
January 21, 2004, 1:51pm

Proof sketch that Manson/Pugh allows reordering

Consider a program P and the program P ′ that is obtained from P by reordering two adjacent
statements x and y. Let x be the statement that comes before y in P , and after y in P ′.
The statements x and y may be any two statements such that

• reordering x and y doesn’t eliminate any transitive happens-before edges in any valid
execution (it will reverse the direct happens-before edge between x and y),

• x and y are not conflicting accesses to the same variable,

• x and y are not both synchronization actions, and

• the intra-thread semantics of x and y allow reordering (e.g., x doesn’t store into a regis-
ter that is read by y). This means that common single-threaded compiler optimizations
are legal here.

Assume that we have a valid execution E ′ of program P ′. To show that the transformation
of P into P ′ is legal, we need to show that there is a valid execution E of P that has the
same observable behavior as E ′.

Assume E ′ = 〈S, so, hb′, co′〉. We are going to show that E = 〈S, so, hb, co〉 is also a valid
execution of P . Let ax and ay denote the actions corresponding to the statements x and y.
Because of the reordering the happens-before ordering may be different but we know that
hb − {ax → ay} ⊆ hb′ − {ay → ax}. Clearly, if E ′ is consistent then E is consistent, so we
only need to worry about showing a co that is valid as the justification order of E.

• Assume that co′ = αayβaxγ, and that ay is a read. Then co = αβaxayγ is a valid
justification order for E. Note that the happens-before ordering and the write seen by
each read are identical.

Since the happens before edges are the same and the write seen by ay in the execution
E ′ is in α, ay can see that same write in E (because it is happens-before consistent
and the write comes before the read in the justification order).

Additionally, we know that ay does not affect any of the actions in β, because it is a
read that is not written out before β occurs in co′. It doesn’t affect ax by assumption.
It does not affect what values can be read in γ because it does not introduce additional
happens-before relationships with any actions in γ.

Since ay can see the same value in co that it does in co′, and its seeing that value does
not affect any other values seen by co, co is a valid justification order for E.

• Alternatively, assume that co′ = αayβaxγ, and that ay is not a read. We will show
that we can have co = co′ as a valid justification order for E.

1



We don’t need to worry about any actions that were prescient in E ′. The justification
of those prescient actions in E ′ will also justify them in E.

The only action that could be prescient in E but not E ′ is ay. If ay is not prescient
in E ′, we know ax is the only action that comes after ay in the justification order such

that ax
hb→ ay. Thus, we need to show that ay can occur presciently after α.

We know intra-thread semantics will cause ay to occur, since all actions other than ax

that occur before ay in program order are in α, and we have assumed as a condition
for the reordering that ax does not affect the intra-thread semantics of ay.

If ay is a write, then all read actions that conflict with it and happen before it must
be in α. Since ay does not induce any interthread happens-before orderings, the only
way for an action b to happen before ay is if b happens-before an action that occurs
earlier than ay in program order.

– The action b cannot be ax, because ax and ay do not conflict.

– The action b can also not be in β. Since ax is a write, anything that happens
before it must also happen before ay. Therefore, a reversal of ax and ay would
have removed the happens-before edge between b and ax.

The action b must, therefore, still be in α.

• If neither of those cases hold, then co = αaxβayγ (and it doesn’t matter if ay is a read
or not). We will show that we can have co = co′ as a valid justification order for E.
Then any action in E that is prescient is also prescient in E ′, and the justifications
used to show that those actions are justified in E ′ will also show that those actions are
justified in E.

Proof Sketch that Model Allows Unrolling / Merging

Compiler transformations can take place that take code that executes along one control path,
and split that path so it executes along multiple control paths that are equivalent to the
original. Conversely, it can take code that executes along multiple control paths, and merge
these paths so it only executes along one control path.

Consider a program P , and a program P ′ that is generated by splitting or merging. Is it
the case that every execution E ′ of P ′ has a corresponding execution E in P?

All forms of splitting and merging control paths must preserve intra-thread semantics.
It is therefore only the inter-thread actions that may be affected by splitting and merging.
Because such actions do not need to correspond to program statements, other than that they
must obey the intra-thread semantics of the program, any execution E ′ of P ′ will have the
same actions of an execution E of P .

2



Proof Sketch that Model Allows Speculative Reads

Some systems perform speculative reads. This proof describes certain kinds of speculative
reads, and shows that they are allowed by the memory model. The proof doesn’t say anything
about other kind of speculative reads (they may very well be allowed by the memory model,
but that fact is not shown in this proof).

A speculative read is one that is executed before it is known if the read will occur or
what address will be read. If the speculation is wrong, the read is invalid, and anything
dependent on the read must be reperformed at the appropriate place. If it is found to be
invalid when the read was supposed to occur, the read is performed again, where it was
originally supposed to be performed. A speculative read cannot occur earlier than the last
synchronization action that performed an acquire, or earlier than a write to the variable from
which it reads. We will call the early read the speculation point, and the original location of
the read will be the original point.

The value read at the speculation point must be legal to read at the original point
under the memory model. A read must see a value that is written before that read in the
justification order. If the justification order for an execution where the read occurs at the
speculation point is E ′ = αrβγ, then an equivalent execution where the read occurs at the
original point would be E = αβrγ, where r sees a value written in α. Assume that the value
that r returned in E ′ could not have been returned in E. Then either

• The variable was re-written between the speculation point and the original read point.
In this case, the read was invalid and would have been re-performed (by definition).

• The variable was written by another thread, and this thread performed an acquire that
forced it not to see the value read. Since there are no acquires between the speculative
point and the original point, this, too, is impossible.

Finally, the speculative read cannot influence its own validity, because its return value is
not used until the original point; the validity is determined before this.

3



Correctly Synchronized Programs exhibit only SC Behaviors

We say an execution has sequentially consistent (SC) results if its results are the same as if
the actions of all the thread were executed in some sequential order, and the actions of each
individual thread appear in this sequence in program order.

Two memory accesses are conflicting if they access the same variable and one or both of
them are writes. A program is defined to be correctly synchronized (CS) if in all sequentially
consistent executions, any two conflicting accesses are ordered by a happens-before path.

A justification order will return a non-SC result if a read returns a value of a write that
does not happen before that read.

Lemma 1 If an execution E has a non-prescient justification order and all conflicting ac-
cesses are ordered by happens-before edges, E has sequentially consistent behavior.

Proof: Assume we have an execution E with a non-prescient justification order co.
Since co is non-prescient, the ordering of the actions in co is an valid sequentially consistent
execution order. The only way the execution could not be sequentially consistent is if a read
of a variable v, rather than seeing the most recent write to v, sees an earlier write to v. But
all of those accesses are ordered by happens before edges, so only the most recent write to v
is visible. So only sequentially consistent behaviors are allowed.

Definition 1 A program is correctly synchronized if and only if in all sequentially consis-
tent executions, all conflicting accesses to non-volatile variables are ordered by happens-before
edges.

Lemma 2 In all non-prescient executions of correctly synchronized programs, all conflicting
accesses are ordered by happens-before edges.

Proof: By contradiction. Assume there is a non-prescient execution with a justifica-
tion order αxβ, where x is the first action on the justification order that is not correctly
synchronized with respect to conflict actions that occur before it in the justification order.

Let x′ be an action congruent to x; if x is a read of a variable v, then x′ sees the last
write to v in α.

By executing additional actions β′ according to sequentially consistent semantics, we
arrive at a sequentially consistent execution with a justification order αx′β′ that has a data
race. So this program must not have been correctly synchronized.

Lemma 3 All non-prescient executions of correctly synchronized programs exhibit sequen-
tially consistent behavior.

Proof: Follows directly from Lemmas 2 and 1.

Definition 2 Let E be an execution with a justification order αxyβ such that x is prescient,
y is not prescient, and y is not a read that sees x and x and y are not both synchronization
actions. Then αyxβ is the justification order of an execution E ′ that is the prescient
relaxation of x in E. Note that E and E ′ have the same actions, behavior, synchronization
order and happens-before edges.

4



Definition 3 Given any execution E, the full prescient relaxation of E is an execution
E ′ that is obtained by applying the reordering described in Definition 2 repeatedly until no
more reorderings are possible.

Lemma 4 For any prefix α of a justification order of an execution of a correctly synchronized
program, full prescient relaxation of any non-prescient extension of α gives an equivalent
execution with no prescient actions.

Proof: Our proof is by induction; the inductive hypothesis is that for every execution
E that is a non-prescient extension of α (i.e., E ∈ NPE(α)), full prescient relaxation of E
gives an execution with no prescient actions.

Base Case In the base case, α = ∅. All non-prescient extensions of ∅ are non-prescient.

Inductive Case Given the inductive hypothesis, we must show that for every execution
E ∈ NPE(αx), the full prescient relaxation of E is entirely non-prescient.

Every E ∈ NPE(αx) has a justification order αxβ, where β is non-prescient. Repeatedly
apply prescient relaxation to x in E.

• If this makes x non-prescient, then the resulting execution has a justification order
that is a non-prescient extensions of α, and our inductive hypothesis tells us that full
prescient relaxation of E gives an entirely non-prescient execution.

• Alternatively, after relaxing x zero or more times, we have a justification order αβ′xyγ,
where x is prescient and cannot be further relaxed, and y, β′ and γ are non-prescient.

– It cannot be the case that both x and y are synchronization actions, since then
the justification order of E wouldn’t respect the synchronization order of E.

– Then it must be the case that y is a read r that sees the write x.

If x
hb→ r, then r would also be prescient. So we know there is no happens-before

edge from x to r.

There must be a non-forbidden E ′ ∈ NPE(αβ′) that includes an x′ that corre-
sponds to x; otherwise, it would not be possible to include it as the next action
in the justification order.

The action x does not influence whether r occurs or the variable it reads; it only
influences the value it sees. All non-prescient extensions of αβ′ must therefore
contain a read corresponding to r, reading the same variable, but possibly seeing
a different value. Let r′ be this corresponding read in E ′, and let E ′′ be the full
prescient relaxation of E ′.

Because β′ is non-prescient, we know that E ′ is a non-prescient extension of α.
Therefore, by the inductive hypothesis, E ′′ must be entirely non-prescient. By
Lemma 2, all conflicting accesses are ordered by happens-before edges in both E ′′

and E ′.

5



Because E ′ is correctly synchronized, r′ and x′ must be ordered by happens-before
edges in E ′:

∗ x′ hb′
→ r′: Since r′ is in all non-prescient extensions of αβ′, and can occur

directly after αβ′, the only actions that can have happen before edges leading

to r′ are in αβ′. Since x′ is not in αβ′, we cannot have x′ hb′
→ r′.

∗ r′ hb′
→ x′: The presence of r′ mandates that r

hb→ x in E. But since r sees x,
this is impossible.

Therefore, our inductive hypothesis holds.

Theorem 5 Correctly synchronized programs have sequentially consistent semantics.

Proof: All executions of correctly synchronized programs are equivalent to non-prescient
executions of the same program because of Lemma 4. Therefore, by Lemma 3, all executions
of correctly synchronized programs are sequentially consistent.

Out-Of-Thin-Air Reads are Illegal

We have three criteria for determining whether a reference to an object is out-of-thin-air:

• The thread that allocated that object can write the reference before reading it.

• Any thread that did not allocate the object, but writes a reference to it, must read
that reference before writing it.

• If an address is written by any thread, there must be a write of that address by the
allocating thread.

Assume that the first write action that violates these rules is a write action w; it writes
an out-of-thin-air reference. The action w can only occur in a justification order αwβ if it
occurs in every non-prescient extension of α. This implies that w is not allowed to write any
other reference in any other justifying execution.

If w is a write by the thread that allocated the object, it is not out of thin air. Therefore,
w must occur in another thread, and must be preceded in program order by a read r that
produces this reference. This allows for one of two possibilities:

• There is no non-prescient extension of α in which any other reference is written. The
reference written is completely determined by α. In this case, the reference written
was produced by some read in α; this follows our second criterion.

• All non-prescient extensions of α in which the reference written is not the one being
written out here are forbidden. For this to happen, the read r on which this write
is dependent must, in all non-prescient extensions of α, return the out of thin air
reference. This implies that all executions in which r returned a different write must
be forbidden.

6



The action r can occur immediately after α, because w is dependent on it, and w
is allowed to occur immediately after α. There is therefore a forbidden execution
with αr′w′, where αr′ is the forbidden prefix and r′ does not return the out-of-thin-air
reference. There must therefore be a non-forbidden prefix αr′′ where r′′ returns another
value determined by α. The write w′ must be allowed to write this value in that non-
forbidden execution; therefore, it is not the case that the write must return only the
out-of-thin-air value in every non-prescient extension of α. This is a contradiction.

7


