Cost of Implementing Final
Flelds




Memory Barriers

= To ensure final field immutabillity, requires
membar between construction and read of
fleld on reader & writer sides

= membar = 30 cycles on 21164 Alpha
= On 400 mHz machine = 75 nanosecs
= Test Setup
Sun Ultra 60 (OK, Is a cheat)
Finalized SPEC benchmarks




Projected Slowdown on (finalized)
SPECjvm98

Benchmark Seconds Seconds/MB
Compress 33 120 (x3.6)
Db 42 52 (x1.2)
Jack 17 28 (x1.6)
Javac 32 35 (x1.1)
Jess 15 21 (x1.4)
Mpeg 37 67 (x1.8)
Mtrt 25 30 (x1.2)




getfields/getstatics/aaloads of
finals

= compress:1,154,641,140
« db:127,964,512

» Jack:144,184,226

- Javac:33,309,513

» |ess: 72,481,686

» mpeq:397,994,634

= Mtrt:66,610,552




getfields/getstatics/aaloads

= Optimized so that there is only one mb for a
given object in a method
Maximum we can hope for from data flow analysis

Avg of 60% speed up, but still ugly
compress:225,926,010 (-81%)
db:64,563,485 (-50%)
jack:13,024,896 (-91%)
javac:18,500,829 (-45%)
jess:30,442,641(-58%)
mpeg:14,440,020 (-97%)
mtrt:65,999,754 (-1%)




Object Aging

= Why look twice at objects?

Can have a nursery for new objects where
you do MBs

Can have an "older area_where you do not
do MBs

= Can accomplish in a couple of ways




Methods

= Execute Global Memory Barrier (GMB)

Execute a GMB whenever a getfield of a final
field of a new object is performed

Execute a GMB at each context switch

Execute a GMB whenever n getfields of final
fields of new objects are performed

For other n-1, execute local membars




Method 1

m If a GMB Is executed every time there Is a
getfield of a final field of a new object
Also "ages" any other objects created recently

Since they are GMBs, cannot compare
directly to MB costs

But we get an order of magnitude or two




Results

m compress:2,299 (x500000)
m db:1,473,201(x90)

jack: 2,843,324 (x50)
javac:1,375,102 (x30)
jess:1,490,406 (x50)
mpeg:2,542 (x160000)
mtrt:196,403 (x330)




Method 2

= Further refinement:

Getfield of a final field with a reference to it stored in
the heap

If it is not in the heap, then it is local, and we do not
need to perform the MBs

Done In addition to dataflow

= Might be difficult to detect references stored in
heap

But let_s look at results anyway




Results

m compress:125 (x920000)
m db:64 (x2000000)
jack:3,261 (x44000)
javac:121,942 (x270)
jess: 776 (x93000)
mpeg:91(x4400000)
mtrt:400 (x170000)




Method 3

m Why have a global memory barrier each
time?

Might have significantly fewer if we had a

global memory barrier every n accesses of a
new object

Every other access we have a local MB
Would optimize n for GMB time vs. MB time




Performing a GMB after X MBs
GMBs

7 javac

W jess

@ jack

B compress
CImtrt

B mpegaudio




Cost of Performing MBs and
GMBs

m Depends on the system

m Number of MBs is roughly a multiple of
number of GMBs

Performed after n membars, it Is n-1 times
number of GMBS

Could tune performance based on
comparative cost of GMB on a given system




Method 4

= What if we did it on every context swap, instead
of every n mbs?

= Simulated by
counting instructions for a benchmark
dividing by time to get n
Issuing a GMB every n instructions

= Results are fairly good, but a few degenerate
cases




Results

number of GMBs number of MBs
compress:125 compress:138
db:123 db:30,466,705
jack:1,330,470 jack:0
javac:656 javac:602,764
jess:1,155 jess:42
mpeg:220 mpeg.22
mtrt:219 mtrt:56




Ultimately

m The cost of implementing final field
Immutability in an obvious way would be
excessive

m Must have a few tricks and tweaks to
make finals reasonable




