JavaOne

0 Worldwide

Correct and Efficient
Synchronization of
Java™ Technology-
based Threads

Doug Lea and William Pugh
nttp://gee.cs.oswego.edu
nttp://www.cs.umd.edu/~pugh

Audience

« Assume you are familiar with basics
of Java™ technology-based threads
(“Java threads”)

— Creating, starting and joining threads
— Synchronization
—wait and noti fyAl |l

« Will talk about things that surprised a lot
of experts

— Including us, James Gosling, Guy Steele, ...
(others discovered many of these)

Java Thread Specification

« Chapter 17 of the Java Language Spec
— Chapter 8 of the Virtual Machine Spec

e Very, very hard to understand
— Not even the authors understood it
— Has subtle implications
* That forbid standard compiler optimizations
— All existing JVMs violate the specification
e Some parts should be violated

Safety Issues In
Multithreaded Systems

e Many intuitive assumptions do not hold

 Some widely used idioms are not safe
— Double-check idiom

— Checking non-volatile flag for
thread termination

e Can'’t use testing to check for errors

— Some anomalies will occur only on
some platforms

e e.g., multiprocessors

JavaOne

Revising the Thread Spec

 Work Is underway to consider revising the
Java Thread Spec

— http://lwww.cs.umd.edu/~pugh/java/memoryModel
e Goals

— Clear and easy to understand

— Foster reliable multithreaded code

— Allow for high performance JVMs

Wil effect JVMs

— And badly written existing code
e Including parts of Sun’s JDK

What To Do Today?

e Guidelines we will provide should
work under both existing and future
thread specs

e Don’t try to read the official specs

« Avoid corner cases of the thread spec
— Not needed for efficient and reliable programs

JavaOne

Three Aspects of
Synchronization

o Atomicity
— Locking to obtain mutual exclusion
. Visibility
— Ensuring that changes to object fields made In
one thread are seen In other threads

e Ordering

— Ensuring that you aren’t surprised by the order
In which statements are executed

JavaOne

[y —————

Don’t Be Too Clever

* People worry about the cost of
synchronization

— Try to devise schemes to communicate
between threads

« Without using synchronization
* Very difficult to do correctly

— Inter-thread communication without
synchronization is not intuitive

Quiz Time

X =y =0

Thread 1 Star e ads Thread 2

X =1 =
] =y =

Can thisresultini=0and | =0?

1

y

JavaOne

T PR Wt S Bere DA

Answer: Yes!

X =y =0

Mhead1 S Theags

|

How cani=0and =07

X 1

1 y

y i

JavaOne

T PR Wt S Bere DA

How Can This Happen?

« Compller can reorder statements
— Or keep values Iin registers

e Processor can reorder them

« On multi-processor, values not
synchronized in global memory

* Must use synchronization to enforce
visibility and ordering
— As well as mutual exclusion

Synchronization Actions
(approximately)

/| block until obtain lock
synchroni zed(anQpj ect) {
/| get main memory value of field1l and field2

Int x = anCbj ect.fieldl;
Int y = anCpj ect.fieldZ

anQbj ect.field3 = x+y;
[/ commit value of field3 to main memory

!
/| release lock
nor eCode() ;

When Are Actions Visible
to Other Threads?

Thread 1 l
1

|

unl ock M
l \ i Thread 2
| ock M

What Does Volatile Mean?

o C/C++ spec

— There Is no implementation independent
meaning of volatile

« Situation a little better with Java technology

— Volatile reads/writes guaranteed to go directly
to main memory

e Can’'t be cached in registers or local memory

JavaOne

T PR Wt S Bere DA

Using Volatile

« Volatile used to guarantee visibility
of writes

— st op must be declared volatile
— Otherwise, compiler could keep in register

cl ass Ani mat or inplenents Runnabl e {
private vol atile boolean stop = fal se;
public void stop() { stop = true; }
public void run() {
while (!stop)
oneSt ep();

}
private void oneStep() { /*...*/ }

Using Volatile to Guarad
Other Fields Doesn’t Work

e Do not use - Does not work

class Future {

private vol atil e bool ean ready = fal se;
private Object data = null;
public Object get() {

I f (!'ready) return null;

return dat a;

}
/1l only one thread may ever call put
public void put(Qbject o) {

data = o;

ready = true;

| <
}

JavaOne

[y —————

Nobody Implements
Volatile Correctly

« Existing JVM requires sequential
consistency for volatile variables

— In quiz example, if x and y are volatile
— Should be impossibletoseei=0and =0
— Haven't found any JVMs that enforce it

« Reads/writes of volatile longs/doubles

— Guaranteed to be atomic
(see old or new value, not a mixture)

 Some JVMs ignore volatile flag

Volatile Compliance

No Compiler Sequential Atomic
Optimizations Consistency | Longs/Doubles
JS[;) ;|<a£'§ _gpg;ﬁ/l Pass Fail Pass
Solaris Sparc
JDK 1.3.0 beta Fail Fail Fail
Hotspot Client
Windows
JDK 1.3.0 Fail Fail Fail
Hotspot Client
Solaris Sparc
JDK 1.3.0 beta Pass Fail Fail
Hotspot Server
Windows
JDK 1.3.0 Pass Fail Falil
Hotspot Server
Windows IBM Pass Fail Fail

JDK 1.1.8

Why Use Volatile?

e Since the semantics are implemented
Inconsistently

» Future-proof your code

— Prohibit optimizations compilers might do
In the future

* Works well for flags
— More complicated uses are tricky
* Revising the thread spec...

— Test compliance
— Strengthen to make easier to use

Cost of Synchronization

* Few good public multithreaded
benchmarks

— See us if you want to help

* Volano Benchmark
— Most widely used server benchmark
— Multithreaded chat room server
— Client performs 4.8M synchronizations
« 8K useful (0.2%)
— Server 43M synchronizations
e 1.7M useful (4%)

Synchronization In
VolanoMark Client

5.6% @ java.io.BufferedinputStream
1.8% M java.io.BufferedOutputStream
Ojava.util.Observable

B java.util.Vector

0.9% O java.io.FilterinputStream
0.4% Bl everything else

0.2% B All shared monitors

0.9%

90.3%

7,684 synchronizations on shared monitors
4,828,130 thread local synchronizations

Cost of Synchronization
In VolanoMark

 Removed synchronization of
— Java.io.BufferedInputStream
— Java.io.BufferedOutputStream

* Performance (2 processor Ultra 60)

— Larger Is better

— HotSpot (1.3 beta)
 Original: 4788
 Altered: 4923 (+3%)

— Exact VM (1.2.2)
 Original: 6649
o Altered: 6874 (+3%)

Most Synchronization is on
Thread Local Objects

e Synchronization on thread local object
— Is useless
— Current spec says it isn’t quite a no-op
« But very hard to use usefully
— Revised spec will likely make it a no-op

« Largely arises from using synchronized
classes

— In places where not required

JavaOne

Synchronize When Needed

* Places where threads interact
— Need synchronization
— Need careful thought
— Need documentation

— Cost of required synchronization not significant
* For most applications
* No need to get tricky

* Elsewhere, using a synchronized class can
be expensive

JavaOne

[y —————

Synchronized Classes

¢ Some classes are synchronized
— Vector, Hashtable, Stack
— Most Input/Output Streams

» Contrast with 1.2 Collection classes
— By default, not synchronized
— Can request synchronized version

e Using synchronized classes
— Often doesn’t suffice for concurrent interaction

Synchronized Collections
Aren’t Always Enough

e Transactions (DO NOT USE)

| D getI D(String nane) {
|D x = (I D) h.get(nane);
1f (X == null) {
X = new | D();
h. put (nane, Xx);}
return x; }

e |terators

— Can’t modify collection while another
thread is iterating through it

JavaOne

Concurrent Interactions

e Often need entire transactions to
be atomic

— Reading and updating a Map
— Writing a record to an OutputStream

« QutputStreams are synchronized

— Can have multiple threads trying to write to the
same OutputStream

— Output from each thread is nondeterministicly
Interleaved

— Essentially useless

JavaOne

[y —————

Cost of Synchronization in
SpecJVM DB Benchmark

* Program in the Spec JVM benchmark

e Does lots of synchronization
— > 53,000,000 syncs
* 99.9% comes from use of Vector

— Benchmark is single threaded, all of it
IS useless

e Tried
— Remove synchronizations
— Switching to ArrayList

— Improving the algorithm E

JavaOne

Execution Time of Spec JVM

209 db, Hotspot Server

40 4
301
20-
10+
O_
Use Change
. Use ArrayList | Shell Sort
Original ArrayList | and other | to Merge All
minor Sort
@ Original 35.5 32.6 28.5 16.2 12.8
m Without Syncs 30.3 32.5 28.5 14.0 12.8

JavaOne

T PR Wt S Bere DA

Lessons

e Synchronization cost can be substantial

— 10-20% for DB benchmark

— Consider replacing all uses of Vector,
Hashtable and Stack

Use profiling
Use better algorithms!

— Cost of stupidity higher than cost of
synchronization

— Used built-in merge sort rather than
hand-coded shell sort

Designing Fast Code

* Make it right before you make it fast
« Avoid synchronization

— Avoid sharing across threads

— Don’t lock already-protected objects

— Use immutable fields and objects

— Use volatile

e Avoid contention
— Reduce lock scopes

— Reduce lock durations

Isolation in Java' Foundation
Classes (JFC)/Swing

« JFC/Swing relies entirely on Isolation
— AWT thread owns all Swing components

* No other thread may access them
— Eliminates need for locking

o Still need care during initialization
e Can be fragile
— Every programmer must obey rules
— Rules are usually easy to follow

— Most Swing components accessed in
handlers triggered within AWT thread

JavaOne

[y —————

Accessing Isolated Objects

e Need safe inter-thread communication
— Swing uses via runnable Event objects

* Created by some other thread
e Serviced by AWT thread

Sw ngUtilities.invokeLater(new Runnabl e() {
public void run() {
st at usMessage. set Text (" Runni ng") ;

1),

JavaOne

[y —————

GetX/SetX Access Methods

* Not synchronizing access methods
—1nt thernoneter.get Tenperature()

(doesn’t work for references)

e Synchronizing access methods
—account . get Tot al Bal ance()

e Omitting access methods
— queue doesn't need get Si ze() E

JavaOne

Things That Don’t Work

e Double-Check Idiom
— Also, unsynchronized reads/writes of refs

* Non-volatile flags

* Depending on sleep for visibility

JavaOne

Initialization Check - vl - OK

Basic version:
cl ass Service {
Parser parser = null;
public synchronized void command() {
| f (parser == null)
parser = new Parser(...);
doConmmand(par ser. parse(...));

}
/]

Initialization checks - v2 - OK

Isolate check:
cl ass ServiceV2 {

Par ser parser = null;
synchroni zed Parser getParser() {
| f (parser == null)
parser = new Parser();
return parser,
}
public void command(...) {

fbennand(getParser().parse(...));

Single-check - DO NOT USE

Try to do it without synchronization:
class ServiceV3 { // DO NOT USE
Parser parser = null;
Parser getParser() {
| f (parser == null)
parser = new Parser();
return parser,

1}

Double-check - DO NOT USE

Try to minimize likelihood of synch:
class Servicev4 { // DO NOT USE
Parser parser = null;
Parser getParser() {

| f (parser == null)
synchroni zed(this) {
| f (parser == null)

parser = new Parser();

}

return parser,;

1} 2

JavaOne

T PR Wt S Bere DA

Problems with Double-check

e Can reorder
— Initialization of Parser object
— Store into parser field

e ...Among other reasons
— See JMM web page for gory details

e Can go wrong on uniprocessors
— e.g., Symantic JIT

e Using volatile doesn’t help
— Under current JMM

Alternatives to
Double—Check

e Use synchronization

* Double check OK for primitive values

— hashCode caching
(still technically a data race)

 For static singletons
— Put in separate class
— First use of a class forces class initialization
— Later uses guaranteed to see class initialization
— No explicit check needed

JavaOne

[y —————

Rare Heavy New Objects

¢ Sometimes, need singleton that Is
expensive to create

static final Font HELVETI CA
= new FONT(“Hel vetica”, Font. PLAIN, 24);

Font get Font () {
1 f (!chinese)
return HELVETI CA;
el se
return new Chi neseFont ();

}

Using Static Singletons

static final Font HELVETI CA
= new Font (“Hel vetica”, Font. PLAI N, 24);

static class CFSI ngl et on{
static final Font CH NESE
= new Chi neseFont(...);
}

Font get Font () {
| f (!chinese)
return HELVETI CA;
el se
return CFSI ngl et on. CH NESE;
}

Unsynchronized
Reads/Writes of References

 Beware of unsynchronized getX/setX
methods that return a reference

— Same problems as double check
— Doesn’t help to synchronize only setX

private Col or col or;
void setColor(int rgb) {
color = new Col or(rgb);

}
Col or getCol or() {

return col or: E

} JavaOne

Thread Termination In
Sun’s Demo Applets

Thread blinker = null;
public void start() {
bl i nker = new Thread(this);

bl i nker.start();

}

public void stop() {
blinker = null: ¥

public void run() {
Thread nme = Thread. gurrent Thread();
while (blinker == nme) {
try {Thread. current Thread() . sl eep(del ay);}
catch (InterruptedException e) {}
repaint();

unsynchronized access to blinker field

}
}
confusing but not wrong: sleep is a static method JavaOne

T PR Wt S Bere DA

Problems

e Don’t assume another thread will see
your writes

— Just because you did them

o Calling sleep doesn’t guarantee you see
changes made while you slept

— Nothing to force thread that called stop to
push change out of registers/cache

Wrap-up

e Cost of synchronization operations
can be significant

— But cost of needed synchronization rarely is

* Thread interaction needs careful thought
— But not too clever

* Need for synchronization...

Wrapup - Synchronization

e Communication between threads

— Requires both threads to synchronize
« Or communication through volatile fields

e Synchronizing everything
— Is rarely necessary
— Can be expensive (3%-20% overhead)
— May lead to deadlock

— May not provide enough synchronization
* e.g., transactions

Sun's 2000 Worldwid r Conferenc

