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Abstract
In this paper we state a sufficient condition for the existance of a 4-dimentional vector orb-space
which admits a faithful, symplectic SU(2) action.

1 Introduction

Classifying all Hamiltonian SU(2) actions on manifolds is a hard unsolved problem. We begin by looking at
SU(2) actions on vector orbi-spaces since they contain all the local information. In this paper we look at
faithful symplectic SU(2) actions on 4-dimensional vector orbi-spaces and have found the following sufficient
condition:

Main Theorem 1. IfT is a finite subgroup of the center of SU(2), there is a 4-dimensional vector orbi-space
V/T' which admits o symplectic, faithful SU(2) action.

2 Background

2.1 Vector Space

A vector space V over a field F is a set together with two laws of composition:
1. VxV = V,v,w— v+ w (addition)
2. FxV =V, c¢,v— cv (scaler multiplication)

and satisfying the following axioms:
1. addition makes V into a commutative group V7.

2. scaler multiplication is associative with multiplication in F:
(ab)v =a(bv) Va,be Fandv eV

3. the element 1 acts as the identity: lv=v Vv €V

4. two distributive laws hold:
(a+bv=av+band a(lv+w)=av+aw V a,be F and v,w € V



2.2 Bilinear Form

A Dbilinear form is a form on a vector space V that is a function of 2 variables on V with values in the field
F,VxV 4y F. £ satisfies the bilinear axioms:

1. f(v1 +va,w) = f(v1,w) + f(v2,w)
2. f(v,wr +w2) = f(v,w1) + f(v,w2)
3. flev,w) = cf(v,w)
4. flv,cw) = cf (v, w)

notation: < v,w >

2.3 Skew-symmetric Bilinear Form

Intuitively, a skew-symmetric bilinear form is one such that

<v,w>=-—-<w,v >

(since a symmetric bilinear form has < v,w >=< w,v >).

However, this definition, while it is useful, does not hold for characteristic 2. The universal definition is that
a bilinear form is skew-symmetric if

<v,w>=0VwveV

2.4 Nondegenerate Bilinear Form

A nondegenerate bilinear form is any bilinear form such that
Yv eV <wv,w>=0 VYw € V implies that v =0

2.5 Matrix Representation of a Bilinear Form

Take a basis for V with <, > a bilinear form on V. Let B = (b1, ba, ...b,,) be the basis. The matrix of the
form with respect to the basis is A = (a;;) where a;; =< b;,b; >.

, - I
The standard skew-symmetric form represented as a matrix is: Js, = [ (} On ]
—in

2.6 The Symplectic Group

The symplectic group is the stabalizer of J as given above.
SPy,(R) = {P € GL2,(R)|PtJP = J}
The complex symplectic group is defined similarly. Note that all symplectic matrices have determinant 1.

2.7 Symplectic Vector Space

A symplectic vector space is a pair (v,w) where V is a finite dimensional real vector space and w is a
nondegenerate skew-symmetric bilinear form w : V' x V' — R. Since the bilinear form is nondegenerate,
the dimension of the symplectic vector space is always even. All symplectic vector spaces with the same
dimension are isomorphic.

example: (R?",w) where w has the matrix representation J.



2.8 Quotient Space

Let V be a vector space over a field F and W be a subspace of V. Then V/W is a vector space over F and
the quotient space of V by W with

1. (U1+W)+('U2+W):(U1+'U2)+W
2. a(vy +W)=avi + W

given vy + Wyua + W € V/W and o € F

2.9 Symplectic Vector Orbi-Space
The quotient space V/T" where V is a symplectic vector space and I' is a finite subgroup of the symplectic
group SP(V).

2.10 Unitary Matrix

P is a unitary matrix if P*P = I where I is the identity matrix (or P* = P~!) and P* is the matrix adjoint,

p* =P

2.11 Unitary Group U,

U,={P|P*P=1}

(This is the group of matrices representing chages of basis which leave the hermitian dot product X*Y
invariant. [1](p27))

2.12 Special Matrices

Special matrix groups are subgroups of matrix groups that have determinant 1.

2.13 Special Linear Group

The special linear group (SL,(R)) is the group of n x n matrices with determinant 1 and entries in ®. (A
complex group can be defined analogously.)

2.14 Special Unitary Group SU(n)
SLn(C) N U,

2.15 Group Action on a Set

A group G is said to act (or operate) on the set S if there exists a map (g, z) — gz of G x S into S satisfying:
1. lz=z,2 €8
2. (91,92)x = g1(g27)

([6], p72)



3 Preliminary Theorems

Theorem 1. [9] Let p: H — SP(V/T) be a faithful symplectic representation of a compact Lie group H on
a symplectic vector orbi-space VT, and let N (T') denote the normalizer of T' in SP(V'). The representation
p and the short exact sequence 1 — I' - N(I') —» SP(V/T) — 1 give rise to the pull-back extension
7+ H — H and the faithful (symplectic) pull-back representation p : H > N@) c SP(V) so that T is
naturally a subgroup of H , and the following diagram is exact and commutes.

1 - T — H 5 H — 1

ll 1P Lp

1 — I — NI & SPWV/I) — 1

Conversely, given a Lie group H € SP(V), a symplectic representation p : H > SP(V) of Hona
symplectic vector space V and a finite normal subgroup T' of H such that p(I) =T, there exists a symplectic
orbi-representation p : H — SP(V/T') of the quotient H = fI/I‘ making the above diagram commute.

Proof. Let p: H— N(I')/T be a faithful symplectic representation and let p : N(I') - N(T")/T be defined
aws al. Let H = p=(p(H)).

The group H is a subgroup of N(T) as h,k € H = [h] € SP(V/T),[k] € SP(V/T), p~*([h]) € H and
p~L([k]) € H. Since H is a group,

p (AP~ (KD} € H = [h][k]7" € SP(V/T)
= [h][k™'] € SP(V/T)
= hk'eH

Thus H is a subgroup.

Furthermore H is a Lie group. Since multiplication in the Lie group SP(V') is smooth, the function
7 :h — H defined a — al is continuous. Therefore if we consider H to be in SP(V), since H is closed in
SP(V) being that H is compact, 7~(H) = H is also closed. By SOME THEOREM H is a Lie group.

Thus, let 7 : H — H be defined a — p~'(u(a)). Then 7 is an inclusion, it is seen that por = pop, T is
a subgroup of H and the sequence is exact. R R

Conversely, given a group H C SP(V), a symplectic representation p : H — SP(V) of H on a symplectic
vector space V and a finite normal subgroup I' € SP(V') of H such that p(T') = T, we have p(H) ¢ N(T) C
SP(V). This follows since for all h € H, hTh~! =T and since p is a homomorphism p(hTh~' = p(T') =T

= p(h)p(D)p(h*) =T = p(M)Tp(h)~* =T = p(h) € N(I).

If we let 7 : H — H be defined h — hT and p : N(T) = SP(V/T) be defined b — bI" then we can let
p: H— SP(V/T) be defined [h] — p(p(h)). It is obvious that po 7w = po p and that the diagram commutes
and is exact. O

Theorem 2. IfT' C Z(G) (the center of G)then T is a normal subgroup of G.

Proof. A subgroup N of a group G is called a normal subgroup if it has the property that for all @ € N and
be G,bab~! € N. So we want to show that for all a € T and b € G,bab~! € I:

Pick some b € G and a € T'. Is bab~' € I'? Since a is in the center of G, a commutes with b and b~! since
both are in G.

Sobab™' =bbla=aandacT. O

Theorem 3. If G = (G,T) ={tv : t € G,v € T} where elements of G and T are represented by square
matrices of the same dimension and T is normal in G, T is normal in G.



Proof. Let a € T and tv € §. If tva(tv) ! € G, T is normal in G.
tva(tv)™! = tvav~'t~! since v and t are matrices
vav~! € T since v,a €T
let vav™' =beT
tht—1
tt—1b I is normal in G and t,t~ ! € G
= b
So T is normal in G.

Theorem 4.
a b d b

| =b a ¥V =d T T a+a'i
el gy 4 b with a®* +b* +a” +b? =1€ SP(4,R) — b+ Wi
- a -=b a
is an isomorphism.
Proof. Let
a b d ¥V c d d d
b a bV —d —-d c d —c
4= —a b a b and €' = - —d ¢
- ad -b a —-d Jd —-d ¢
with a®? + 02 +a? +b?=1land ? +d?> +? +d? =1
First, A € SP(4,R) :
a —-b —a -V 0 0 1 0 a b d b
b a =b d 0 0 0 1 b a YV -=da
ETA —
AJA = a b a —b -1 0 00 —a =V a b
¥ —d b a 0 -1 00 - d -=b a
a' ¥ a -=b a b d b
_ ¥ —d b a -b a b —d
|l —a b 4 ¥V —a' -V a b
b —a bV -—d - ad -b a
since we have the condition a? + b? + a’? + b2 = 1 we get
0 0 1 0
0 0O 0 1
- -1 0 0 0 =J
0O -1 0 0

So A € SP(4,%).

¢ is a homomorphism:
We want to show that p(AC) = ¢(A)p(C).
al

a b o c d ¢ d
b a L/ — —-d c d —c
p(AC) = ¢ —a =V a b — —-d ¢ d -
- a b a —-d Jd -d c

b+ b
a—a'i

) € SU(2)



ac — —bd' —bd ad+bc—dd +bc ad +bd +dc—bd ad —bc +dd+bec
—bc—ad e +a'd —bd+ac—Vd —a'cd —bc +ad +bc+ad —bd —ac +bd—adc
—a’c+ b'd—ac —bd —a'd—bc—ad +bd —a'c—-bd +ac—bd —a'd +bc +ad+ be
—bc ’d+ b —ad —bd+ac+bd +acd —bc +ad —blad —bd —a'c —bd+ac
(ac — —bd—bd)+ (ac' +d'c+bd —b'd)i (ad+bc—ad'd +bc)+ (ad — b +ad'd+Ve)i )

A

(—ad — bc+a'd’ b'c')+ (ad —bd' +d'd+ V)i (ac—a'd —bd—b'd") — (ac' + a'c + bd' — b'd)i
alc+ci)+a'(—c +ci) +b(—d+di)+b(—d —di) a(d+di)+a'(—d+di)+blc—ci)+b(c +ci) )
a(—d+di)+ad(d +d)+b(—c— i)+ b (= +ci) alc—ci)+ (= —ci) +b(—d—d'i)+ b (-d + di)
(a+di)(c+ i)+ b+ Vi) (—d+di) (a+ai)(d+di)+ (b+Vi)(c— D) )
(a—a'i)(—d+d%) + (=b+bi)(c+ i) (a—a'i)(c—ci)+ (—b+bi)(d+d7)

a+ai b+bi ) ( c+ci d+di

Il
NN TN N

—b+bi a—ai —d+di c—cli
a b a ¥V c d d d
_ -b a bV —d -d ¢ d -
¢ —a =V a b @ - —-d ¢ d
¥ d b a -d ¢ -d ¢
= ¢(A)p(C)

SO ¢ is a homomorphism.
 is obviously injective.

Is ¢ surjective?

Pick some element € SU(2). We want to show that there is some element in SP(4,R) which

a b a UV
a f . -b a bV —d e e .
maps to ( 3 @ ) Pick d —b a b such that a + @i = a and b + b'i = § then since
a_
—B

- d -b a
(_‘J‘B £>65U()det<

So ¢ is an isomorphism. O

) =1 = a?+b%+a'2+b"? which is the condition on ¢. So ¢ is surjective.

4 Main Theorem

Main Theorem 1. IfT is a finite subgroup of the center of SU(2), there is a 4-dimensional vector orbi-space
V/T' which admits o symplectic, faithful SU(2) action.

Proof. Let T be a finite subgroup of the center of SU (2) and ¢ as described in Theorem 4. Let I' =
¢ }T) € SP(4,R).

a b d b
_ ! _ !

Let SU(2) = _;’, _"b, I(’l ba € SP(4,R)
b a -=b a

Let 85?2) = (SU(2),T) = {tv : t € SU(2),v € T'}. SﬂQ) € SP(4,R) sinceT' C SP(4,R) and SU(2) C



—_

SP(4,R). T is normal in SU(2) by Theorems 2 and 3 since I C Z(SU(2)).

P

Thus by Theorem 1, since we have a symplectic representation of SU(2) on the vector orbi-space R*/T,
we have the following diagram which is exact and commutes:

=2

1 —-— I — SUu@ S SU@ — 1
ll 1P Ny
1 - T — NI & spym) — 1
Thus there is a symplectic representation of SU(2) on the vector orbi-space ®*/I". Thus the vector
orbi-space admits an SU(2) action. O
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