Sufficient Condition for a 4-Dimensional Vector Orbi-Space to Admit a Faithful Symplectic SU(2) Action

Sorelle Friedler Janet Talvacchia

Summer 2003

Abstract

In this paper we state a sufficient condition for the existence of a 4-dimentional vector orb-space which admits a faithful, symplectic SU(2) action.

1 Introduction

Classifying all Hamiltonian SU(2) actions on manifolds is a hard unsolved problem. We begin by looking at SU(2) actions on vector orbi-spaces since they contain all the local information. In this paper we look at faithful symplectic SU(2) actions on 4-dimensional vector orbi-spaces and have found the following sufficient condition:

Main Theorem 1. If Γ is a finite subgroup of the center of SU(2), there is a 4-dimensional vector orbi-space V/Γ which admits a symplectic, faithful SU(2) action.

2 Background

2.1 Vector Space

A vector space V over a field F is a set together with two laws of composition:

- 1. $V \times V \to V$, $v, w \mapsto v + w$ (addition)
- 2. $F \times V \to V$, $c, v \mapsto cv$ (scaler multiplication)

and satisfying the following axioms:

- 1. addition makes V into a commutative group V^+ .
- 2. scaler multiplication is associative with multiplication in F: $(ab)v=a(bv)~\forall~a,b\in F~{\rm and}~v\in V$
- 3. the element 1 acts as the identity: $1v = v \ \forall \ v \in V$
- 4. two distributive laws hold: $(a+b)v=av+bv \text{ and } a(v+w)=av+aw \ \forall \ a,b\in F \text{ and } v,w\in V$

2.2 Bilinear Form

A bilinear form is a form on a vector space V that is a function of 2 variables on V with values in the field $F, V \times V \xrightarrow{f} F$. f satisfies the bilinear axioms:

- 1. $f(v_1 + v_2, w) = f(v_1, w) + f(v_2, w)$
- 2. $f(v, w_1 + w_2) = f(v, w_1) + f(v, w_2)$
- 3. f(cv, w) = cf(v, w)
- 4. f(v, cw) = cf(v, w)

notation: $\langle v, w \rangle$

2.3 Skew-symmetric Bilinear Form

Intuitively, a skew-symmetric bilinear form is one such that

$$< v, w > = - < w, v >$$

(since a symmetric bilinear form has $\langle v, w \rangle = \langle w, v \rangle$).

However, this definition, while it is useful, does not hold for characteristic 2. The universal definition is that a bilinear form is skew-symmetric if

$$\langle v, w \rangle = 0 \ \forall \ v \in V$$

2.4 Nondegenerate Bilinear Form

A nondegenerate bilinear form is any bilinear form such that $\forall v \in V < v, w >= 0 \ \forall w \in V \ \text{implies that } v = 0$

2.5 Matrix Representation of a Bilinear Form

Take a basis for V with <,> a bilinear form on V. Let $B=(b_1,b_2,...b_n)$ be the basis. The matrix of the form with respect to the basis is $A=(a_{ij})$ where $a_{ij}=< b_i,b_j>$.

The standard skew-symmetric form represented as a matrix is: $J_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$

2.6 The Symplectic Group

The symplectic group is the stabilizer of J as given above.

$$SP_{2n}(\Re) = \{ P \in GL_{2n}(\Re) | P^t JP = J \}$$

The complex symplectic group is defined similarly. Note that all symplectic matrices have determinant 1.

2.7 Symplectic Vector Space

A symplectic vector space is a pair (v,ω) where V is a finite dimensional real vector space and ω is a nondegenerate skew-symmetric bilinear form $\omega:V\times V\to\Re$. Since the bilinear form is nondegenerate, the dimension of the symplectic vector space is always even. All symplectic vector spaces with the same dimension are isomorphic.

example: (\Re^{2n}, ω) where ω has the matrix representation J.

2.8 Quotient Space

Let V be a vector space over a field F and W be a subspace of V. Then V/W is a vector space over F and the quotient space of V by W with

1.
$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$

2.
$$\alpha(v_1 + W) = \alpha v_1 + W$$

given $v_1 + W, v_2 + W \in V/W$ and $\alpha \in F$

2.9 Symplectic Vector Orbi-Space

The quotient space V/Γ where V is a symplectic vector space and Γ is a finite subgroup of the symplectic group SP(V).

2.10 Unitary Matrix

P is a unitary matrix if $P^*P = I$ where I is the identity matrix (or $P^* = P^{-1}$) and P^* is the matrix adjoint, $P^* = \overline{P}^t$.

2.11 Unitary Group U_n

$$U_n = \{P|P^*P = I\}$$

(This is the group of matrices representing chages of basis which leave the hermitian dot product X^*Y invariant. [1](p27))

2.12 Special Matrices

Special matrix groups are subgroups of matrix groups that have determinant 1.

2.13 Special Linear Group

The special linear group $(SL_n(\Re))$ is the group of $n \times n$ matrices with determinant 1 and entries in \Re . (A complex group can be defined analogously.)

2.14 Special Unitary Group SU(n)

 $SL_n(\mathbf{C}) \cap U_n$

2.15 Group Action on a Set

A group G is said to act (or operate) on the set S if there exists a map $(g, x) \mapsto gx$ of $G \times S$ into S satisfying:

- 1. $1x = x, x \in S$
- 2. $(g_1, g_2)x = g_1(g_2x)$

([6], p72)

3 Preliminary Theorems

Theorem 1. [9] Let $\rho: H \mapsto SP(V/\Gamma)$ be a faithful symplectic representation of a compact Lie group H on a symplectic vector orbi-space V/Γ , and let $N(\Gamma)$ denote the normalizer of Γ in SP(V). The representation ρ and the short exact sequence $1 \to \Gamma \to N(\Gamma) \to SP(V/\Gamma) \to 1$ give rise to the pull-back extension $\pi: \widehat{H} \to H$ and the faithful (symplectic) pull-back representation $\widehat{\rho}: \widehat{H} \to N(\Gamma) \subset SP(V)$ so that Γ is naturally a subgroup of \widehat{H} , and the following diagram is exact and commutes.

Conversely, given a Lie group $\widehat{H} \in SP(V)$, a symplectic representation $\widehat{\rho} : \widehat{H} \to SP(V)$ of \widehat{H} on a symplectic vector space V and a finite normal subgroup Γ of \widehat{H} such that $\widehat{\rho}(\Gamma) = \Gamma$, there exists a symplectic orbi-representation $\rho : H \to SP(V/\Gamma)$ of the quotient $H = \widehat{H}/\Gamma$ making the above diagram commute.

Proof. Let $\rho: H \to N(\Gamma)/\Gamma$ be a faithful symplectic representation and let $\mu: N(\Gamma) \to N(\Gamma)/\Gamma$ be defined $a \mapsto a\Gamma$. Let $\widehat{H} = \mu^{-1}(\rho(H))$.

The group \widehat{H} is a subgroup of $N(\Gamma)$ as $h, k \in \widehat{H} \Rightarrow [h] \in SP(V/\Gamma), [k] \in SP(V/\Gamma), \rho^{-1}([h]) \in H$ and $\rho^{-1}([k]) \in H$. Since H is a group,

$$\begin{array}{cccc} & & & & & & & \\ \rho^{-1}([h])\{\rho^{-1}([k])\}^{-1} \in H & \Rightarrow & & [h][k]^{-1} \in SP(V/\Gamma) \\ & \Rightarrow & & [h][k^{-1}] \in SP(V/\Gamma) \\ & \Rightarrow & & hk^{-1} \in \hat{H} \end{array}$$

Thus \widehat{H} is a subgroup.

Furthermore H is a Lie group. Since multiplication in the Lie group SP(V) is smooth, the function $\pi: \hat{h} \to H$ defined $a \mapsto a\Gamma$ is continuous. Therefore if we consider H to be in SP(V), since H is closed in SP(V) being that H is compact, $\pi^{-1}(H) = \hat{H}$ is also closed. By SOME THEOREM \hat{H} is a Lie group.

Thus, let $\pi: \widehat{H} \to H$ be defined $a \mapsto \rho^{-1}(\mu(a))$. Then $\widehat{\rho}$ is an inclusion, it is seen that $\rho \circ \pi = \mu \circ \widehat{\rho}$, Γ is a subgroup of \widehat{H} and the sequence is exact.

Conversely, given a group $\widehat{H} \subset SP(V)$, a symplectic representation $\widehat{\rho}: \widehat{H} \to SP(V)$ of \widehat{H} on a symplectic vector space V and a finite normal subgroup $\Gamma \subset SP(V)$ of \widehat{H} such that $\widehat{\rho}(\Gamma) = \Gamma$, we have $\widehat{\rho}(\widehat{H}) \subset N(\Gamma) \subset SP(V)$. This follows since for all $h \in \widehat{H}$, $h\Gamma h^{-1} = \Gamma$ and since ρ is a homomorphism $\rho(h\Gamma h^{-1} = \rho(\Gamma) = \Gamma)$ $\Rightarrow \rho(h)\rho(\Gamma)\rho(h^{-1}) = \Gamma \Rightarrow \rho(h)\Gamma\rho(h)^{-1} = \Gamma \Rightarrow \rho(h) \in N(\Gamma)$.

If we let $\pi: \widehat{H} \to H$ be defined $h \mapsto h\Gamma$ and $\mu: N(\Gamma) \to SP(V/\Gamma)$ be defined $b \mapsto b\Gamma$ then we can let $\rho: H \to SP(V/\Gamma)$ be defined $[h] \mapsto \mu(\widehat{\rho}(h))$. It is obvious that $\rho \circ \pi = \mu \circ \widehat{\rho}$ and that the diagram commutes and is exact.

Theorem 2. If $\Gamma \subset Z(G)$ (the center of G)then Γ is a normal subgroup of G.

Proof. A subgroup N of a group G is called a normal subgroup if it has the property that for all $a \in N$ and $b \in G, bab^{-1} \in N$. So we want to show that for all $a \in \Gamma$ and $b \in G, bab^{-1} \in \Gamma$:

Pick some $b \in G$ and $a \in \Gamma$. Is $bab^{-1} \in \Gamma$? Since a is in the center of G, a commutes with b and b^{-1} since both are in G.

So
$$bab^{-1} = bb^{-1}a = a$$
 and $a \in \Gamma$.

Theorem 3. If $\widehat{G} = \langle G, \Gamma \rangle = \{tv : t \in G, v \in \Gamma\}$ where elements of G and Γ are represented by square matrices of the same dimension and Γ is normal in G, Γ is normal in \widehat{G} .

$$\begin{array}{ll} \textit{Proof.} \ \ \text{Let} \ \ a \in \Gamma \ \ \text{and} \ \ tv \in \widehat{g}. \ \ \text{If} \ \ tva(tv)^{-1} \in \widehat{G}, \ \Gamma \ \ \text{is normal in} \ \widehat{G}. \\ tva(tv)^{-1} & = \ \ tvav^{-1}t^{-1} & \text{since } v \ \ \text{and} \ \ t \ \ \text{are matrices} \\ & vav^{-1} \in \Gamma \ \ \text{since} \ v, a \in \Gamma \\ & \text{let} \ \ vav^{-1} = b \in \Gamma \\ & = \ \ tbt^{-1} \\ & = \ \ tt^{-1}b & \Gamma \ \ \text{is normal in} \ \ G \ \ \text{and} \ \ t, t^{-1} \in G \\ & = \ \ b \end{array}$$

So Γ is normal in \widehat{G} .

Theorem 4.

$$\varphi: \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} with \ a^2 + b^2 + a'^2 + b'^2 = 1 \in SP(4, \Re) \mapsto \begin{pmatrix} a + a'i & b + b'i \\ -b + b'i & a - a'i \end{pmatrix} \in SU(2)$$
 is an isomorphism.

Proof. Let

$$A = \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} \text{ and } C = \begin{pmatrix} c & d & c' & d' \\ -d & c & d' & -c' \\ -c' & -d' & c & d \\ -d' & c' & -d & c \end{pmatrix}$$
with $a^2 + b^2 + a'^2 + b'^2 = 1$ and $c^2 + d^2 + c'^2 + d'^2 = 1$

First, $A \in SP(4, \Re)$:

$$A^{t}JA = \begin{pmatrix} a & -b & -a' & -b' \\ b & a & -b' & a' \\ a' & b' & a & -b \\ b' & -a' & b & a \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix}$$

$$= \begin{pmatrix} a' & b' & a & -b \\ b' & -a' & b & a \\ -a & b & a' & b' \\ -b & -a & b' & -a' \end{pmatrix} \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix}$$

since we have the condition $a^2 + b^2 + a'^2 + b'^2 = 1$ we get

$$= \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} = J$$

So $A \in SP(4, \Re)$.

 φ is a homomorphism:

We want to show that $\varphi(AC) = \varphi(A)\varphi(C)$.

$$\varphi(AC) = \varphi\left(\begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} \begin{pmatrix} c & d & c' & d' \\ -d & c & d' & -c' \\ -c' & -d' & c & d \\ -d' & c' & -d & c \end{pmatrix} \right) =$$

$$\varphi \left(\begin{pmatrix} ac - a'c' - bd' - b'd' & ad + bc - a'd' + b'c' & ac' + bd' + a'c - b'd & ad' - bc' + a'd + b'c \\ -bc - ad - b'c' + a'd' & -bd + ac - b'd' - a'c' & -bc' + ad' + b'c + a'd & -bd' - ac' + b'd - a'c \\ -a'c + b'd - ac' - bd' & -a'd - b'c - ad' + bc' & -a'c' - b'd' + ac - bd & -a'd' + b'c' + ad + bc \\ -b'c - a'd + bc' - ad' & -b'd + a'c + bd' + ac' & -b'c' + a'd' - bc'ad & -b'd' - a'c' - bd + ac \end{pmatrix} \right)$$

$$= \begin{pmatrix} (ac - a'c' - bd - b'd') + (ac' + a'c + bd' + bc') & (ad + bc - a'd' + b'c') + (ad' - bc' + a'd + b'c)i \\ (-ad - bc + a'd' - b'c') + (ad' - bc' + a'd + b'c)i & (ac - a'c' - bd - b'd') - (ac' + a'c + bd' - b'd)i \end{pmatrix}$$

$$= \begin{pmatrix} a(c + c'i) + a'(-c' + ci) + b(-d + d'i) + b'(-d' - di) & a(d + d'i) + a'(-d + di) + b(c - c'i) + b'(c' + ci) \\ a(-d + d'i) + a'(d' + d') + b(-c - c'i) + b'(-c' + ci) & a(c - c'i) + c'(-c' - ci) + b(-d - d'i) + b'(-d' + di) \end{pmatrix}$$

$$= \begin{pmatrix} (a + a'i)(c + c'i) + (b + b'i)(c + d'i) & (a + a'i)(d + d'i) + (b + b'i)(c - c'i) \\ (a - a'i)(-d + d'i) + (-b + b'i)(c + c'i) & (a - a'i)(c - c'i) + (-b + b'i)(d + d'i) \end{pmatrix}$$

$$= \begin{pmatrix} a + a'i & b + b'i \\ -b + b'i & a - a'i \end{pmatrix} \begin{pmatrix} c + c'i & d + d'i \\ -d + d'i & c - c'i \\ -d' & c' & -d' & c' \end{pmatrix}$$

$$= \varphi(A)\varphi(C)$$
so φ is a homomorphism.

, -

 φ is obviously injective.

Is φ surjective?

Pick some element $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \in SU(2)$. We want to show that there is some element in $SP(4,\Re)$ which maps to $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$. Pick $\begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix}$ such that $a+a'i=\alpha$ and $b+b'i=\beta$ then since $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \in SU(2)$, det $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} = 1 = a^2 + b^2 + a'^2 + b'^2$ which is the condition on φ . So φ is surjective. So φ is an isomorphism.

4 Main Theorem

Main Theorem 1. If Γ is a finite subgroup of the center of SU(2), there is a 4-dimensional vector orbi-space V/Γ which admits a symplectic, faithful SU(2) action.

Proof. Let $\widetilde{\Gamma}$ be a finite subgroup of the center of SU(2) and φ as described in Theorem 4. Let $\Gamma = \varphi^{-1}(\widetilde{\Gamma}) \in SP(4, \Re)$.

$$\text{Let } SU(2) = \left\{ \begin{pmatrix} a & b & a' & b' \\ -b & a & b' & -a' \\ -a' & -b' & a & b \\ -b' & a' & -b & a \end{pmatrix} \in SP(4,\Re) \right\}.$$

$$\text{Let } \widehat{SU(2)} = \langle SU(2), \Gamma \rangle = \{tv : t \in SU(2), v \in \Gamma\}. \ \widehat{SU(2)} \in SP(4,\Re) \text{ since } \Gamma \subset SP(4,\Re) \text{ and } SU(2) \subset SP(4,\Re) \text{ since } \Gamma \subset SP(4,\Re) \text{ and } SU(2) \subset SP(4,\Re) \text{ since } \Gamma \subset SP(4,\Re) \text{ and } SU(2) \subset SP(4,\Re) \text{ since } \Gamma \subset SP(4,\Re) \text{ and } SU(2) \subset SP(4,\Re) \text{ since } \Gamma \subset SP(4,\Re) \text{ and } SU(2) \subset SP(4,\Re) \text{ since } \Gamma \subset SP(4,\Re) \text{ and } SU(2) \subset SP(4,\Re) \text{ since } \Gamma \subset SP$$

 $SP(4,\Re)$. Γ is normal in $\widehat{SU(2)}$ by Theorems 2 and 3 since $\Gamma \subset Z(SU(2))$.

Thus by Theorem 1, since we have a symplectic representation of $\widehat{SU(2)}$ on the vector orbi-space \Re^4/Γ , we have the following diagram which is exact and commutes:

Thus there is a symplectic representation of SU(2) on the vector orbi-space \Re^4/Γ . Thus the vector orbi-space admits an SU(2) action.

References

- [1] Michael Artin. Algebra. Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1991.
- [2] Theodor Brocker and Tammo tom Dieck. Graduate Texts in Mathematics: Representations of Compact Lie Groups. Springer-Verlag New York Inc., 1985.
- [3] Morton L. Curtis. Matrix Groups. Springer-Verlag New York Inc., second edition, 1984.
- [4] Marshall Hall Jr. The Theory of Groups. The Macmillan Company, New York, 1959.
- [5] Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961.
- [6] Nathan Jacobson. Basic Algebra I. W. H. Freeman and Company, New York, second edition, 1985.
- [7] Dusa McDuff and Dietmar Salamon. *Introduction to Symplectic Topology*. Oxford University Press Inc., New York, second edition, 1998.
- [8] Joseph J. Rotman. Graduate Texts in Mathematics: An Introduction to the Theory of Groups. Springer-Verlag New York Inc., fourth edition, 1995.
- [9] Noel Watson. Categorization of 4 dimensional symplectic vector orbi-spaces.
- [1] [2] [3] [4] [5] [6] [7] [8] [9]