Spatio-temporal Range Searching Over Compressed Kinetic Sensor Data

Sorelle A. Friedler Google Joint work with David M. Mount

Motivation

- <u>Kinetic data</u>: data generated by moving objects
- Sensors collect data
- Large amounts of data
- Collect and perform lossless compression
- Goal: Retrieve without decompressing
- Long Term: Analyze

Motivation

Computer Science

- Graphics: Image and video segmentation, animation
- Databases: Maintenance over time
- Sensor Networks: Data analysis
- Cell phone users: Motion data analysis
 - ▶ 4.6 billion subscribers worldwide (in 2009)
 - ▶ 4.1 billion text messages per day in the US (in 2009)

Biology

- Mathematical ecology: Migratory paths, invasive species
- Genomic data analysis: HIV strain analysis

Engineering

Traffic patterns and identification

Related Work

Compression

[Shannon 48]

[Huffman 52]

[Ziv Lempel 77]

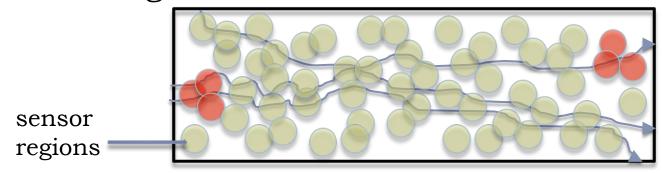
[Ziv Lempel 78]

Compressed Text Indexing

[Ferragina Manzini 05]

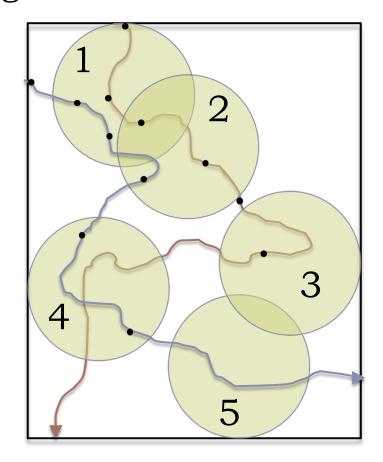
[Ferragina Venturini 07]

Range Searching


[Agarwal Erickson 98]

[Arya Mount 00]

Our Framework


(Friedler Mount 09)

- Detection region around each sensor (stationary sensors)
- Point motion unrestricted
- No advance knowledge about motion
- Each sensor reports the count of points within its region at each synchronized time step
- <u>k-local</u>: Sensor outputs statistically dependent only on *k* nearest neighbors

Data Collection

Data based on underlying geometric motion

Sensor data streams

time

X_1	\mathbf{X}_2	X_3	X ₄	\mathbf{X}_{5}
1	0	0	0	0
2	0	0	0	0
2	1	0	0	0
0	2	0	0	0
0	0	0	1	0
0	0	1	1	0

Range Searching: Our Problem

Compress and preprocess the data so as to perform...

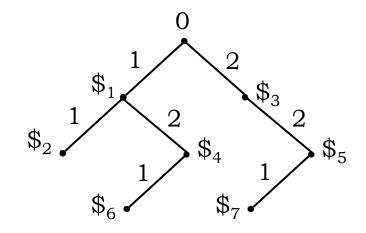
Temporal range query: Given a time interval, return an aggregation of the counts over that time interval.

t: 1234567891011 aggregation type: sum X: 0,0,4,4,5,4,3,3,1, 1, 0

Spatio-temporal range query: Given a time interval and spherical spatial region, return an aggregation of the counts over that time interval and within that region.

• 11122021...

• 00110123... 4 + 6 = 10


• 00223101... aggregation type: sum

Lempel-Ziv Dictionary Compression [LZ78]

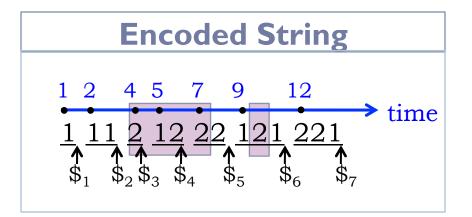
11121222121221

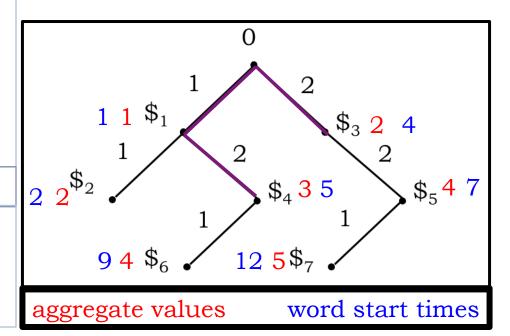
1 11 2 12 22 121 221

Create a trie while scanning through a string. The compressed string contains pointers to this dictionary.

(LZ78 is an optimal entropy encoding algorithm.)

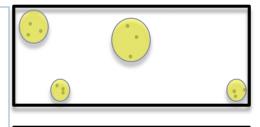
Temporal Range Searching

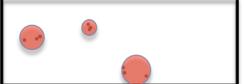

- Create trie with accompanying pointers
- Annotate trie with aggregate values and word start times
- ▶ Given a temporal range $[t_0, t_1]$ find the anchor points $\0 and $\1 such that $\$^0 \le t_0$ and $\$^1 \ge t_1$ (binary search)
- Use stored prefixes, words, and subtraction of prefixes to find aggregates

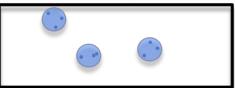

Query Examples

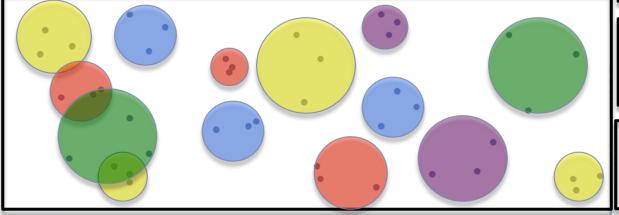
overlapping query: [4,7]2 + 3 + 2 = 7

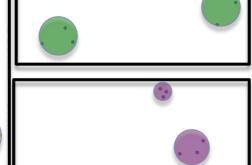
internal query: [10,10]


$$3 - 1 = 2$$

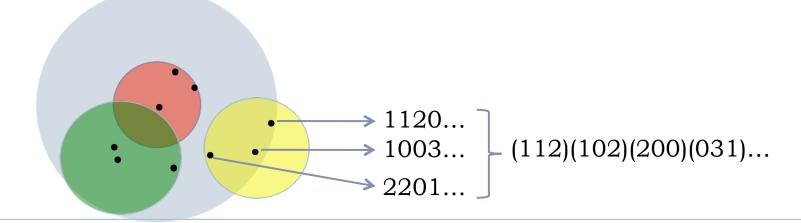



Data Compression Algorithm: Partitioning Lemma (Friedler Mount 09)

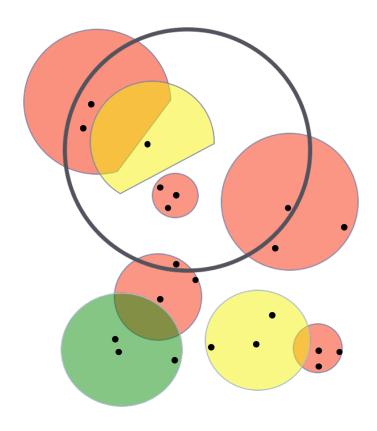

Lemma: There exists an integral constant *c* such that for all *k*>0 any point set can be partitioned into *c* partitions that are each *k*-clusterable.



c = $O(1 + 12^{O(1)})$ dependent on dimension



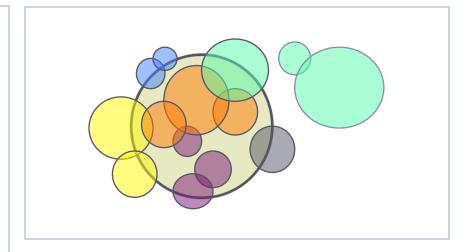
Data Compression Algorithm (Friedler Mount 09)


Partition and cluster the sensors, then compress

for each partition P_i for each cluster in P_i combine the cluster's streams into one with longer characters and compress it return the union of the compressed streams

Sensor Clumps

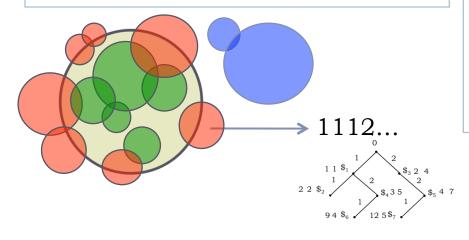
- Recall: The sensors are partitioned, clustered, and compressed
- Set of clumps: A finite set of balls with a packing property limiting the number of intersections of any ball with a clump.
- Lemma: In a single partition, the nearest neighbor balls form a set of clumps that contain the sensor clusters



Range Searching Among Clumps

Range Searching Among Clumps:

Given any query range \mathcal{R} report

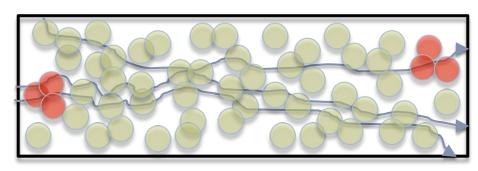

- a subset of clump subsets that form a disjoint cover of the clumps within \mathcal{R}
- the subset of clumps that R intersects

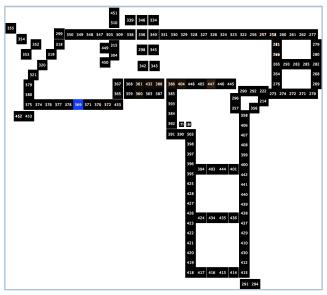
Lemma: A quadtree variant based data structure can answer range searching queries among clumps.

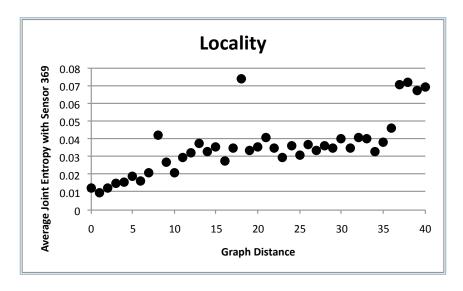
Spatio-temporal Range Searching

Main Theorem: By adding an auxiliary data structure to answer temporal range queries to each node in the range searching among clumps solution we can answer spatiotemporal range queries.

- One range searching among clumps structure for each partition
- One temporal range structure for each clump and each internal quadtree node
- Get temporal sums for each clump and overlapped sensor
- Sum over all partitions

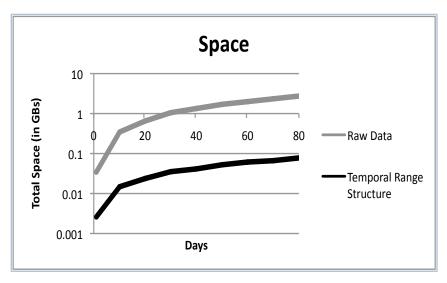

Results

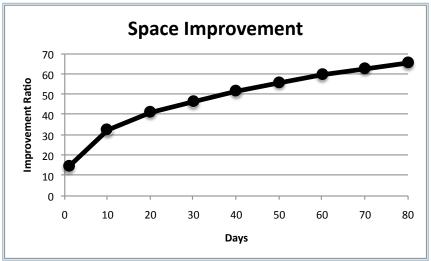

Bounds for Range Searching				
	Temporal	Spatio-temporal		
Preprocessing time	$O(\operatorname{Enc}(X))$	$O(\operatorname{Enc}(\mathbf{X}))$		
Query time	$O(\log T)$	$O(((1/\varepsilon^{d-1}) + \log S) \log T)$		
Space	$O(\operatorname{Enc}(X))$	$O(\operatorname{Enc}(\mathbf{X})\log S)$		


- X: The set of sensor system observations
- Enc(X): The encoded size (in bits) of the compressed data
- T: The total time over which data was collected
- S: The total number of sensors
- d: The dimension of the sensor space
- **ε**: An error parameter (for approximate range searching)

First range searching bounds over compressed data

Experimental Results: Locality

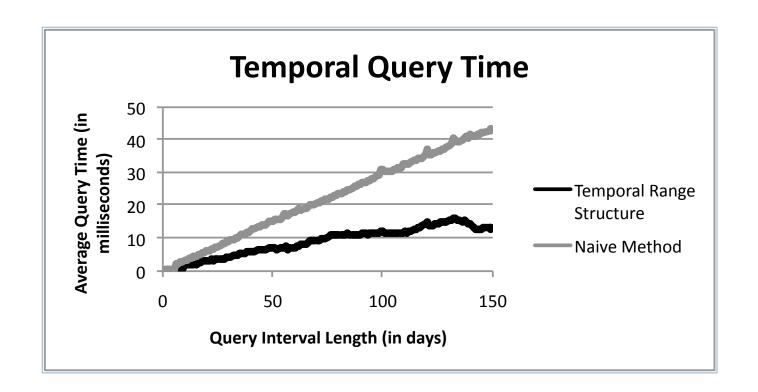

C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westbues.


The MERL motion detector dataset: 2007 workshop on massive datasets.

Technical Report TR 2007-069,

Mitsubishi Electronic Research Laboratories, Cambridge, MA, USA, August 2007.

Experimental Results: Space



C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westbues.
The MERL motion detector dataset: 2007 workshop on massive datasets.
Technical Report TR 2007-069,

Mitsubishi Electronic Research Laboratories, Cambridge, MA, USA, August 2007.

Experimental Results: Time

C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westbues.
The MERL motion detector dataset: 2007 workshop on massive datasets.
Technical Report TR 2007-069,

Mitsubishi Electronic Research Laboratories, Cambridge, MA, USA, August 2007.

Open Problems

- ▶ I/O-efficiency
- Streaming Model
- Other range searching questions
 - halfspace range searching
- Statistical analysis over compressed data
 - clustering over space and time

Thank you! Questions?