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Given a positive integer 7, let P(n) denote the largest prime factor of » and S(n) denote
the smallest integer m such that » divides m!

The function S(n) is known as the Smarandache function and has been intensively studied
[1]. Its behavior is quite erratic [2] and thus all we can reasonably hope for is a statistical
approximation of its growth, e.g., an average. It appears that the sample mean ES)
satisfies [3]
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as N approaches infinity, but I don't know of a rigorous proof. A natural question is if
some other sense of average might be more amenable to analysis.

Erds [4,5] pointed out that P(n) = S(n) for almost all », meaning
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as N approaches infinity. Kastanas [5] proved this to be true, hence the following
argument is valid. On one hand,
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The above summation, on the other hand, breaks into two parts:
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The second part vanishes:
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while the first part is bounded from above:
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We deduce that
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where 4 is the famous Golomb-Dickman constant [6-9]. Therefore A - n is the asymptotic
average number of digits in the output of S at an n-digit input, that is, 62.43% of the
original number of digits. As far as I know, this result about the Smarandache function
has not been published before.

A closely related unsolved problem concerns estimating the variance of S.
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