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Abstract

Robust statistics and kinetic data structures are two frequently studied theoretical areas
with practical motivations. The former topic is the study of statistical estimators that are
robust to data outliers. The latter topic is the study of data structures for calculations on
moving point sets. The combination of these two areas has not previously been studied. In
studying this intersection, we consider these problems in the context of both an established ki-
netic framework (called KDS) that relies on advance point motion information and calculates
properties continuously and a new sensor-based framework that uses discrete point observa-
tions. Using the KDS model, we present an approximation algorithm for the kinetic robust
k-center problem, a clustering problem that requires k clusters but allows some outlying points
to remain unclustered.

For many practical problems that inspired the exploration into robustness, the KDS model
is inapplicable due to the point motion restrictions and the advance flight plans required.
Working towards a solution to the kinetic robust k-center problem on a framework that al-
lows unrestricted point motion, we present a new framework for kinetic data that allows
calculations on moving points via sensor-recorded observations. This new framework is one
of the first within the computational geometry community to allow analysis of moving points
without a priori knowledge of point motion. Analysis within this framework is based on the
entropy of the point set’s motion, so efficiency bounds are a function of observed complexity
instead of worst-case motion. A compression algorithm within this framework is presented.

The focus of this proposal will be on examining robust statistical problems on kinetic
data. These problems will be explored within the sensor-based framework. Specific questions
to be answered will lead from the current compression algorithm to more complex statistical
analyses.
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1 Introduction

Collecting information about moving points has become increasingly common. This has led to
often massive data sets containing point observations for multiple time steps. As sensing technolo-
gies become increasingly inexpensive and available, these data sets will only get larger. Currently,
these data sets are quite diverse, ranging from the sounds and positions of owls [34], to the move-
ments of people in a building [33], to the locations of cars via GPS navigation devices [45]. The
wide scope of applications involving motion has given rise to a diversity of questions about these
data sets. For example, these questions may involve migration of animals, the dynamics of social
relationships, and navigation in the presence of traffic. Due to the vast amounts of data involved,
these problems require automated and efficient solutions. Additionally, these data sets contain
real-world data that does not always exactly fit a given model; thus outliers are common. This
work proposes answering questions inspired by this real-world data, which lie in the intersection of
the study of data structures for moving points and robust statistics, via a sensor-based theoretical
framework for motion data.

Many areas within and outside of computer science consider calculation of properties of moving
points. The nature of these calculations and the associated computational challenges depend on
the particular area of study. For example, when working with wireless sensor networks, the ques-
tion is often how to capture the data. Problems of sensor limitations due to processing capacity,
limited power sources, and communication range are considered along with calculation on the
data collected by the entire network [4]. Within the database community, the question is how
to store and answer queries involving these points [47]. Physicists, on the other hand, consider
statistical calculations on moving points as part of simulations and similar simulations underly
animation in computer graphics [35]. Compression of moving points is also considered within
computer graphics for video compression needs [12,20)].

Motion is a continuous phenomenon. However, the practical limits on its measurement have
resulted in a variety of methods ranging from continuous modeling to discrete modeling involving
discrete time steps. In the field of computational geometry, most of the research has focused on
piecewise continuous motion of objects, called kinetic data [6,8,26,39,40]. The kinetic data struc-
tures (KDS) model proposed by Basch, Guibas, and Hershberger [8] has become the standard
method for dealing with kinetic data. The KDS model requires algebraic expressions representing
point motion, but allows these “flight plans” to change. There has not been as much work within
computational geometry on discrete modeling of motion [30]. Continuous modeling allows for
perfect accuracy in theory, assuming that objects adhere to the given flight plans, while discrete
modeling is less precise but more practical, simulating actual data collection.

Robustness is one of the problems that has not yet been considered within the domain of mov-
ing points. Robustness is an important statistical characteristic of an estimator; it ensures that
the presence of some data outliers (due to measurement error or heterogeneity of the data set)
does not alter the result by a large amount. Clustering problems make up a natural class of
geometric problems with statistical properties that can be considered robustly. These problems
group points into optimal subsets (known as clusters) based on some criterion.

Practical data collection often involves sensing technology. Sensors collect the data at synchro-
nized time steps and no restrictions are made on the motion of observed objects. Additionally,
no advance information is known about the objects’ motion. The vast quantities of data collected
necessitate data compression. Data compression algorithms perform a process in which the data
set’s representation is encoded so that it uses less storage than in its original form.

My ultimate goal, no matter the framework, is to answer statistical questions about kinetic



data with provable efficiency. My first preliminary work is based on the standard kinetic model,
KDS. This work opened the intersection of understanding motion data and robust statistics by
looking at a robust clustering problem [18]. T created an efficient approximation algorithm, but
it suffered from the constraints of the model.

A more practical approach that aims to allow statistical calculations with greater efficiency is
presented in my second preliminary work [19]. This work presents a new framework for kinetic
data that is based on a discrete sampling model. Data collection through sampling is commonly
done using sensors, and the new model takes this approach. Under this model, point motion is
allowed to be unrestricted and unpredicted. A data compression algorithm on this framework
is presented and is shown to require no more than a constant times the optimal storage space.
Analysis is based on the information content of the kinetic data.

The preliminary research is just the beginning of developing an understanding of how to cal-
culate statistical properties of moving point sets. It proposes an initial model, the sensor-based
framework, and a method of analysis based on information content. Future frameworks may vary
based on continuity of motion versus discrete sampling, theoretical versus practical emphasis,
and method of analysis. With respect to the preliminary work, my proposed work will focus
on demonstration of the practicality of the sensor-based framework through further theoretical
analysis of specific robust statistical questions.

The rest of this proposal will describe the statistical properties, frameworks, and methods of
analysis that have and will be examined in the context of kinetic data. Section 2 gives a review of
the most relevant previous literature in related areas. Section 3.1 discusses the preliminary work
based within the KDS model, and Section 3.2 presents the new sensor-based framework. Finally,
Section 4 describes proposed future work.

2 Literature Review

2.1 Data Structures for Moving Points

One of the first papers about calculations of properties of moving points in a computational geome-
try context was written in 1985 by Mikhail Atallah [6]. In this beginning work, points are assumed
to follow paths, also known as flight plans, modeled by polynomials of degree at most k that are
functions of time; these motion paths are provided at the beginning of the algorithm and do not
change. Atallah examines the properties of these function interactions in a static context with
time as an additional dimension. He gives results regarding the descriptive complexity of the lower
envelope (that is, the minimum value over all the functions) and the 2-D convex hull over all time
steps. He also gives time complexity results for calculating these changing quantities. While points
are modeled by polynomials, they are not assumed to be continuous at all points; instead, the
number of undefined periods of time and discontinuous jumps are assumed to be bounded (O(1)).

Atallah showed that the concept of Davenport-Schinzel sequences are important in this context.
A Davenport-Schinzel sequence of order s is a sequence of characters from an alphabet of size n
that does not contain any consecutively repeating characters or any alternating subsequences of
length s + 2 [43]. Let As(n) denote the maximum lengths of such a sequence. Atallah showed
that, when considering the functions over time, there can be at most A4(n) function pieces in the
lower envelope of this collection, or A\s(n) possible values for the minimum value of the function
set over time. Atallah’s proof proceeds by showing that As(n) directly models a lower envelope
by assigning characters to each function piece on the lower envelope. Since consecutive repeating
characters would model the same function appearring next to itself, these do not occur. For func-



tions that do not intersect more than s times, it is impossible to have alternating subsequences
of length more than s + 2. He shows that since A4(n) is bounded by O(nlog*n), and thus the
number of function pieces on the lower envelope is also O(nlog*n). (More recent research has
tightened these bounds [43]).

The bound on the number of lower envelope changes is also used to provide a bound on the
number of convex hulls over time. Atallah shows that a single point changes from being in the
convex hull to not in the convex hull O(\s(n)) times by defining membership in the convex hull
based on the minimization of a function. This is then applied to all n points to get a bound of
O(n - As(n)) convex hulls.

Other early papers include a 1983 paper by Guibas, Ramshaw, and Stolfi [24], which views
point motion as following predetermined curves and polygons. It frames questions in terms of the
relationships between these curves and polygons. In 1991, Kahan [30] was the first to introduce a
framework for motion in which flight plans are not used, and the only required prior knowledge is
an upper bound on each point’s velocity. Instead, Kahan’s model relies on a function that can be
queried to determine current point locations. Schomer and Thiel examined the problem of colli-
sion detection between moving polyhedra in a series of papers in 1995 and 1996 [39,40]. Motion
is described in advance by polynomial functions. Similarly, a 1996 paper by Gupta, Janardan,
and Smid [26] considered collision detection, minimum separation, and other problems on points,
line segments, or hyperrectangles moving on predetermined linear paths. In 1997, Basch, Guibas,
and Hershberger [8] introduced the kinetic data structures (KDS) model and this became the
standard for moving point calculation. This framework also requires a predetermined functional
model for each point’s path, but allows these models to change at discrete time instances. The
KDS model is discussed in more detail in Section 2.2.

Despite the progress to date in modeling motion, many real-world inspired issues remain to be
addressed. In an effort to precisely identify these areas and spur research into a unified motion
framework a group of researchers participated in a workshop in 2002, which produced a survey of
these issues across computational geometry, mesh generation, physical simulation, biology, com-
puter vision, robotics, spatio-temporal databases, and mobile wireless networks [3]. They also
suggested directions for future research. Here, we focus on the problems they describe that relate
directly to the preliminary and proposed work.

Within computational geometry, Agarwal et al. [3] propose research into motion-sensitive algo-
rithms, bounds on the number of combinatorial changes, and decentralization. Motion-sensitive
algorithms give complexity bounds that are based not on the worst case bounds given any point
motion, but provide efficiency measures based on the predictability of the moving objects and
their relation to each other (note that the framework that we will introduce later in Section
3.2 is motion-sensitive). Similarly, they propose analyzing the number of combinatorial changes
to a property as a function of the objects’ motion complexity instead of a simple worst-case
bound. These proposed methods have the advantage of more realistically modeling the efficiency
of algorithms on moving point sets. In addition, for practical use in many situations such as
ad-hoc networks, they mention that it would be useful to develop a model for motion that allows
computation to be distributed over multiple processors.

In the field of computer vision, motion analysis is used for applications including shape identi-
fication and tracking, initialization of a tracking sequence, and handling additional complexity in
terms of lighting, motion, or shape. Statistical error analysis is used to create models of object
motion. Agarwal et al. [3] suggest that further broadening of research consider multiple frames for
tracking initialization, robustly handle error through learning-based methods, and generally view
motion through a high-level hierarchical view in order to take advantage of all the data available.



Challenges in the field of wireless networks echo the need for a hierarchical view of the data.
Agarwal et al. [3] propose that research focus on modeling predictable user motion at many levels
in the data hierarchy. The hope is that these models would allow future motion to be predicted
based on the model for a single level without detailed knowledge of motion at other levels, for
example without knowing the motion of an individual at the lowest level of the hierarchy.

Overall, Agarwal et al. [3] identify eight common themes of issues that remain to be addressed
in motion modeling. These include the ability to handle robustness, both in the context of data
error and in the context of higher level analysis of motion trends through the use of hierarchical
data structures. The struggle between continuous and discrete models remains to be fully ex-
plored, with research in continuous models not being confined to the theoretical community and
discrete models not only being analyzed by practical researchers. Coupled with this, methods of
identifying current motion of objects with an emphasis on unpredicted motion remain to be fully
explored. Finally, the decentralization of data processing, a requirement in many practical ap-
plications, is especially important. Section 2.3 returns to some of these questions, and in Section
3.2 we present a framework that addresses some of these issues.

One interesting alternate method for handling kinetic data was proposed by Har-Peled in
2004 [28]. He examines the discrete k-center clustering of a set of points moving with motion
modeled by polynomials of degree at most u. The discrete k-center problem is given a set of n
points and finds the k center points taken from the input that minimize the maximum distance
(called the radius) from any point to its closest center. For this clustering problem, each center
together with the points that are closest to that center constitute a cluster. Instead of maintain-
ing the k clusters as they change over time, Har-Peled finds a single static clustering with k#+!
clusters that is within a constant factor of the optimal clustering at any time. He begins with a
clustering algorithm for a static point set that randomly samples points, partitions those points
into k clusters, and then partitions all points that were not covered by the first clustering into
an additional k£ clusters. This two-round clustering algorithm is then extended to an n-round
clustering algorithm by repeating the first two steps for uncovered points.

To handle moving point sets, Har-Peled partitions time into intervals when the relative distances
between points do not change. For each of these intervals, the Gonzalez [22] greedy clustering
algorithm (which bases the partitioning only on inter-point distances) is used as the black-box
clustering algorithm needed by Har-Peled’s static clustering algorithm. The radius returned is
a 2-approximation of the optimal over that interval, where the time for the optimum over the
interval is found by calculating the lowest point on an upper-envelope representing radius lengths.
The set with the minimum radius over all the intervals gives the answer to a different kind of
clustering problem in a dimension one larger than the original (the dimension for time is added).
This set is then expanded to create a static clustering with more centers that holds over time.
Har-Peled’s algorithm runs in O(nk) time for k = O(n'/™). Other algorithms that use a similar
strategy of considering the points statically in a higher dimension including time are those posed
by Atallah [6], Guibas et al. [24], and Gupta [26]. The current standard for calculating properties
of moving points is the KDS model that handles motion in an online manner. It is described in
the next section.

2.2 Kinetic Data Structures Model

In 1997, Basch, Guibas, and Hershberger [8] introduced a model for kinetic data called a kinetic
data structure (KDS). This model assumes advance knowledge of point flight plans, but allows
these plans to change. Algorithms are developed to track specific properties of moving points in



an online manner. This is done through a set of boolean conditions called certificates and a corre-
sponding set of update rules. Certificates guarantee geometric relations necessary to a particular
problem’s solution, and update rules specify how to respond when a certificate fails. Certificate
failures are predicted and queued based on the points’ planned paths of motion, assumed to be in
the form of algebraic expressions. KDSs are evaluated based on properties of the certificate set.

There are four criteria under which the computational cost of a KDS is evaluated: respon-
siveness, efficiency, compactness, and locality [23]. Responsiveness measures the complexity of
the cost to repair the solution after a certificate fails. Efficiency measures the number of cer-
tificate failures as compared to the number of required changes to the solution as the points
move. Compactness measures the size of the certificate set. Locality measures the number of
certificates in which each point participates. Guibas provides a more detailed overview of kinetic
data structures in [23].

In order to illustrate the KDS model, Basch et al. [8] give a KDS that maintains the 2-D
convex hull over time. First they consider the static solution where each point (a,b) is dualized
to the line y = ax + b and lower part of the convex hull is viewed as the upper envelope of
the set of lines. Finding the upper envelope is done through a divide-and-conquer algorithm.
The merging of two upper envelopes proceeds by sweeping from left to right and determining,
for each line intersection point on either upper envelope, which envelope is higher. Certificates
guarantee relative properties of z and y coordinates and line slopes in order to maintain this
merge under motion. These certificates are set-up to only record relative properties of those
lines surrounding them, and the number of certificates kept for each line intersection or line is
a constant, so the KDS is compact, local, and responsive. The argument for efficiency is based
on a multi-dimensional upper envelope complexity bound of O(n? + ¢) (which is modeled in the
kinetic context by a three dimensional set consisting of two spatial dimensions and one temporal
dimension) [42], which bounds the number of events that may be caused by certificate failures in
this KDS system. The complexity of the moving convex hull is (n?), so the KDS is efficient.

Although most KDS solutions are based on a particular computational problem, Gao et al. [21]
introduced a flexible kinetic data structure that can be used to solve a number of different prob-
lems involving kinetic point sets. (Later in Section 3.1, we will make use of this structure.) This
structure is hierarchical in nature, and can be used both as a tree-like access structure as well as a
geometric spanner (defined below). Gao et al. dubbed it a deformable spanner. The hierarchy and
spanner both update dynamically as the points move, so this data structure provides an underly-
ing framework on which future problems that rely on hierarchy or spanner properties can be built.

A ~-spanner is a graph connecting points in a point set S in $¢ with the property that for any
two points in .S, the distance between those points on the graph is at most + times the distance
between those points in the underlying metric. The deformable spanner is a (1 +¢)-spanner. The
aspect ratio, denoted «, is defined as the ratio between the maximum and minimum distances be-
tween any two points of .S. For moving point sets, the aspect ratio « is actually a function of time.
When considering the aspect ratio in the context of time complexity, one simple solution is to con-
sider the maximum ratio over all times. Additionally, € > 0 refers to a user-given input parameter.

The Gao et al. [21] spanner is constructed based on the concept of a hierarchy of discrete
centers. Given a point set S, a hierarchy of discrete centers is a sequence of subsets S = Sy D
S1 2 ... 2 Sfigga) such that the following properties hold for 0 < i < [log a]:

e Each center in S;_; is within distance 2¢ of some center in .S;, the ith level of the hierarchy.
e Centers in S; are chosen from S;_.

A center p at level 7 is said to cover a center ¢ in level i — 1 if ¢ is within distance 2° of p. By

definition each center ¢ at level i — 1 is covered by some center in level 7. One such center p is



selected (arbitrarily) to be ¢’s parent. The center ¢ is called the child of p. Other standard tree
relationships are used including ancestors and descendants (both of which are considered in the
improper sense, so that a node is an ancestor and descendant of itself) and siblings [14]. Cousins
are defined as the children of a node’s parents’ siblings. Some properties about the deformable
spanner, which follow immediately from the above properties or are proven in [21], are given below:
S; © Sia ,

For any two center p, ¢ € S;, with associated points p, q, € S, ||pq| > 2"

The hierarchy has a height of at most [log, a].
Any center in Sy is within distance 2/! from its ancestor in level S;.

The deformable spanner maintains four types of certificates: parent-child certificates, edge cer-
tificates, separation certificates, and potential neighbor certificates. Neighbors of a node p in level
i are defined as all nodes in that level within distance ¢ - 2° of p. The certificates are based on
this distance c - 2, where ¢ > 4 [21]. The KDS for this spanner is appropriately efficient, local,
compact, and responsive.

Many other problems have been considered using KDS, including clustering, hierarchical data
structures, and minimum spanning trees [1,2,9,11,25]. For example, in 2008 Abam et al. pre-
sented a KDS that maintains a (1 + £)-spanner over point motion independent of the point set’s
aspect ratio. The spanner is based on the union of Delauney triangulations done over the points
where distance is defined based on a metric that uses a diamond instead of a unit circle and the
diamond is rotated for each triangulation. The Delauney triangulation based on the Euclidean
metric is easy to kineticize since there are local properties that guarantee the triangulation and
corresponding local update rules. Abam’s spanner uses similar properties and update rules mod-
ified for the diamond-based metric and is shown to be efficient.

2.3 Sensors and Streams

Let us now move from the continuous model of motion exemplified by KDS to systems that an-
alyze motion based on discrete time samples. One practical way to observe and record motion
is through the use of sensors in a sensor network. Sensors are small nodes with the ability to
sense characteristics of their environment in addition to limited data processing and communi-
cation ability. Sensor networks contain many sensors as nodes networked with each other that
are densely deployed to observe some environment. These networks can be applied for military
benefit, environmental protection, health monitoring, household convenience, vehicle detection,
and in many other situations [4].

Akyildiz et al. [4] identify eight main issues in sensor network design in a 2002 survey of
research in wireless sensor networks. Some of these constraints are specific to sensor networks
and require new techniques and technologies. Sensors are assumed to be cheap, which allows
broad use, but also means that they are prone to failure. Correspondingly, sensor networks are
evaluated based on their fault tolerance, their ability to continue operating without interruption
if some sensors fail. The specific level of fault tolerance needed, as measured by the probability
that no nodes will fail within a given time interval, is dependent on the measurement error and
added environmental strain on the sensors based on the application. Scalability refers to the
ability of the network to operate efficiently on millions of nodes and to take advantage of the
high density of sensor deployment. Due to the vast number of sensors in the network and their
tendency to fail, the sensor network topology must be highly malleable. Production costs of each
node must be low in order to make these sensor networks cost effective, and there are many
hardware challenges, both related and unrelated to cost. The network must be able to operate



unattended for long periods of time, and may encounter harsh environmental factors depending
on the application and deployment location. In order to utilize this network, the sensors must be
able to communicate with each other and, possibly through multiple hops, with a central server.
The transmission media chosen should be globally available and not require a line of sight between
sender and receiver (as is required by infrared communication). Finally, power consumption on
individual sensor nodes is one of the most important areas of research, since the sensors have
limited battery life and sensors that run out of power must be removed from the network. Limiting
power consumption while sensing, communicating, and processing data is crucial [4].

The data collected by the sensors at small time intervals over the entirety of their lifespan (which
is theoretically infinite) is reported at each time step and makes up what is known as a stream of
data. More formally, data streams are a sequence of data items that arrive online, are potentially
unbounded in size, arrive in an undetermined order, and are discarded after they have been
processed. In a 2002 survey of models and issues in data stream systems, done from a databases
perspective, Babcock et al. [7] present current query challenges. The main underlying challenge
is the problem of unbounded memory requirements due to the potentially unbounded length of
the sequence of data. In addition, Arasu et al. [5] show that without knowing the length of the
input data stream, it is impossible to bound the memory requirements of a single query using a
join operation. Due to these memory constraints, approximations to query answers are desirable.
Random sampling, histograms, and other synopsis techniques can be used to provide an overview
of the entire data stream. Alternatively, sliding windows allow queries to be answered based only
on recent data within some limited time frame. This approximation has the advantage of being
well-defined, deterministic, and, for many applications, emphasizing the recent data the user cares
about. However, the data to be included in the window becomes less clear when defined over
multiple streams. Other approximation techniques depend on the relative speed of the operations
that update data and compute query answers. Fast updates (relative to slow answer computing)
suggest batch processing, in which many updates are made before the answer is computed. Fast
answer computing (relative to slow updates) suggest stream sampling followed immediately by
updates, although such a scenario does not admit provable approximation guarantees [7].

In addition to the approximation necessitated by the memory challenges inherent in data stream
processing, there are also queries that are impossible to answer accurately in the present, block-
ing query operators and queries based on past data. Blocking queries are queries that may not
be answered until they have seen the entirety of the data; for example, sorting queries or those
involving aggregation (summation, mean, etc.). Approaches to answering these queries include
replacing the query with a non-blocking query with an approximately similar result, maintaining
an answer given the data seen so far, and reasoning based on an augmented data stream con-
taining assertions about future data. Queries involving past data must rely on data summaries.
Creating these summaries is challenging since future queries are unknown and all data may not
be stored. Answers to these queries are likely to be approximate. A solution that side-steps this
issue is to state to the user that any such queries will consider only the data stream beginning at
the time the query is issued [7].

The literature on sensors and streams is too vast to cover completely here, instead we discuss a
small number of relevant papers. Cormode et al. [15] consider a problem over data streams gener-
ated by distributed sites. They are the first to consider the the maintenance of the continuous dis-
crete k-center clustering problem and give accuracy guarantees. They propose four methods and
compare them theoretically and experimentally. These four algorithms combine local and global
methods with the Gonzalez farthest point algorithm [22] and the parallel guessing algorithm. The
local algorithms distribute the clustering decisions and then merge to find a global clustering.



Cormode et al. show that merging a-approximate clusters using a [(-approximate technique re-
sults in an (a+ 3)-approximate clustering. The global algorithms distribute the monitoring of the
validity of the current clustering, but assume transmission of that data to a central server for a
global recalculation of clustering when required. The Gonzalez farthest point algorithm, used at
the distributed sites for local clustering or by the central server for global clustering, sequentially
chooses the point farthest from any identified cluster. It is known to give a 2-approximation of
the optimal k-center clustering [22]. The parallel guessing algorithm guesses some radius r and
creates a new center and marks points within distance r of that center as clustered anytime it
encounters a point that is not currently in a cluster. This algorithm is run in parallel for multiple
guesses of r and the number of guesses is dependent on the aspect ratio of the point set. The guess
with minimum r that still clusters all points into at most k& clusters is the resulting clustering.
This algorithm is shown to be a (2 + €)-approximation of the optimal clustering [15].

Cormode et al. show that both local algorithms are (4 + ¢)-approximations and both global
algorithms are (2 + )-approximation of the optimal clustering. Both implementations of the
Gonzalez algorithm require O(n) space while both implementations of the parallel guessing algo-
rithm require O(f log «) space, where « is the aspect ratio. Communication required is shown to
be O(k?m log «v) for both versions of the parallel guessing algorithm, where m is the number of dis-
tributed sites. However, no communication bounds are known for the Gonzalez local and global
algorithms. Experimentally, the communication bounds for the versions based on the Gonzalez
algorithm were shown to be worse than those for the local parallel guessing algorithm. The local
parallel guessing algorithm was shown experimentally to require communication costs of less than
one percent of the cost to send all information to a central server [15].

Other problems considered over data streams include functional monitoring problems, which
keep track of a function output based on the data stream inputs in an online manner. The ac-
curacy of the function value is based on an error parameter . Cormode et al. [16] considered
the problem of monitoring monotone functions over distributed data streams and give worst-case
bounds on the number of updates to the function they maintain. Yi and Zhang [49] considered
arbitrary d-dimensional functions over a single data stream. They use competitive bounds to
show that they update the function they maintain O(d?log(de)) times for every one time the
function is updated by the optimal algorithm.

2.4 Data Compression and Entropy

The handling of large data sets often requires reducing the necessary storage size through a data
compression algorithm. Compression algorithms represent the data set as a single string of in-
formation and return a smaller encoded string of compressed data. If the encoded string can be
restored exactly to its original form, the algorithm is known as lossless. If the string cannot be
restored exactly after being compressed, the algorithm is known as lossy. Shannon’s source coding
theorem states that in the limit, as the length of a stream of independent, identically distributed
(ii.d.) random variables goes to infinity, the minimum number of required bits to allow lossless
compression of each character of the stream is equal to the entropy of the stream [41]. The
entropy of a string of characters taken from a random source X is defined to b —¥,p, logs(ps)
where  is an outcome of the random process. The optimal length of an encoded string is equal
to the string’s entropy. Compression algorithms that achieve this optimum are known as entropy
encoding algorithms.

Many entropy encoding lossless compression algorithms have been considered including Huff-
man coding [29], arithmetic coding [36], the Lempel-Ziv dictionary algorithm [50], and the



Lempel-Ziv sliding-window algorithm. Huffman coding replaces characters with symbols so that
the most probable characters are given the shortest symbols, and the least probable are repre-
sented by the longest. Arithmetic compression encodes the entire string in a base so that each
character corresponds to a different digit in a fractional number. The entire string is then trans-
lated to a binary number that is precise enough so that the original number can be retrieved.
The Lempel-Ziv dictionary algorithm adds matches to a prefix-tree and stores the tree along with
an ordered list of pointers instead of the full string.

We will examine the Lempel-Ziv sliding-window algorithm in more depth. The algorithm pro-
ceeds by looking for matches between the current time position and some previous time within a
given window into the past. The length and position of these multi-character matches are then
recorded, which reduces the space of encoding each character. The window moves forward as time
progresses. Note that this algorithm operates on the string in an online fashion, containing a
valid encoding at any time. The encoding involves splitting the string into a collection of phrases,
each of which is then encoded into a tuple. There are two types of tuples. A tuple of the form
(0, X)" indicates a single plaintext character ‘X’ and a tuple of the form ’(1,4,j)" indicates a
repeated string of length j starting at the i-th preceding character. For example, consider the
encoding found using a window size of three on the string AABBAB. The encoded string is
(0,A)(1,1,1)(0,B)(1,1,1)(1,3,2). Intuitively, it is clear that larger window sizes yield better
results since long matches are more likely to be found. In the example, this corresponds to a
preference for the pointer (1, 3,2) and not for the pointers (1, 1,1) since (1, 3, 2) saves more space.

In 1994, Wyner and Ziv proved that the optimal encoded length for the Lempel-Ziv sliding-
window algorithm is achieved by taking the limit as the window size tends to infinity [48]. The
precise optimal length is shown to be equal to the entropy of the string. The proof proceeds
by showing that the expected number of bits to encode any character of the string is at most
the number of bits to encode the first window plus the normalized expected value of the sum of
the match encoding lengths. The latter value is identified using Kac’s Lemma, which states that
for some character « that has a positive probability Py(«) of occurring at time 0 (the present),
Y°iP_j(a) = 1/Py(«r), where P_;(«) is the conditional probability (given that the character at
time 0 is «) that the most recent occurrence of « was at time —i. Other lemmas are introduced
to show that as the length of the string becomes arbitrarily large, the probability that the closest
match is farther away than a function dependent on the entropy goes to zero. So the sum of the
match encoding lengths, which is equal to the length to encode unmatched phrases plus the length
to encode matched phrases, becomes at most the length of the encoding for matched phrases.
These are shown to approach the entropy, or information content, of the string.

3 Preliminary Work

3.1 Approximation Algorithm for the Kinetic Robust K-Center Problem

In real-world applications, two algorithmic complications—motion and the presence of outliers—
frequently occur. My preliminary work [18] began with the recognition that while the study of
moving points sets, especially through the KDS model, and the study of statistical estimators that
are not dramatically affected by data outliers (known as robust statistics) are both well-studied
fields, their intersection has not previously been considered. The notion of robust estimators are
made more precise through the definition of a breakdown point. The breakdown point of a statis-
tical estimator is defined to be the smallest percentage of arbitrarily large outlying data that can
cause an arbitrarily large estimated aberration in the result [27]. The breakdown point cannot
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be larger than 50 percent, since otherwise it would be impossible to distinguish between inliers
and outliers. As a first examination of robust statistical properties on kinetic data, preliminary
work considers a clustering problem.

Criteria for clustering problems are often based on a user-given parameter k that determines
the number of clusters or the number of points per cluster. The best clustering is then defined
based on an individual cluster distance measure, such as cluster radius, and a merge function over
all the clusters, such as summation [10]. When the points are moving, clustering problems can be
considered to create clusters that move with the points over time [21] or can create static clusters
that provide an approximation of the optimal at any time step [28]. Clustering problems have
many applications including analysis of social networks [46], image or video segmentation [13], and
analysis of vehicle motion [38]. My preliminary work considers the k-center clustering problem.

Recall from Section 2.1 that the (non-robust, non-kinetic) k-center problem is defined as fol-
lows: Given a set of n points, find k center points that minimize the maximum distance (called
the radius) from any point to its closest center. The discrete k-center problem is a version in
which each center point must be one of the original n points. The absolute k-center problem is a
version in which each center may be any point in space [31]. The robust k-center problem modifies
the k-center problem to handle outliers by allowing flexibility in the number of points that satisfy
the distance criteria. In the formulation used, the inputs are a set of n points, a constant k, and
a threshold parameter t, where 0 < t < 1. The objective is to compute the smallest radius r
such that there exist k disks of radius r that cover at least [¢tn] points. For ¢ = 1 this problem is
the same as the non-robust formulation. An approximation algorithm is found within the KDS
model for kinetic data, since the k-center problem is NP-hard for arbitrary & or exponential in &k
for fixed k. An algorithm provides a c-approzimation to the k-center problem if the radius chosen
for the k centers is no more than ¢ times the optimal radius.

Given a real parameter € > 0, my preliminary work obtains a (3 + ¢)-approximation for the
static and kinetic forms of the robust discrete k-center problem and a (4+¢)-approximation for the
absolute version of the robust k-center problems. Note that the first bound improves upon the 8-
approximation for the kinetic discrete k-center problem as given by Gao, Guibas, and Nguyen [21]
and generalizes it to the robust setting. However, due to complications arising from the need for
robustness, the result assumes that & is constant while the Gao et al. result holds for arbitrary k.
My preliminary work improves the Gao et al. result for the non-robust kinetic problem for arbi-
trary k by showing that its data structure achieves a (4 + ¢)-approximation while maintaining the
same quality bounds as the Gao et al. KDS. This kinetic robust algorithm is the first approxima-
tion algorithm for the kinetic absolute k-center problem (even ignoring robustness). An example
is given to show that the (3 + ¢)-approximation for the robust discrete k-center problem is tight.

The KDS used by the kinetic robust k-center algorithm is efficient based on the evaluation
criteria described in Section 2.2. The algorithm’s KDS achieves bounds of O(log a/?) for local-
ity and O(n/e?) for compactness (where a is an upper bound on the ratio between the largest
and smallest inter-point distances of the point set under motion) so it does not create too many
certificates. The responsiveness bound is O((log arlogn) /%), so the data structure is able to up-
date quickly. The efficiency bound of O(n?log ) is reasonable since the combinatorial structure
upon which the kinetic algorithm is based requires (n?) updates [21] in the worst case, so any
approach based on this structure requires Q(n?) updates.

All these results are obtained for metrics with constant doubling dimension — these metrics
form a proper superset of the Euclidean metric. Metrics with constant doubling dimension have
the packing property that a ball with radius r can be covered by at most a constant number 3
of balls with radius r/2. The dimension d is defined to be d = log, # [32]. In addition, access
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is needed to functions giving the distance between two points at a given time and the earliest
future time at which two points will be within some distance.
For complete details, see [18].

3.2 A Sensor-Based Framework for Kinetic Data

My preliminary work [18] on the kinetic robust k-center problem using the KDS model is limited
by the nature of the problem in combination with the model’s assumptions and requirements.
The maintenance of individual point identities moving with continuous motion requires frequent
rerunning of the center calculation algorithm due to certificate failures (which lead to a solution
for fixed and not arbitrary k). In addition, when concerned with statistical properties of large
moving point sets, the assumptions of the KDS model are especially unsuitable. The require-
ments of algebraic point motion and advance knowledge of flight plans are either inapplicable or
infeasible in many scientific applications. To address these concerns, our preliminary work [19]
creates a new framework in which a point set is processed no matter its motion, but a cost is paid
in efficiency based on the information content of this motion. In addition, the underlying goal
that structures KDS operations is maintenance of information into the future; preliminary work
processes sensed data after the fact, e.g., for efficient retrieval. Unlike KDS, it also ignores point
identities in favor of statistical properties; KDS focuses on properties in relation to individual
points. For these problem types, the new framework serves as an alternative to the KDS model.

Data collection for vast quantities of data is frequently done via sensors in a wireless sensor
network [4]. My second preliminary work bases the new framework on information about moving
points as observed by such stationary sensors. These sensors aggregate statistical information at
synchronized time steps for moving points within their range. The detection range of each sensor
is assumed to be represented by a radius which defines a ball around the sensor. The radius is the
same for each sensor in our network. The sensors may be placed so that their detection regions
overlap or are disjoint. In the preliminary work, it is assumed that each sensor outputs the count
of the number of points within its detection radius at the current time step.

In order to measure the efficiency of this model, the preliminary work relies on the information
content of the moving point set. Imagine a set of points following a straight line or moving contin-
uously in a circle; any algorithm calculating statistical information about such a point set should
be more efficient than the same algorithm operating on a set of randomly moving points. Simple
worst-case efficiency bounds do not capture this notion while the information content of the set
does; it is low for highly predictable point sets and high for random motion. Algorithms with
complexity analyses based on the underlying motion are known as motion-sensitive [3]. Motion
sensitivity is captured by an information theoretic approach that is used to describe efficiency of
algorithms within this framework.

In order to theoretically analyze algorithmic efficiency, we begin by assuming that the outputs
of a single sensor (the count of points within its detection range) are drawn from a stationary,
ergodic, random process. Since the cardinality of the moving point set is finite, the alphabet from
which this sequence is drawn is also finite. The subsequence made up of the first T' characters
of this sequence is referred to as the stream output by a sensor, where T represents the total
time over which a sensor reports its observations and T’ goes to infinity in the limit. Recall from
Section 2.4 that by definition the entropy of a stream X is —3,p, logy(p,) where z is an outcome
of the random process. The joint entropy of a set of streams X of size S is —3,p, logy(ps) where
x represents a set of outcomes {z1, 2, ..., x5}, and z; is the outcome for stream X; [17]. Note that
the definition of entropy is the same as that of joint entropy for a set X of cardinality one. The
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normalized joint entropy of a stream gives the entropy required per bit for lossless compression.
More precisely, the normalized joint entropy is

- 1
H(X) = lim **Em,m:Tpx logs (px)

where T is the length of the stream and X and x are as previously defined.

As an initial problem on this framework, preliminary work considers data compression. While
some algorithms based on sensors treat the incoming data as a data stream and process the data
online in a manner so that it is never stored [7], my preliminary work focuses on reducing the
necessary storage size through a lossless data compression algorithm on this framework. This
lossless compression algorithm encodes the motion data to within a constant factor of the op-
timum size. Note that H(X) is the optimal compression bound for this algorithm and is the
optimal bound that an entropy-based encoding algorithm achieves. In addition, to justify the
appropriateness of this approach, my preliminary work relates its complexity to that of KDS. My
preliminary work shows that the number of bits needed to encode a set of points moving with
piecewise linear motion, when considered as a function of some properties of the point motion, is
comparable under both frameworks.

The main purpose of this work is as an underlying framework on which future work will be
built. It is anticipated that other algorithms operating on sensed kinetic data sets, especially those
determining global statistical properties, can be effectively implemented and analyzed using this
framework.

For complete details, see [19].

4 Proposed Work

All proposed research will focus on expanding results on the new sensor-based framework for
kinetic data. As previously explained, this framework is practical while still allowing a theoret-
ical analysis based on entropy bounds. Future work will first focus on retrieval and then lead
to creating robust statistical algorithms on this framework. Finally, given sufficient time, an
experimental evaluation of these algorithms will be performed.

The retrieval problem is complementary to data compression; it focuses on retrieving only the
portion of the compressed data that has been requested by the user. Precision measures the
fraction of retrieved data that was requested and recall measures the fraction of requested data
that was retrieved [44]. Work in this area will focus on total recall while limiting the error due
to imperfect precision. The retrieval problem is interesting in its own right, but is also necessary
before statistical algorithms on the framework can be created.

The k-center problem, which was previously studied in the preliminary work, is a common
clustering problem and a simple global statistical property of a point set. As such, it is a logical
starting point for developing statistical algorithms on the sensor-based framework. Exact and
robust versions of the problem will be considered for kinetic data.

Depending on time constraints, future work may also include creating a least median of squares
algorithm within the sensor-based framework. The least median of squares estimator fits a line
to a set of points by minimizing the median squared distance between any point and the line.
This estimator is robust for any data set containing up to 50 percent outliers [37].

The framework discussed in my preliminary work does not allow for tracking of individual
points through the system; for example, the framework could not be used to determine which
point travelled the farthest distance. This is a side-effect of the choice of discrete monitoring and
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the efforts towards practicality and robustness. While keeping these constraints in mind, it would
be interesting to consider a tracking model that allows analysis of individual point properties.
In addition, if time permits, it would be interesting to consider an experimental evaluation of
one of the algorithms created within the sensor-based framework. One possible data set to exam-
ine is the MERL Motion Sensor Dataset which contains over 30 million data points representing
people near sensors they placed around their building [33]. Questions to consider would include
implementation details and their impact on the practicality of the framework, an efficiency com-
parison between use of the sensor-based framework and the current heuristic methods, and an effi-
ciency comparison between the sensor-based framework and KDS if possible based on the provided
data. I suspect that a lossy compression algorithm instead of the lossless compression algorithm
given by the preliminary work would greatly increase the efficiency of algorithms based on this
framework, so lossy compression algorithms will also be considered and analyzed experimentally.
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