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Introduction

Many shared memory multiprocessors implement a
weak memory model. These weak memory models
might allow higher performance, but also produce
surprising results when multithreaded programs are
not properly synchronized.

Although these problems can arise in many pro-
gramming languages, they are particular severe in ob-
ject oriented languages and in languages that make
safety guarantees. The difficulty for object oriented
programs is due to the number of “hidden” data
structures manipulated by the runtime system (e.g.,
the virtual function table) and the richer mental
model programmers have of objects (and their sur-
prise when these models are violated by improperly
synchronized programs).

An active discussion is occurring on these issues;
this is a snapshot of the discussion.

Weak memory models

A memory model describes how different
threads/processors can see their memory actions
interleave with those of other processors. A strong
memory model, such as sequential consistency,
imposes very strict constraints.

There are many weak memory models. They all
tend to support and/or need explicit memory barriers
or acquire/release operations. A possible implemen-
tation/intuition is shown in Figure 1. Each processor
reads and writes to a local cache. Updated mem-
ory locations may be flushed from the cache to main
memory at any time, and the cache can fill a mem-
ory location from main memory at any time. When
a processor does an acquire/lock operation, it must
reload the cache from main memory, and when a pro-
cessor does a release/unlock operation, it must flush
all modified memory locations from the cache to main
memory. Multiprocessors based on the DEC Alpha
and the Intel Merced chip provide this kind of weak
memory order.
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Figure 1: Implementation of a Weak Memory Model

Initially:

class Foo {

final int x;

int f(int y) { return x+y; }

Foo(int i) { x = i; }

static Foo bar;

}

Foo.bar = new Foo(1);

On Processor 1: On Processor 2:
Foo.bar = new Foo(2); int z = Foo.bar.f(3);

Figure 2: Unsynchronized access

What can go wrong?

Consider execution of Figure 2 on a multiprocessor
with a weak memory model; the processors have un-
synchronized access to Foo.bar. The initial code is
executed first and all processors see it. Next, it hap-
pens that processor 1 executes its code first. Further-
more, the cache happens to flush the modification of
Foo.bar back to main memory, but none of the other
writes. Then, when processor 2 executes its code, it
loads its cache only with the new value of Foo.bar
from main memory (finding old values in the cache
for all other memory locations).

What unexpected things could happen? When pro-
cessor 2 executes Foo::f and reads the x field of the
object allocated by processor 1, it won’t see the value
that the x field was initialized to by processor 1. It
could read garbage: an arbitrary value. Since x is
only an integer value, this is only moderately bad.
If x were a reference/pointer, then seeing a garbage
value would violate type safety and make any kind of
security/safety guarantee impossible.

We can allocate objects out of memory that all pro-
cessors agree has been zeroed. Essentially, you would
zero memory during garbage collection, and then



have all processors perform a memory barrier/acquire
before restarting after a garbage collection. This
would ensure that if processor 2 sees a stale value
for the x field of the object allocated by processor 1,
it will see zero/null. For references/pointers, this will
ensure type safety.

We could require that a processor perform a re-
lease/flush operation between creating an object and
publishing a reference to that object (by publishing, I
mean store a reference to the object in a place where
it might be read by other threads). A compiler could
easily figure out where such flush operations are re-
quired (e.g., after object initialization) and the cost
of doing such flushes would likely be small.

However, it isn’t enough. Under a weak memory
model, processor 2 must also do a barrier/acquire op-
eration to see all of the writes sent to main memory
by processor 1. The problem is that there isn’t any-
thing in the code executed by processor 2 to suggest
that we might be reading a reference to an object
created by another processor.

Perhaps we should just decide that seeing a
zero/null value for a field is OK. In Java, that is the
default value for a field, and if you allow an object to
escape before it is properly initialized, that it what
you will see anyway. (Some people are horrified by
this idea, but let’s run with it for the moment).

However, in an OO environment, we also have to
consider the object header fields. For example, when
processor 2 reads the vtbl (virtual method table) en-
try from the object referenced by Foo.bar, it might
see null. Dispatching the Foo::f() method could re-
sult in a SIGSEGV fault crashing your virtual machine;
this clearly should not be considered acceptable.

Other information must be considered suspect in
a multithreaded environment. In Java, the length of
an array might be seen as zero. In C++, the pointer
to a virtual base class might be null.

There are even worse problems if you consider dy-
namic class loading. Consider what happens if pro-
cessor 1, rather than just creating a instance of a
class that processor 2 already knows about, loads an
entirely new class Faz (a subclass of Foo that over-
rides f()), compiles native code for Faz::f() from
bytecode, creates an instance of Faz, and then stores
a reference to that instance in Foo.bar). There is
still nothing in the code being executed by processor
2 to indicate that it will need to synchronize. How-
ever, any of the memory locations read by processor
2 might be null. Even if the reference to the virtual
function table isn’t null, an entry of the vtbl could
be null. Processor 2 might not see the native code
generated by processor 1.

What makes this particular difficult is that just one
of the memory locations read by processor 2 could be
stale, even though all the others see properly updated
values. Just checking to see if you got a valid pointer
to a vtbl won’t suffice.

The semantics of data races

Few programming languages have defined the seman-
tics of programs that contain unsynchronized access
to shared data. Ada and Modula3 define a multi-
threaded semantics, but simply say that it is erro-
neous to have unsynchronized access to shared data.

The Java Language Specification provided [GJS96,
Chap. 17] a semantics for threads, locks and mem-
ory. Unfortunately, that specification has proven to
be fatally flawed [Pug99]. An intended feature (mem-
ory coherence) turned out to have the unintended
consequence of prohibiting standard compiler opti-
mizations essential for good performance and done
by virtually every JVM. It also unintentionally pro-
hibits many bytecode to bytecode transformations
and memory reorderings and is very difficult to cor-
rectly handle in a compiler/JIT.

We are discussing a number of safety guarantees
that can’t be taken for granted in unsynchronized
code. An example is initialization safety: if an ob-
ject isn’t made visible outside the constructor until
after the constructor terminates, then no code, even
unsynchronized code in another thread, can see that
object without seeing all of the effects of the construc-
tor for that object. However, it may be difficult or
impossible to efficiently implement this safety guar-
antee on multiprocessors with weak memory models.

More information

There is a mailing list for discussion of a specifica-
tion of the multithreaded semantics of Java and the
issues involved with implementing OO runtime sys-
tems on multiprocessors with weak memory models.
Information at:

http://www.cs.umd.edu/∼pugh/java/memoryModel

Thanks to the many people who are participating
in the discussions, far too numerous to list in the
space available.
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