage of the re-
gion of interest at high resolution (approximately 0.6 mm pixel
size). The image sequence can be acquired with a robotic measure-
ment device with attached cameras or with a mobile cart equipped
with surface imaging cameras. The automated algorithm can pro-
vide a crack map from this video sequence that creates a seamless
photographic panorama with annotated crack regions. Crack den-
sity (the number of cracks per region) is illustrated in the crack
map because individual cracks are difficult to see at the magnifica-
tion required to view large regions of the bridge deck.

Index Terms—Adaboost, bridge deck inspection, bridge main-
tenance, computer vision, concrete, crack detection, crack pattern
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recognition, homography, image mosaic, image stitching, Lapla-
cian pyramid, machine learning, random forest, robotic imaging,
robotic inspection, Seekur robot, structural health monitoring,
structure frommotion, STRUM classifier, support vector machine.

I. INTRODUCTION

C ONDITION assessment of bridge decks plays a vital role
in maintaining the structural health and reliability of con-

crete bridges. Early detection of small cracks on bridge decks
is an important maintenance task. More than 100,000 bridges
across the United States have exhibited early age bridge-deck
cracking [3]. Many bridges exhibit defects in early stages imme-
diately after construction. As cracks appear on the deck, paths
are created for water and corrosive agents to reach the subsur-
face rods and steel reinforcements, requiring costly maintenance
and repair.
The current method of site inspection is a time-consuming

process for long-span bridges. Skilled inspectors go to the
site and assess the deck condition, marking the corrosions
and cracks on a chart, all under strict traffic control (Fig. 1).
Automated and accurate condition assessment that requires
minimal lane closure is highly desirable for fast large-area
evaluation. Robotic bridge scanning is revolutionizing the
process of bridge inspection [4]. However, a key challenge is
automated interpretation of the large image dataset in order to
infer bridge condition. We present a novel automated crack
detection algorithm and demonstrate results using data from
a state-of-the-art robotic bridge scanning system illustrated
in Fig. 1. Many prior crack detection methods use simple
edge detection or image thresholding; but these methods are
non-robust to noise and require manual parameter setting and
adjustment. When the cracks are high contrast regions against
a near uniform background (see Fig. 2), the simple methods
may perform well. However, real-world concrete images have
cracks of variable appearance and competing visual clutter.
Additionally, manual parameter adjustment is an impediment
to automatically analyzing large datasets over multiple bridges.
Our approach uses machine learning and optimization in order
to successfully detect cracks while eliminating the need for
tuning threshold parameters. We develop the patially tuned
robust multi-feature classifier (STRUMs) to obtain high-per-
formance accuracy on images of real concrete. The STRUM
algorithm starts with robust curve fitting to spatially localize
potential crack regions even in the presence of noise and
distractors. Visual features that are spatially tuned to these
regions are computed. The computation of these visual features
includes scale-space saliency to account for the unknown scale
of the crack. A suite of possible combinations of visual features
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Fig. 1. (Left) Bridge inspection at the Haymarket, VA, USA, testing site.
The white dots seen in the image are the bridge deck grid-markings. (Right)
RABIT - Robotic Assessment Bridge Inspection Tool: Long Term Bridge
Performance (LTBP) program of the Federal Highway Administration (FHWA)
[1] has developed a robotic scanning system for imaging bridge decks using
nondestructive evaluation techniques (ground-penetrating radar, impact-echo
measurements) and high-resolution images. Using this system, we collect
image data from bridge decks for developing and testing an automated crack
detection algorithm. Path-planning, sensor geometry, and collision detection
for the robot scanning are discussed in [2].

is evaluated experimentally with three classifier methods: sup-
port vector machines [5], adaboost [6], and random forests [7].
The tests are done with real bridge data and hundreds of crack
images from the Long-Term Bridge Performance program’s
(LTBP) [1] pilot project bridges at Haymarket, VA, USA, and
Sacramento, CA, USA. In order to create a composite global
view of a large bridge span, an image sequence from the robot is
aligned computationally to create a continuous mosaic. A crack
density map for the bridge mosaic provides a computational
description as well as an at-a-glance view of the spatial patterns
of bridge deck cracking.

A. Related Work

In prior work, many automated crack detection algorithms for
bridge decks emphasize high-contrast visually distinct cracks.
Standard image processing methods, including edge following,
image thresholding, and morphology operations, are applicable
for these cracks. Numerous successful approaches have been
demonstrated with high-contrast, low-clutter crack regions as
described in [8]–[15]. However, the crack images from the real
concrete bridge decks are often immersed in significant visual
clutter, as illustrated in Fig. 2, and are more difficult to detect in
an automated manner. To illustrate the point, Fig. 3 shows the
output of a recent crack detection algorithm [15] compared with
our STRUM classifier on a sample image from our dataset.
Machine learning has been applied for visual recognition and

classification and generally performs better than methods with
hand-tuned parameters [16]–[21]. Example-based machine
learning is referred to as supervised learning and enables statis-
tical inference based on the relevant data without the need for
manual parameter adjustment as in prior methods such as the
percolation algorithm [9], [10] and binarization methods [8],
[12], [14]. For the task of automated bridge crack detection, the
trend toward using machine learning algorithms is relatively
new. Machine learning is a large field and there is no best
algorithm for all classification tasks. Constructing a suitable
algorithm requires developing the right representation of the
data. For example, neural nets are used to determine crack

Fig. 2. (Top Row) Prior work uses images that are high contrast and low clutter
similar to the images shown. Simple methods such as edge detection and thresh-
olding for binarization can be applied for these images. (Bottom Row) Real
bridge deck images from our work shows significantly more distractors and pose
a more challenging crack detection problem.

Fig. 3. (Left) Original image showing a surface with cracks. (Center) Image
showing the output of a prior crack detection algorithm [15]. (Right) Image
showing the output of our algorithm.

orientation [22], however, the representation relies on standard
image binarization. Automated classifiers are used in [23]
including support vector machines, nearest neighbor and neural
nets with input features such as crack eccentricity, solidity and
compactness. A drawback of this method is that input features
depend on first segmenting the crack with standard manually
tuned methods. If this segmentation fails, the features for the
classifier are not directly meaningful. For our approach, a
line-fitting is used to find crack segments; the method is robust
because it is known to work well in the presence of noise and
clutter. The features are computed relative to the local line fit
and they are relevant for classification even if the line does not
fall on a crack segment. Our approach of robust spatial tuning
combined with a localized multifeature appearance vector is a
key contribution of the STRUM algorithm.

II. METHODS

The STRUM classifier consists of three components:
1) a robust line segment detector; 2) spatially-tuned multiple
feature computation; and 3) a machine learning classifier. The
curve fit is done using RANdom SAmple Consesus (RANSAC)
[24], where line segments are fit to pixels below a fixed per-
centage of the average intensity in pixel neighborhoods called
blocks. The robustness of RANSAC is well known, and Fig. 7
provides a visual comparison to least-squares estimation for
line fits. Small blocks are used so that curved cracks can be
reasonably approximated with line segments within the small
region. This approximation is equivalent to a Taylor series
approximation where curved cracks are represented locally
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Fig. 4. Method overview. The STRUM (Spatially Tuned RobUst Multi-feature) classifier consists of three components: 1) a robust line segment detector;
2) spatially tuned multiple feature computation; and 3) a machine learning classifier. The resulting local crack maps over a bridge span are combined by forming
an image mosaic where individual frames are aligned to a single coordinate frame and stitched for a composite image. A crack density map is computed providing
a global view of the crack densities across the bridge.

Fig. 5. Seekur robot mounted with cameras used for image collection. The
robot is remotely operated and data is sent to the base station located in a van at
the end of the bridge-testing area.

with line segments. Line fits can also be replaced with a higher
order curve fit, but lower order fits are typically more stable
and reliable for small neighborhoods. The line segments are
obtained for each block in the image and a machine learning
classification is done to classify these segments into two
classes: crack or not-crack. Training examples are provided
that are manually labeled with the correct class, as shown in
Fig. 6.
The key contribution of our method is the input to the stan-

dard classifier, i.e., the crack appearance vector computed as
a spatially tuned multifeature vector. The appearance vector is
constructed using components that each contribute a partial cue
to the classification decision. We evaluate the performance of

Fig. 6. Positive and negative training samples. (a)–(d) Shows 15 15 pixel
image regions (blocks) with cracks. (e)–(h) Shows 15 15 pixel image regions
without cracks. For our training and validation purposes, we construct a dataset
of 2000 samples from two bridges, with equal number from each bridge, and
equal number of positive and negative instances.

Fig. 7. Comparison between RANSAC and least square fit of curves. Red
lines in (a) and (c) show the curves fit to the minimum intensity points using
RANSAC. Blue lines in (b) and (d) show the curves fit to the minimum
intensity points using least squares method that misses the cracks due to the
presence outliers.

classification using combinations of the features and demon-
strate that the multifeature appearance vector which integrates
several weaker cues provides the best classifier. We investigate
a suite of: 1) intensity based features; 2) gradient-based features;
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Fig. 8. An individual component of the crack appearance vector, , the mean
pixel intensity along the line segments is less for crack regions (blocks 1–50)
than non-crack regions (blocks 51–100). However, this feature alone would be
insufficient to classify the crack.

and 3) scale-space features. Our experimental results show that
combining these multiple features into one appearance vector
provides optimal performance.

A. Intensity-Based and Gradient-Based Features

Spatially tuned features provide a quantitative description of
appearance along the local line segment. As an example, the
mean of the pixel intensity along the line segment is chosen
as feature component because crack pixels are typically low in-
tensity. However, that feature alone is not sufficient for high
accuracy classification, as illustrated in Fig. 8 which shows the
lower intensity trend for crack regions along with many vio-
lators of this trend. For very thin cracks, the darkness of the
pixel intensities is not reliable. Also, a few dark pixels along
the line segment in a non-crack region causes a low mean in-
tensity. Multiple features that provide weak cues are combined
in our method. Specifically, we use the following set of inten-
sity-based features that are computed with pixels along the ro-
bustly detected line segment:
• Mean of intensity histogram .
• Standard deviation of intensity .
• Mean of gradient magnitudes .
• Standard deviation of gradient magnitudes
• Ratio of the mean of intensity along the local line to the
mean intensity in the local region .

The intensity standard deviation indicates that the crack seg-
ments have an approximate uniform intensity compared to non-
crack segments. The component is used because the gradient
magnitudes will be larger in the crack regions, and indicates
that the gradient magnitude along a crack is expected to be more
uniform than for line segments in non-crack regions. A discrete
approximation of the derivative is used by a standard central dif-
ference filter. Finally, the feature component provides a rela-
tive intensity measure of the line segment pixels compared to the
background pixels and these photometric ratios have the advan-
tage of being independent of global illumination. Each of these
components provides a weak classification cue and the concate-
nation of all the components comprise the multifeature vector.

B. Scale-Space Features

The bridge deck images of interest have cracks of varying
sizes, as thin as a millimeter to over a centimeter. Uniformity
in the representation and processing of visual information over

Fig. 9. (a) Original image. (b) Level-2 pyramid image upsampled to the same
size as the original image. Laplace pyramid enhances edge features, which are
more prominent at a characteristic scale.

Fig. 10. Patches in the second row show the line fit to the points which have
the lowest Laplacian pyramid values. Patches in the first row show the curves fit
to the points of minimum intensity. These patches have very fine cracks. Curves
fit to pixels having the lowest Laplacian pyramid values perform better than the
curves fit to minimum intensity points.

multiple scales is an inherent property offered by visual sys-
tems. Laplacian pyramids are a classic coarse-to-fine strategy
that assist in the search over scale space. Image structures, such
as cracks, tend to have a particular salient scale. That is, they
are most prominent at one level of the Laplace pyramid, as il-
lustrated in Fig. 9. Laplacian pyramid images represent different
spatial frequency bands so that level-0 contains image informa-
tion in the highest spatial frequencies and the subsequent levels
correspond to lower spatial frequency bands. The spatial tuning
for these features is obtained by robust line fits to the min-
imum tenth percentile Laplacian pyramid values in the block,
instead of pixel intensity values. The Laplacian pyramid value
is the mean over pyramid levels 1, 2, and 3. As demonstrated
in Fig. 10, thinner cracks can be detected when curves are fit to
such points (scale-space extrema).
The scale-space features include the following spatially tuned

Laplace pyramid features (computed along the local line seg-
ment):
• Maximum of Laplacian pyramid values across three levels

.
• Minimum of Laplacian pyramid values across three levels

.
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• Mean of Laplacian pyramid level 1 values .
• Mean of Laplacian pyramid level 2 values .
• Mean of Laplacian pyramid level 3 values .

III. CLASSIFIER TRAINING AND TESTING

The crack appearance vector is used as input to machine
learning classification. For statistical inference, classifiers are
chosen based on empirical performance and we investigate
the following classifiers: support vector machines (SVM)
[5], adaboost [6], and random forest [7]. Features are used in
different combinations to evaluate the performance of each
of the three classifiers to yield the highest possible accuracy
[25]. The performance on the training set is analyzed using a
tenfold cross validation. Furthermore, a classification test that
is geographically mutually exclusive is provided where the
training data is obtained from one bridge and the test set is
obtained from another bridge.

IV. GLOBAL VIEW: CRACK DENSITY MAPS

Crack location and characteristics are important to detect,
evaluate and archive. Additionally, presentation of the crack
detection results may be made to a human inspector. There is
a challenge of communicating spatial patterns of cracks over
the entire bridge deck. Subpixel image registration methods
are used to create a large-scale mosaic from the robot scanner
images. However, examining the full resolution mosaic anno-
tated with cracks requires either wall-size monitors or lengthy
scrolling across a large scale digital image. Downsampling the
image to fit on a smaller window renders thin cracks invisible.
We compute a simple crack density map where the pixel value
is the crack density in the region. This computation can be
slow since a spatial average must be computed for every pixel
in the large mosaic. We employ integral images which is a
computationally efficient technique useful when computing
averages over windows for every pixel in the images [26]. The
resultant crack density maps give a detailed overview about the
surface degradation of the bridge deck.
For general camera motion, a 3 3 matrix , called a ho-

mography, relates the pixel coordinates and in two im-
ages as

(1)

Homographies can be concatenated to relate points in reference
frame to points in the current frame. The th keypoint in the th
frame when transformed to the zeroth frame is related to
the th keypoint in the th frame by

(2)

where is the frame number, is the point
pair index, and is the concatenation of intermediate homo-
graphies between frame and frame 0, given by

(3)

Fig. 11. Stitched images before and after distortion suppression. (a) Stitched
images obtained by minimizing the misalignment of matched points. (b)
Stitched images with homography distortion removed by adding a distortion
term to the optimization problem. There are eight images stitched together in
this figure.

The problem with concatenation is an accumulation of errors
over local frames. The best way to avoid this is a procedure
called bundle adjustment [27]–[29] which computes all of the
interframe homographies in a global optimization over all rel-
evant images. However, this approach is very computationally
intensive. Frame-to-frame alignment works well if the homog-
raphy estimation is constrained so that the rotational compo-
nents is small. We follow the approach of [30] to ensure undis-
torted homographies by encouraging the original rectangular
shape of the image. This alignment is an optimization problem
with an objective function that has two terms: reprojection error

to match points and distortion error . The reprojection
error is

(4)

where is the number of keypoints in the th frame and is
the number of frames. The distortion term can be formulated
as

(5)

Total error is the sum of both terms given by

(6)

Levenberg–Marquardt algorithm [31] is used for this nonlinear
optimization step. Fig. 11 shows the image stitching results with
and without the distortion term.

V. RESULTS

The experimental results use an image database collected
by robotic scans of two bridge decks consisting of 100 im-
ages per bridge of 3.5 ft. 2.6 ft. concrete surface segments
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TABLE I
COMPARISON OF SVM CLASSIFIER PERFORMANCE WITH DIFFERENT

INTENSITY-BASED FEATURE VECTORS

TABLE II
CLASSIFIER PERFORMANCE WITH THE FEATURE VECTOR

TABLE III
COMPARISON OF SVM PERFORMANCE WITH DIFFERENT LAPLACE PYRAMID

FEATURES AND THE COMBINED FEATURE VECTOR

corresponding to 1920 1280 pixel image regions. The
high-resolution images were captured using two Canon Rebel
T3i DSLR cameras (with Canon EF-S 18–55 mm f/3.5–5.6
lenses) mounted on a Seekur robot, as shown in Fig. 1. Mecha-
tronics and navigation of the robot system in described in [4].
For the experimental results, combinations of candidate

features (intensity-based, gradient-based, and scale-space) are
used. The validation and training sets are chosen from 1000
samples per bridge in the labeled database with equal number
crack and non-crack samples. To quantify classifier perfor-
mance, a standard tenfold cross validation is performed which
varies the training and validation set over the entire dataset.

A. Classification With Intensity and Gradient-Based Features

Using the spatially tuned intensity-based features along the
local line segments, as described in Section II, the blocks are
classified and the performance metrics of the SVM classifier are
shown in Table I. The ranking of features in order of their in-
dividual performance is , and (in decreasing order
of accuracy). , the combined feature vector using ,
and performs best. We use the 4 1 feature vector and
evaluate the classifier performance on the validation set data, as
shown in Table II. The combined intensity-based feature vector
led to an increase in accuracy and precision of the classifiers.
Random forests classifier has the highest accuracy and the ad-
aboost classifier has the highest precision.

B. Classification Using Scale-Space Features

The SVM classifier performance for different combinations
of Laplacian pyramid feature vectors described in Section II are
shown in Table III. The performance of the three classifiers are

TABLE IV
CLASSIFIER PERFORMANCE USING THE MULTIFEATURE VECTOR (F1,F2) A

9 1 FEATURE VECTOR AS DESCRIBED IN TABLES I AND III)

TABLE V
CLASSIFIER PERFORMANCE WITH CALIFORNIA BRIDGE DATASET AS THE

TRAINING SET AND THE VIRGINIA BRIDGE DATASET AS THE TEST SET WITH A
9 1 FEATURE VECTOR CONSISTING OF FEATURES AND

Fig. 12. Crack detection results. (a) Raw image from the Virginia bridge deck
corresponding to a 2.6 ft 3.5 ft section on the bridge. (b) Image showing the
detected cracks. (c) Morphological operations (closing and hole filling) remove
small cracks.

compared in Table IV. Random forests has the highest accuracy,
while SVM and adaboost also perform well. A combination of
the all features in a 9 1 vector results in an increase in accuracy
for all three classification algorithms. The STRUM classifier
therefore is defined with this multifeature vector as input.

C. Geographically Distinct Test Set

The classifier performance is evaluated using geographically
distinct test data, i.e., from two different bridge datasets. For this
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Fig. 13. Bridge deck mosaic and crack density map. (a) Mosaic of a 35 ft. 3.5 ft. section of the Virginia bridge deck. (b) Crack density map computed by
averaging the number of cracks in a region. Notice how the cracks are not apparent in (a) because their width is subpixel in the scaled mosaic. But the crack density
map gives a clear visual assessment of the pattern of fine cracks over the imaged span of the bridge. (Row 3) The crack density map in (b) is superimposed on the
mosaic in (a). Three of the high crack-density regions have been shown zoomed for a clear depiction of the underlying cracks.

purpose, we constructed training and test sets of images col-
lected from bridges in both Haymarket, VA, USA, and Sacra-
mento, CA, USA. The data from the Virginia bridge was col-
lected under natural light conditions, while the data from the
California bridge was collected at night under artificial lighting.
For each of the two bridges, 1000 samples were labeled with
equal positive and negative instances. The classifiers were eval-
uated with the multifeature vector , combining the in-
tensity-based and the Laplacian pyramid features. The classi-
fier performance when trained on the California bridge-deck im-
ages and tested on the Virginia bridge-deck images is shown in
Table V. The best performance was with the adaboost classifier.
The STRUM classifier approach, as shown in Fig. 4, does not fix
the choice of the machine learning classifier. The result shown
suggests that the adaboost classifier provides a useful method
for generalizing the trained model to novel bridge surfaces.

D. Crack Density Maps

Fig. 13 shows a bridge mosaic of a 35 ft. 3.5 ft. section
of the Virginia bridge deck comprised of 12 individual images
from the robot scan. The corresponding density map is obtained
by running the STRUM classifier on the bridge mosaic. This
color-map shows various levels of degradations indicated by the
different colors where dark blue corresponds to region of low
crack density and light blue corresponds to high crack density.
The superposition of the crack map and the image mosaic is also

shown in Fig. 13. The global crack map can be used for quanti-
tative analysis but also for visually assessing global crack pat-
terns. For example, notice that an approximate periodic global
pattern of cracking is detectable in Fig. 13.

E. Timing Discussion

On-site analysis enables knowledge inference from the large
dataset collected by the robotic bridge scanning. The computa-
tion and measurement speed of our methods supports fast anal-
ysis in its current form. With a robot speed of 3 ft/second, the 35
ft. section shown in Fig. 13 is imaged in approximately 12 s. The
individual image size is 2.6 ft. in the direction of motion and 3.5
ft. in the perpendicular direction. The robot takes images with
approximately 40% overlap, i.e., the sample distance along the
bridge span is approximately 1.5 ft. With a processor speed of
2.3 GHz, the total time for image collection, STRUM classifica-
tion, and annotating the cracks on the 35 ft. section comprised
of 12 images takes approximately 33 min, in a completely au-
tomated manner. The current implementation uses and
Matlab and can easily be optimized for significant speed gains.
Time efficiency can be further improved with GPU paralleliza-
tion and embedded vision hardware.

VI. CONCLUSION

The STRUM classifier for crack detection on bridge decks
provides a method of inspection for use in on-site robotic scan-
ning. Since automated scanning generates large image datasets,
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automated analysis has clear utility in rapidly assessing bridge
condition. Moreover, the results can be quantified, archived and
compared over time. The methods of this work shows the first
application of automated crack detection to robotic bridge scan-
ning. The new algorithm uses a feature set that shows 90% accu-
racy on thousands of tests cracks. Additionally, geographically
separate datasets have been provided for testing and training. A
thorough evaluation of multiple features and multiple classifiers
on real world data validates the methodology. A coherent spa-
tial mosaic, along with the crack density map, serves as a new
tool for inspectors to analyze bridge decks.
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