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ABSTRACT

Let p(n) denote the number of unrestricted partitions of n, and let

∆p(n) = p(n) − p(n − 1 ), ∆k p(n) = ∆(∆k − 1 p) (n). This note answers several

questions about the behavior of the k-difference ∆k p(n) by proving that if k is large

enough, there is an integer n 0 (k) such that ∆k p(n) alternates in sign for n < n 0 (k)

and is nonnegative for n ≥ n 0 (k). It is also shown that n 0 (k) ∼
π2

6_ __ k 2 ( log k)2 as

k → ∞.
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1. Introduction

If f (n) is any function on the nonnegative integers, define its first difference ∆ f by

∆ f (n) = f (n) − f (n − 1 ) for n ≥ 1, ∆ f ( 0 ) = f ( 0 ). The k-th difference ∆k f of f is

then defined recursively by ∆k f = ∆ (∆k − 1 f ). A few years ago, I. J. Good [5a] asked

about the behavior of ∆k p(n), where p(n) denotes the number of unrestricted partitions

of n. He initially conjectured [5a] that if k > 3, then the sequence ∆k p(n),

n = 0 , 1 , . . . , alternates in sign. However, computations by R. Razen and

independently by I. J. Good and his associates [5b] found counterexamples to this

conjecture, and led to a new conjecture, namely that for each fixed k, ∆k p(n) > 0 for n

sufficiently large. I. J. Good [5b] even made the stronger conjecture that for each k, there

is an n 0 (k) such that ∆k p(n) alternates in sign for n < n 0 (k), and ∆k p(n) ≥ 0 for

n ≥ n 0 (k). He also suggested that 6 (k − 1 ) (k − 2 ) + k 3 /2 might be a good

approximation to n 0 (k). Some further computations by R. A. Gaskins led I. J. Good to

revise his conjecture about the size of n 0 (k), and suggest that π k 5/2 might be a good

approximation to it [5c].

At about the same time as the first publication of I. J. Good’s problem, the same

question about the sign of ∆k p(n) was also raised independently by G. E. Andrews, and

was answered by H. Gupta [6]. Gupta noted that ∆p(n) > 0 for all n, and gave a simple
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proof of the result that ∆2 p(n) ≥ 0 for n ≥ 2, while ∆2 p( 0 ) = 1, ∆2 p( 1 ) = −1.

Gupta also noted that it can be shown easily using the Hardy-Ramanujan-Rademacher

series [1,2,3,7,8] for p(n) that for each k, ∆k p(n) > 0 if n is sufficiently large. In fact,

this result can be obtained from some of the earliest of the Hardy-Ramanujan

approximations [7] to p(n):

p(n) =
2 π √ 2

1_ ______
dn
d_ __ (λn

− 1 exp (Cλ n ) ) + O( exp ( (C /2 + ε) n 1/2 ) ) , (1.1)

for every ε > 0, where C = π( 2/3 )1/2 and λ n = (n − 1/24 )1/2 . The k-th difference of

the second term on the right side of (1.1) is of the same order of magnitude as that term

(for k fixed, n → ∞), while the k-th difference of the first term is very close to its k-th

derivative. Thus we obtain the estimate

∆k p(n) = C k n − k /2 p(n) ( 1 + O(n − 1/2 ) ) as n → ∞ , (1.2)

where C k = (π/√ 6 ) k . (Gupta’s asymptotic estimate of ∆k p(n) in [6] is incorrect.)

Gupta’s computations led him to the same conjecture as Good’s about ∆k p(n)

alternating up to some n 0 (k) and then immediately becoming positive, but Gupta

conjectured that n 0 (k) ∼ k 3 as k → ∞.

Another easy proof that ∆k p(n) is positive for large n can be obtained by applying

the theorem of Bateman and Erdo
. .
s [4]. They showed that if p A (n) denotes the number

of partitions of n into summands taken from some set A of positive integers (repetitions

allowed), then ∆k p A (n) ≥ 0 for all large n if and only if the greatest common divisor

of each subset B ⊆ A with  A \ B = k is equal to 1. The Bateman and Erdo
. .
s result is

far too general, though, to provide information about initial segments of ∆k p A (n).
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This paper carries the investigation of ∆k p(n) further, and largely settles the Good-

Gupta conjectures. The main result is the following.

Theorem. There is a k 0 so that if k ≥ k 0 , then there is an integer n 0 (k) such that

( − 1 ) n ∆k p(n) > 0 for 0 ≤ n < n 0 (k) and ∆k p(n) ≥ 0 for n ≥ n 0 (k).

Furthermore,

n 0 (k) ∼
π2

6_ __ k 2 ( log k)2 as k → ∞ . (1.3)

With more work it would probably be possible to establish the above result for all k.

Such an extension would require replacing various O-estimates by explicit numerical

bounds. We should note that the above result does not exclude the possibility that

∆k p(n) = 0 might occur. In fact, the proof shows that for each large k, ∆k p(n) = 0

can hold for at most one value of n, and it can be shown with more effort that values of k

for which ∆k p(n) = 0 occurs for some n are very rare. It is probably true that

∆k p(n) = 0 has only finitely many solutions among all pairs k ,n, but this conjecture

seems to be hard to prove.

The asymptotic approximation (1.3) is not very accurate for small k. For example,

from the computational results quoted in [5c], it appears that n 0 ( 30 ) = 15416. Now

for k = 30, π k 5/2 = 15486. 49... , while 6 π− 2 k 2 ( log k)2 = 6329. 32... . The proof

of (1.3) can be used to obtain more accurate estimates of n 0 (k), however.

2. Intuitive explanation of result

If F(z) denotes the generating function of p(n),
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F(z) =
n = 0
Σ
∞

p(n) z n , (2.1)

then it is well known (and easy to see) that

F(z) =
m = 1
Π
∞

( 1 − z m ) − 1 . (2.2)

If we define F k (z) to be the generating function of ∆k p(n),

F k (z) =
n = 0
Σ
∞

∆k p(n) z n , (2.3)

then

F k (z) = ( 1 − z) k F(z) = ( 1 − z) k

m = 1
Π
∞

( 1 − z m ) − 1 . (2.4)

The theorem could be proved by investigating the analytic behavior of F k (z), but we

will only use F k (z) to explain why the Good-Gupta conjectures are true.

The basic philosophy in the use of generating functions for asymptotic analysis is that

the singularities of the function determine the behavior of the coefficients. Generally

speaking, a dominant singularity (i.e., one near which the function grows faster than near

other points) at 1 corresponds to a monotone increasing sequence, while a dominant

singularity at -1 corresponds to an alternating sequence. The function F(z) has the unit

circle as its natural boundary. However, as was shown by Hardy and Ramanujan [7],

F(z) is most singular (i.e., grows fastest) near 1, is next most singular at -1, and is much

better behaved away from those two points. This led them to the following refinement of

(1.1):
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p(n) =
2 π √ 2

1_ ______
dn
d_ __ (λn

− 1/2 exp (Cλ n ) ) +
2 π

( − 1 ) n
_ ______

dn
d_ __ (λn

− 1 exp (Cλ n /2 ) )

+ O( exp (n 1/2 (C /3 + ε) ) ) (2.5)

for any ε > 0. (Taking other points on  z = 1 into account led Hardy-Ramanujan to

their famous asymptotic series [7].) The first term on the right in (2.5) comes from z = 1,

the second from z = −1, and the remainder is the contribution of the rest of the circle.

The importance of the fact that z = 1 is the dominant singularity of F(z) and z = −1

is next most dominant is that when we study ∆k p(n), we deal with the generating

function F k (z) = ( 1 − z) k F(z). The effect of multiplying F(z) by ( 1 − z) k is that the

singularity at z = −1 increases in influence, as the function is increased by about 2k near

z = −1. On the other hand, the singularity at z = 1 diminishes in influence. Since F(z)

grows much faster than any polynomial in ( 1 − z) − 1 as z → 1, this diminution is fairly

small very close to z = 1, and therefore for large n, the size of ∆k p(n) largely reflects the

influence of the singularity at z = 1. However, for small n, this diminution is nontrivial,

and allows z = −1 to dominate. All the other points on  z = 1 make contributions that

are still smaller than that of z = −1. The reason that the transition from alternation of

signs to positivity is very sharp is that in the transition zone, the singularity at z = 1

begins to dominate very rapidly. Let us write

∆k p(n) = a(n) + ( − 1 ) n b(n) + c(n) ,

where a(n) is the positive contribution from z = 1, b(n) is the absolute value of the

contribution from z = −1, and c(n) is the remainder. Then in the transition region

a(n + 1 ) − a(n) is about 2 (b(n + 1 ) − b(n) ), and is much larger than c(n), so that

once ∆k p(n) becomes nonnegative, it stays nonnegative.
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The above presents an intuitive explanation of the mechanism that causes the Good-

Gupta phenomenon of alternation followed by abrupt transition to positivity. This

explanation could be developed into a rigorous proof, using relatively simple analytic

methods. The estimates in the transitional region between alternation of signs and

positivity would in fact be fairly simple, using the rough estimates of [7]. However, the

need to cover the range of small values of n requires more delicate analysis, and so the

proof presented below uses the Rademacher convergent series expansion for p(n)

[1,2,3,8]. The explanation above presents an intuitive picture of what’s happening which

is not obvious from the proof below, in which the analytic behavior of the generating

function shows up only indirectly in the form of the Rademacher expansion (3.3).

3. Detailed proof

We first use a very simple argument to show that for k large, ∆k p(n) alternates in

sign for n up to about k /2.

Proposition 3.1. For any ε ∈ ( 0 , 10 − 10 ) there is a k 1 (ε) such that if k ≥ k 1 (ε) and

0 ≤ n ≤ ( 1/2 − ε) k, then

( − 1 ) n ∆k p(n) > 0 .

Proof. Note that in the range 0 ≤ n ≤ ( 1/2 − ε) k,

( − 1 ) n ∆k p(n) =
j = 0
Σ
n

( − 1 ) j 
î n − j

k 
 p( j) .

Now if 0 ≤ j < n,



- 7 -


î n − j

k 



î n − j − 1

k 


− 1
=

n − j
k − n + j + 1_ __________ ≥

n
k − n + 1_ ________ ≥ 1 + ε .

By the Hardy-Ramanujan approximation (1.1), we see that p( j + 1 ) / p( j) < 1 + ε for

j ≥ 2m 0 (ε). Hence for every m 1 ≥ m 0 we have

(3.1)

j = 2m 1

Σ
n

( − 1 ) j 
î n − j

k 
 p( j) ≥

m = m 1

Σ
 n /2 


î


î n − 2m

k 
 p( 2m) − 

î n − 2m − 1
k 

 p( 2m + 1 )




> 0

since each term is positive.

To deal with the remaining sum, we note that

j = 0
Σ

2m 1 − 1

( − 1 ) j 
î n − j

k 
 p( j) = 

î n
k


j = 0
Σ

2m 1 − 1

( − 1 ) j 
î n − j

k 



î n

k


− 1
p( j) .

Now for 0 ≤ j ≤ 2m 1 − 1 and n ≤ ( 1/2 − ε) k,


î n − j

k 



î n

k


− 1
=

i = 1
Π

j

k − n + i
n − j + i_ _______ =



î k

n_ _




j

( 1 + O(k − 1 ) ) ,

(the constant in the O-notation depending on m 1 and ε), so

j = 0
Σ

2m 1 − 1

( − 1 ) j 
î n − j

k 



î n

k


− 1
p( j) =

j = 0
Σ

2m 1 − 1

( − 1 ) j


î k

n_ _




j

p( j) + O(k − 1 ) . (3.2)

The infinite sum (2.1) for F(z) does not vanish on the segment [ − ( 1/2 − ε) , 0 ]

because it has the convergent infinite product (2.2) in which all the terms are nonzero,

and therefore for some δ = δ(ε) > 0, we must have F(z) ≥ δ for

z ∈ [ − ( 1/2 − ε) , 0 ]. Since the partial sums of the infinite sum in (2.1) converge to

F(z) uniformly on compact subsets of the unit disk, there is some m 2 such that for all
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m ≥ 2 m 2 − 1, and all z ∈ [ − ( 1/2 − ε) , 0 ],

j = 0
Σ
m

p( j) z j ≥ δ/2 .

We now select m 1 = max (m 0 , m 2 ), so that m 1 depends on ε alone, and discover from

(3.2) that for k ≥ k 1 (ε),

j = 0
Σ

2m 1 − 1

( − 1 ) j


î k

n_ _




j

p( j) + O(k − 1 ) ≥ δ/4 ,

which proves the proposition.

We next consider slightly larger values of n. First we recall the Rademacher

convergent series expansion for p(n) [1,2,3,8]. As before, we let

C = π ( 2/3 )1/2 , λ n = (n − 1/24 )1/2 .

Then, for any n ≥ 1,

p(n) =
π 21/2

1_ _____
m = 1
Σ
∞

A m (n) m 1/2

dn
d_ __ (λn

− 1 sinh (Cm − 1 λ n ) ) , (3.3)

where the A m (n) satisfy

A 1 (n) = 1 and A 2 (n) = ( − 1 ) n for n ≥ 1 , (3.4)

 A m (n) ≤ m for all m ,n ≥ 1 . (3.5)

(The A m (n) are known explicitly in terms of Dedekind sums [1,2,3,7,8].)

We define, for m ,n ≥ 1,
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f m (n) = m 1/2

dn
d_ __ (λn

− 1 sinh (Cm − 1 λ n ) ) , (3.6)

and f m ( 0 ) = 0, and we let

R n =
m = 3
Σ
∞

A m (n) f m (n) , (3.7)

so that

p(n) = π− 1 2 − 1/2


î
f 1 (n) + ( − 1 ) n f 2 (n) + R n





. (3.8)

Lemma 3.2. For all n ≥ 1,

 R n  ≤
5
3_ _ f 2 (n) (3.9)

and

 R n  ≤ 10 f 3 (n) . (3.10)

Proof of Lemma. The estimates (3.9) and (3.10) can be verified numerically for

1 ≤ n ≤ 50 by computing p(n) , f 1 (n), and f 2 (n). (Tables of values of p(n) are

contained in [1,7], for example, or they can be computed using the recurrences in

[1,3,7].) For n > 50, we use the estimate [3; pp. 191-192]


m = 5
Σ
∞

A m (n) f m (n) ≤ 2 C 2 λn
− 1



î
C λ n /12 + 25 − 1 sinh (C λ n /4 )





together with the explicit formulas for f 3 (n) and f 4 (n) to prove (3.9) and (3.10).
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The estimate (3.9) is tight only for very small n, while the constant 10 in (3.10) could

easily be decreased with slightly more careful work.

We next investigate ∆k p(n) for ranges of n not covered by Proposition 3.1.

Proposition 3.3. There are constants c 1 , k 2 , and ε > 0 such that if k ≥ k 2 , then the

following estimates hold:

(a) For 2k /5 ≤ n ≤ k − 2,

∆ k f 1 (n) ≤ c 1 k 1/2 
î n

k
 . (3.11)

(b) For k − 1 ≤ n ≤ k + 1,

∆ k f 1 (n) ≤ c 1 k 5 exp (c 1 k 1/2 ) . (3.12)

(c) For k + 2 ≤ n,

∆ k f 1 (n) ≤ c 1 n − k /10 exp (c 1 n 1/2 ) . (3.13)

(d) For ( 1/2 − ε) k ≤ n ≤ k /2,

∆ k f 1 (n) ≤
10
23_ __ 

î n
k
 . (3.14)

Proof. From the proof of Rademacher’s convergent series (3.3) (see [2; p. 109], for

example) we find that

f 1 (n) =
2 π i

α_ ____
(β)
∫ t − 5/2 exp (t + γ λn

2 t − 1 ) dt , (3.15)

where
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α = π7/2 6 − 3/2 , γ = π2 /6 , (3.16)

β is any constant with β > 0, and (β) denotes the straight line from β − i ∞ to β + i ∞.

Therefore, if

 z e γ/β < 1 , (3.17)

then

n = 1
Σ
∞

f 1 (n) z n =
2 π i

α_ ____
(β)
∫ t − 5/2 exp (t − γ/( 24t) )

n = 1
Σ
∞

z n e γ n / t dt

(3.18)

=
2 π i

α_ ____
(β)
∫ t − 5/2 z exp (t +

24t
23γ_ ___ )

1 − z e γ/ t

dt_ ________ ,

and so

G k (z) =
n = 1
Σ
∞

z n ∆k f 1 (n)

(3.19)

=
2 π i

α ( 1 − z) k
_ ________

(β)
∫ t − 5/2 z exp (t +

24t
23γ_ ___ )

1 − z e γ/ t

dt_ ________ .

The expansion (3.18) has been obtained only under the assumption (3.17), but the

integral on the right hand side of (3.18) is analytic in all of C \ [e − γ/β , ∞ ) (i.e., the

entire complex plane with a slit along the positive real axis from e − α/β to infinity

removed). Thus (3.19) gives an analytic continuation of G k (z) to the domain

C \ [ 1 ,∞ ), provided that when z is real, z ∈ ( 0 , 1 ), we choose β > − γ/ log z.

We now use (3.19) to obtain bounds for ∆k f 1 (n). If Re (z) < 1,  1 − z ≥ 1/100,

we choose β = 1000, and then for Re (t) = β we have
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


 1 − z e γ/ t

z exp (t +
24t
23γ_ ___ )

_ ______________






≤ c 2

for some constant c 2 > 0. Therefore for some c 3 > 0,

 G k (z) ≤ c 3  1 − z k (3.20)

holds for all z with Re (z) < 1,  1 − z ≥ 1/100.

Suppose next that Re (z) < 1, 0 <  1 − z < 1/100. In this case we let

w = 1 − Re (z) and β = 2 γ/ w. Then  z ≥ 1 − w ,  e γ/ t  ≤ e w /2 ,


 1 − z e γ/ t 

 ≥ ( 1 − w) e w /2 − 1 ≥ w /10 ,

and so

 G k (z) ≤
w

c 4_ __  1 − z k exp ( 2 γ/ w) . (3.21)

We now use the estimates (3.20) and (3.21) to bound ∆k f 1 (n). We have

∆k f 1 (n) =
2 π i

1_ ____
S
∫ G k (z)

z n + 1

dz_ ____ , (3.22)

where S is any simple closed curve around the origin in the domain C \ [ 1 ,∞ ). We will

select a radius r > 0 later. Given r, we choose S to consist of S 1 , that portion of the

circle  z = r that lies to the left of the line Re (z) = 1 − ( 2 γ/ n)1/2 (which might be

all of that circle) together with S 2 , the straight line segment formed by the intersection of

the disk  z ≤ r and the line Re (z) = 1 − ( 2 γ/ n)1/2 when there is such an

intersection. By (3.20), we find that
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

 2 π i

1_ ____
S 1

∫ G k (z)
z n + 1

dz_ ____




≤ c 5
r n

( 1 + r) k
_ ______ + c 5 n 1/2 100 − k r − n exp ( ( 2 γ n)1/2 ) .

On the other hand, by (3.21) we find that when S 2 exists,



 2 π i

1_ ____
S 2

∫ G k (z)
z n + 1

dz_ ____




≤ c 6 n 1/2 exp ( ( 2 γn)1/2 )
S 2

∫
 z n + 1

 1 − z k
_ ______  dz .

Hence we conclude that for any r > 0,

∆ k f 1 (n) ≤ c 7 ( 1 + r) k r − n + c 7 n 1/2 100 − k r − n exp ( ( 2 γ n)1/2 )

(3.23)

+ c 8 n 1/2 exp ( ( 2 γn)1/2 )
0
∫
ω

( 1 − 2 ( 2 γ/ n)1/2 + 2γ/ n + v 2 )(n + 1 )/2

( 2 γ n − 1 + v 2 ) k /2 dv_ _________________________________ ,

where

ω =


î (r 2 − 1 + 2 ( 2 γ/ n)1/2 − 2 γ/ n)1/2

0

if r > 1 − ( 2 γ/ n)1/2 .

if r ≤ 1 − ( 2 γ/ n)1/2 ,
(3.24)

For 2k /5 ≤ n ≤ k − 2, we now select r = n /(k − n). We have for k sufficiently large

and for 0 ≤ v ≤ ω,

( 1 − 2 ( 2 γ n − 1 )1/2 + 2γ/ n + v 2 )(n + 1 )/2

( 2 γ n − 1 + v 2 ) k /2
_ __________________________________ ≤

( 1 − 2 ( 2 γ n − 1 )1/2 + 2γ/ n + ω2 )(n + 1 )/2

( 2 γ n − 1 + ω2 ) k /2
_ __________________________________

=
r n + 1


î r 2 − 1


k /2

_ __________ ,

so that
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∆ k f 1 (n) ≤ c 9 ( 1 + r) k r − n + c 10 n 1/2 (r 2 − 1 ) k /2 r − n exp ( ( 2 γ n)1/2 )

≤ c 11 ( 1 + r) k r − n ≤ c 12 k 1/2 
î n

k
 . (3.25)

For k − 1 ≤ n ≤ k + 1, we select r = k and obtain from (3.23) the bound

∆ k f 1 (n) ≤ c 13 k k − n + c 14 k 3/2 exp ( ( 2 γ k)1/2 )
k n + 1


î k 2 − 1


k /2

_ __________

≤ c 15 k 5 exp ( ( 2 γ k)1/2 ) . (3.26)

Finally, for k + 1 < n, we let r → ∞ and obtain, for

a = 1 − 2 ( 2 γ n − 1 )1/2 + 2 γ n − 1 ,

∆ k f 1 (n) ≤ c 16 n 1/2 exp ( ( 2 γ n)1/2 )
0
∫
∞

( 1 − 2 ( 2 γ n − 1 )1/2 + 2γ/ n + v 2 )(n + 1 )/2

( 2 γ n − 1 + v 2 ) k /2 dv_ ___________________________________ .

Now the integral on the right side above is (for large k and n ≥ k + 2)

≤
0
∫

n − 1/10

( 1 − 2 ( 2 γ n − 1 )1/2 )(n + 1 )/2

( 2 n − 1/5 ) k /2 dv_ _______________________ +
n − 1/10

∫
∞

( 1 − 2 ( 2 γ n − 1 )1/2 + v 2 )(n + 1 − k)/2

dv_ _______________________________

≤ 2k n − k /10 exp (c 17 n 1/2 ) +
n − 1/5

∫
∞

( 1 − 2 ( 2 γ n − 1 )1/2 + u)(n + 1 − k)/2

u − 1/2 du______________________________

≤ 2k n − k /10 exp (c 17 n 1/2 ) + ( 1 − 2 ( 2 γ n − 1 )1/2 + n − 1/5 ) − (n − 1 − k)/2 ,

and this yields the estimate

∆ k f 1 (n) ≤ c 18 n − k /10 exp (c 19 n 1/2 ) . (3.27)

To complete the proof of the proposition, we consider ( 1/2 − ε) k ≤ n ≤ k /2, where

ε ∈ ( 0 , 10 − 10 ) will be selected later. We use the same contour of integration as before,
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with r = n /(k − n), except that we let

S 3 =


î
z ∈ S:  z + r ≤ k − 1/3





. (3.28)

Then, by using estimates similar to those developed earlier, but bounding  1 − z on

S \ S 3 more carefully, we obtain



 2 π i

1_ ____
S \ S 3

∫
z n + 1

G k (z)_ ______ dz




≤ c 20 r − n

z ∈ S \ S 3

max  1 − z k

(3.29)

+ c 21 n 1/2 (r 2 − 1 ) k /2 r − n exp ( ( 2 γ n)1/2 ) .

Now for z ∈ S \ S 3 , and k sufficiently large,

 1 − z ≤ ( 1 + r) ( 1 − k − 2/3 /10 ) ,

and so for k large,



 2 π i

1_ ____
S \ S 3

∫
z n + 1

G k (z)_ ______ dz




≤ c 22 ( 1 + r) k r − n exp ( − k 1/4 ) . (3.30)

We next estimate the integral over S 3 by the saddle point method. Using (3.19) and

interchanging orders of integration, we obtain

2 π i
1_ ____

S 3

∫
z n + 1

G k (z)_ ______ dz =
2 π i

α_ ____
(β)
∫ t − 5/2 exp (t +

24t
23γ_ ___ ) dt . g(n , z , t) , (3.31)

where

g(n , z , t) =
2 π i

1_ ____
S 3

∫
1 − z e γ/ t

z( 1 − z) k
_ ________

z n + 1

dz_ ____ .
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Making the change of variable z = − r e iθ, − θ0 ≤ θ ≤ θ0 , where θ0 ∼ r − 1 k − 1/3 as

k → ∞, we find that

g(n , z , t) =
2 π

( − 1 ) n − 1 r 1 − n
_ ____________

− θ0

∫
θ0

1 + r e iθ + γ/ t
( 1 + r e iθ ) k

_ ____________ e − (n − 1 ) iθ dθ . (3.32)

We now select β = 100, say. Then γ/ t is bounded for all t on the line from β − i ∞ to

β + i ∞, and 1 + r exp (iθ + γ/ t) is bounded away from 0. Furthermore,

1 + r e iθ = ( 1 + r) exp (
1 + r

ir_ ____ θ −
2 ( 1 + r)2

r θ2
_ ________ + O(θ 3 ) ) , (3.33)

where the constant in the O-term is independent of r. (Recall that 1 − 10 − 5 ≤ r ≤ 1.)

Next kr /( 1 + r) = n θ, so

g(n , z , t) =
2 π

( − 1 ) n − 1 r 1 − n ( 1 + r) k
_ ___________________

− θ0

∫
θ0

1 + r e iθ + γ/ t

exp ( −
2 ( 1 + r)2

r k θ2
_ ________ + O(kθ 3 ) + i θ) dt

___________________________________

(3.34)

=
√ 2 π r k

( − 1 ) n − 1 r 1 − n ( 1 + r) k + 1
_ ______________________

1 + r e γ/ t

1 + O(k − 1/3 )_ ____________ ,

and therefore

∆k f 1 (n) =
√ 2 π r k

α ( − 1 ) n − 1 r 1 − n ( 1 + r) k + 1
_ _______________________

2 π i
1_ ____

(β)
∫ t − 5/2

1 + r e γ/ t

exp (t +
24t
23γ_ ___ )

_____________ dt

(3.35)

+ O(k − 5/6 ( 1 + r) k r − n ) .

Let
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h(r) =
2 π i

1_ ____
(β)
∫ t − 5/2

1 + r e γ/ t

exp (t +
24t
23γ_ ___ )

_____________ dt . (3.36)

Then h(r) is a continuous function of r for 0 < r < 2, say, and we will evaluate h(r) for

r < 1 but close to 1. Consider first r > 1. Then we have (using the usual Bessel

function expansions that come up in Rademacher’s proof)

h(r) =
2 π i

1_ ____
(β)
∫ t − 5/2

r e γ/ t ( 1 + r − 1 e − γ/ t )

exp (t +
24t
23γ_ ___ )

_ ___________________ dt

=
2 π i

1_ ____
(β)
∫ t − 5/2 exp (t +

24t
23γ_ ___ )

m = 1
Σ
∞

( − 1 ) m − 1 r − m e − mγ/ t dt

=
m = 1
Σ
∞

( − 1 ) m − 1 r − m

2 π i
1_ ____

(β)
∫ t − 5/2 exp (t − (m − 23/24 ) γ/ t) dt

=
m = 1
Σ
∞

( − 1 ) m − 1 r − m J 3/2 (η m ) (η m /2 ) − 3/2

= π− 1/2 γ− 1

m = 1
Σ
∞

m −
24
23_ __

( − 1 ) m − 1 r − m
_ ____________



î η m

sin (η m )_ _______ − cos (η m )




, (3.37)

where η m = 2 γ1/2 (m − 23/24 )1/2 . Now




 m = 1000

Σ
∞

η m (m −
24
23_ __ )

( − 1 ) m − 1 r − m sin (η m )_ ____________________





≤
2 γ1/2

1_ _____
m = 1000

Σ
∞ 


î
m −

24
23_ __





− 3/2

(3.38)

≤
2 γ1/2

1_ _____
998
∫
∞

u − 3/2 du = γ− 1/2 998 − 1/2 ≤ 0. 025 .

On the other hand, for some v ∈ [m , m + 1 ]
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m −
24
23_ __

r − m cos (η m )_ ___________ −
m +

24
1_ __

r − m − 1 cos (η m + 1 )_ ________________ = −
du
d_ __

u −
24
23_ __

r − u cos (η u )_ ___________



 u = v

,

=
(v −

24
23_ __ )2

cos (η v )_ _________ +
(v −

24
23_ __ )3/2

γ1/2 sin (η v )_ ___________ +
v −

24
23_ __

r − v ( log r) cos (η v )_ _________________ ,

so for r ∈ ( 1 , 1 + 10 − 10 ),




 m = 1000

Σ
∞

m −
24
23_ __

( − 1 ) n − 1 cos (η m )_ ________________





≤
q = 500
Σ
∞ 


î ( 2q − 1 )2

1_ _________ +
( 2q − 1 )3/2

γ1/2
_ __________ +

2q − 1
r − 2q log r_ _________





(3.39)

≤
498
∫
∞

( 2u)2

du_ _____ +
498
∫
∞

( 2u)3/2

γ1/2 du_ ______ + ( log r)
498
∫
∞

2u
r − 2u du_ _______

≤ 0. 042 .

Therefore for r ∈ ( 1 , 1 + 10 − 10 ),

h(r) = π− 1/2 γ− 1 (A + B) ,

where

A =
m = 1
Σ
998

m −
24
23_ __

( − 1 ) m − 1 r − m
_ ____________



î η m

sin (η m )_ _______ − cos (η m )




= 1. 415972...

by direct calculation, and  B ≤ 0. 042 + 0. 025 ≤ 0. 07. Hence for

r ∈ ( 1 , 1 + 10 − 10 ),

0. 46 ≤ h(r) ≤ 0. 51 , (3.40)

Since h(r) is continuous for 0 < r < 2, we must have
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 h(r) ≤ 0. 6 for 1 − ε ≤ r ≤ 1/2 (3.41)

if ε < 10 − 10 is small enough.

We now combine all the above estimates to obtain the claims of the proposition, valid

for c 1 and k large enough and ε small enough.

We now proceed to the proof of the theorem. We select an ε given by Proposition

3.3. Then, applying Proposition 3.1 with this value of ε, we see that

( − 1 ) n ∆k p(n) > 0 for all n, 0 ≤ n ≤ ( 1/2 − ε) k, and all

k ≥ k 3 = max (k 1 (ε) , k 2 ).

Next, for k ≥ k 3 and ( 1/2 − ε) k ≤ n ≤ k /2, we have

( − 1 ) n ∆k p(n) =
j = 0
Σ
n

( − 1 ) j 
î n − j

k 
 p( j)

= 
î n

k
 + ( − 1 ) n π− 1 2 − 1/2 ∆k f 1 (n) (3.42)

+ π− 1 2 − 1/2

j = 1
Σ
n 

î n − j
k 

 ( f 2 ( j) + ( − 1 ) n − j R j ) .

By Lemma 3.2, each term in the n-term sum above is > 0, while by (3.14),

π − 1 2 − 1/2 ∆k f 1 (n) <
5
3_ _ 

î n
k
 . (3.43)

Therefore ( − 1 ) n ∆k p(n) > 0 in this range also.

Consider now k /2 ≤ n ≤ k − 2. In this range, in view of Lemma 3.2, it suffices to

show that
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G =
j = 1
Σ
n 

î n − j
k 

 f 2 ( j)

satisfies  G > 3 ∆ k f 1 (n). However, by (3.11) we have 3 ∆ k f 1 (n) < c 23 2k .

On the other hand, if J =  n − k /2 + 1 , then for k sufficiently large,

J + k 1/4 ≤ j ≤ J + 2 k 1/4 ,


î n − j

k 
 ≥ 10 − 1 k − 1/2 2k ,

and so

G ≥
10 k 1/2

2k
_ ______ f 2 (J + 

 k 1/4 
 ) ≥ 2k exp ( 10 − 1 C k 1/8 ) , (3.44)

which gives the desired result for k ≥ k 4 ≥ k 3 . The same lower bound for G holds also

for k − 1 ≤ n ≤ k, and so by (3.12) we obtain the result of the theorem for that range also

if k ≥ k 5 ≥ k 4 .

Next, consider n ≥ k + 1. By Lemma 3.2, to obtain ( − 1 ) n ∆k p(n) > 0 it suffices

to show that if

H =
j = 0
Σ
k 

î j
k
 f 2 (n − j) ,

then H satisfies H > 3 ∆ k f 1 (n). However, f 2 (m) ≥ 10 − 3 for all m ≥ 1, so

H ≥ 10 − 3

j = 0
Σ
k 

î j
k
 = 10 − 3 2k ,

and by (3.12) and (3.13), we have ( − 1 ) n ∆k p(n) > 0 for all n with

k + 1 ≤ n ≤ 10 − 3 c1
− 2 k 2 ( log k)2 , provided k ≥ k 5 ≥ k 4 .
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Before proceeding to consider the range n > 10 − 3 c1
− 2 k 2 ( log k)2 , we make the

following general observation. If f (x) is a C ∞ [ 1/2 , ∞ ) function, say, then for x > 3/2,

∆ f (x) = f (x) − f (x − 1 ) =
x − 1
∫
x

f ′ ( t) dt . (3.45)

More generally, for x > k + 1/2,

∆k f (x) =
1/2
∫
∞

f (k) (u) χ k (x − u) du , (3.46)

where

χ k ( t) = χ1 *...* χ 1 ( t) (3.47)

is the k-fold convolution of the characteristic function of the unit interval,

χ 1 ( t) =





î 0

1

otherwise .

0 ≤ t ≤ 1 ,

The formula (3.46) reduces to (3.45) for k = 1. For higher values, it is easily proved by

induction. If we assume that (3.46) holds for k − 1 ≥ 1, then (since (∆g) ′ = ∆g ′)
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∆k f (x) =
x − 1
∫
x

(∆k − 1 f ( t) ) ′ dt

=
x − 1
∫
x

(∆k − 1 f ′ ( t) ) dt

=
x − 1
∫
x

dt
1/2
∫
∞

f (k) (u) χ k − 1 ( t − u) du

=
1/2
∫
∞

f (k) (u) du
x − 1
∫
x

χ k − 1 ( t − u) dt

=
1/2
∫
∞

f (k) (u) χ k (x − u) du ,

which proves (3.46) for k.

All that we will need to know about the χ k ( t) is that χ k ( t) ≥ 0, χ k ( t) = 0 for

t < 0 and t > k, and

− ∞
∫
∞

χ k ( t) dt = 1 . (3.48)

To deal with the remaining range, n ≥ 10 − 3 c1
− 2 k 2 ( log k)2 , we need to investigate

the derivatives of f 1 (x) more precisely than before. Let g(y) = f 1 (y + 1/24 ), so that

f1
(r) (x) = g (r) (x − 1/24 ). We consider r 2 log r ≤ y. Then

g (r) (y) =
dy r + 1

d r + 1
_ _____



î
y − 1/2 sinh (Cy 1/2 )





=
j = 0
Σ
∞

( 2 j + 1 ) !

C 2 j + 1 ( j) r + 1_ ____________ y j − r − 1 , (3.49)

where
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(z) m = z(z − 1 ) . . . (z − m + 1 ) .

Let a j denote the j-th term in the sum in (3.49). By looking at the ratio a j + 1 / a j , we see

that the maximum occurs for j = J + O( 1 ), where

J = 
 (r + (C 2 y + r 2 )1/2 ) /2

 , (3.50)

and that for m = j − J,  m ≤ J 5/9 ,

a J

a j_ __ = 
î 1 + O(J − 1/3 )



 2 ( 2J + 3 ) (J − r)

C 2 y_ ______________




m

h = 0
Π

 m − 1




î



î
1 +

J − r
h_ ____







î
1 +

2J + 3
2h_ _____











− 1

= 
î 1 + O(J − 1/3 ) exp



î
−

J(J − r)
m 2 (J − r /2 )_ ___________





,

while

 j − J ≥ J 5/9
Σ a j = O(J − 1 a J ) .

Therefore we conclude that for y > r 2 log r, r ≥ 2,

g (r) (y) = 
î π J


1/2 a J ( 1 + O(y − 1/6 ) ) , (3.51)

where the constant implied by the O-notation is independent of y and r, and J = J(y ,r)

is given by (3.50). Furthermore, if in fact y > (r + 1 )2 log (r + 1 ), then

 J(y , r + 1 ) − J(y ,r) = O( 1 ) ,

and therefore
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g (r + 1 ) (y) =
y

J − r_ ____ g (r) (y) ( 1 + O(y − 1/6 ) )

=
2y 1/2

C_ _____ g (r) (y) ( 1 + O(y − 1/6 + r y − 1/2 ) ) . (3.52)

Also,

 J(y + r , r) − J(y ,r) = O( 1 ) ,

so for 0 ≤ t ≤ r,

g (r) (y + t) = g (r) (y) ( 1 + O(y − 1/6 ) ) . (3.53)

We first show that if η ∈ ( 0 , 10 − 2 ) is given, then for

10 − 3 c1
− 2 k 2 ( log k)2 ≤ n ≤ ( 1 − η) 6π− 2 k 2 ( log k)2 ,

f1
(k) (n) ≤ ( 1 + O(k − 1/5 ) ) 2k f 2 (n − k)( 1 − η/100 ) , (3.54)

and that for ( 1 + η) 6π− 2 k 2 ( log k)2 ≤ n,

f1
(k) (n − k) > ( 1 + O(k − 1/5 ) ) 2k f 2 (n)( 1 + η/100 ) . (3.55)

We consider only (3.55) in detail. Suppose therefore that η ∈ ( 0 , 10 − 2 ) is given, and

we have

n ≥ ( 1 + η) 6π− 2 k 2 ( log k)2 , (3.56)

where we can take k very large. We define J by (3.50) with r = k , y = n − k − 1/24.

Then

J =
2
1_ _ Cn 1/2 +

2
1_ _ k + o(k) as k → ∞

with n satisfying (3.56), and
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f1
(k) (n − k) ≥ a J ≥ J − 1 C 2J ( ( 2J) ! ) − 1 (J) k + 1 (n − k − 1 ) J − k − 1

≥ J − 2 C 2J 2 − 2J J − 2J e + 2J J k + 1 n J − k − 1 . T ,

where

T =


î
1 −

n
k + 1_ ____





J − k − 1

.
m = 1
Π

k 

î
1 −

J
m_ __





≥ exp ( − c 24 k ( log k) − 1 ) .

Furthermore,

22J J 2J n − J = C 2J exp (k + o(k) ) ,

so

f1
(k) (n − k) ≥ n − 2 J k n − k exp (C n 1/2 1 + o( 1 ) )

≥ n − k /2 − 2 2 − k C k exp (C n 1/2 1 + o( 1 ) ) as k → ∞ ,

which now implies (3.55) (subject to (3.56)) for large enough k.

Given (3.54) and (3.55), it is clear that for k ≥ k 6 = k 6 (η ) (k 6 ≥ k 5 )

( − 1 ) n ∆k p(n) > 0 for 0 ≤ n ≤ ( 1 − η) 6π− 2 k 2 ( log k)2 ,

∆k p(n) > 0 for n ≥ ( 1 + η) 6π− 2 k 2 ( log k)2 ,

since by (3.46) and the monotonicity of f1
(k) (x) we have

f1
(k) (n − k) ≤ ∆k f 1 (n) ≤ f1

(k) (n) ,

while

2k f 2 (n − k) ≤
j = 0
Σ
k 

î j
k
 f 2 (n − j) ≤ 2k f 2 (n) ,

and by Lemma 3.2,
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j = 0
Σ
k

 
î j
k
 R n − j  < 10 . 2k f 3 (n) .

Since this holds for every η ∈ ( 0 , 10 − 2 ) (with k 6 depending on η), this shows that if

n 0 (k) exists, then n 0 (k) ∼ 6π− 2 k 2 ( log k)2 as k → ∞.

At this point, to complete the proof of our theorem it only remains to show that one

can choose η ∈ ( 0 , 10 − 2 ) so small that for k ≥ k 7 = k 7 (η ), ∆k p(n) will alternate in

sign and then become nonnegative and stay nonnegative as n ranges over n 1 ≤ n ≤ n 2 ,

where

n 1 = 
 ( 1 − η) 6π− 2 k 2 ( log k)2 

 ,

n 2 = 
 ( 1 + η) 6π− 2 k 2 ( log k)2 

 .

Let

S(n) =
j = 0
Σ
k 

î j
k
 f 2 (n − j) .

Then we know that for any η ∈ ( 0 , 10 − 2 ) and k large enough (depending only on η)

∆k f 1 (n 1 ) < 10 − 3 S(n 1 ) ,

∆k f 1 (n 2 ) > 10 − 3 S(n 2 ) ,

while for any n ∈ [n 1 , n 2 ],

∆ k R n  < n − 10 S(n) .

Now it is easy to see from the explicit definition of f 2 (n) that it is monotone increasing,

and
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f 2 (n + 1 ) ≤ f 2 (n) +
10n 1/2

3C_ ______ f 2 (n)

for large enough n, so that if k is large enough and n ∈ [n 1 , n 2 ], then

S(n) ≤ S(n + 1 ) ≤ S(n) + CS(n) /( 3n 1/2 ) .

On the other hand, by (3.46),

∆k f 1 (n + 1 ) − ∆k f 1 (n) = ∆k + 1 f 1 (n)

=
n − k − 1

∫
n

f1
(k + 1 ) (u) χ k + 1 (n − u) du

≥ f1
(k + 1 ) (n − k − 1 ) ,

and by (3.46) and (3.53), this last quantity is

≥ 2C(∆k f 1 (n) )/( 5 n 1/2 ) ,

provided k is large enough. It is now easy to conclude the proof of the Theorem. Let N

be the least integer ≥ n 1 such that ∆k f 1 (N) ≥ S(N). Then, by the above discussion,

∆k f 1 (n) +
j = 0
Σ
k 

î j
k
  R n − j  < S(n)

for all n < N, n ≥ n 1 , so that ( − 1 ) k ∆k p(n) > 0 for n < N. On the other hand, for

n > N, n ≤ n 2 ,

∆k f 1 (n) > S(n) +
j = 0
Σ
k 

î j
k
  R n − j  ,

so that ∆k p(n) > 0 for all n > N. Finally, ∆k p(N) can only be negative if N is odd.

This completes the proof of the theorem.
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