Fixing the Java Memory Mod€

\‘/
“\ § William Pugh
Dept. Of Computer Science
Univ. of Maryland

http://www.cs.umd.edu/~pugh/java

Overview

 Memory Models, and the IMM In particular

e The JMM Istoo strong

— prohibits standard compiler optimizations

 done by most existing JVM’s,
In violation of the spec

e The JMM istoo weak
— Initialization safety i1ssues
— related type-safety issue in implementation

The Java Memory Model

e Chapter 17 of the Java Language
Specification (and Chap 8 of the VM Spec)

e Describes how threads interact vialocks
and read/writes to memory

 Doneinastyletotally foreign to all other
work on memory models

* Very hard to understand

— At first | thought | was just dense

— Eventually | figured out that no one
understands it

What 1s a memory model ?

 |f two threads have
a data race, what
behaviors are
allowed?

e Sequential
consistency

— Interleave memory
operations consistent
with original ordering
In each thread

a=0:b=0

?x=1&y=1

What 1s a memory model ?

 |f two threads have
a data race, what
behaviors are
allowed?

e Sequential
consistency

— Interleave memory
operations consistent
with original ordering
In each thread

a=0:b=0

T,

What 1s a memory model ?

 |f two threads have
a data race, what
behaviors are
allowed?

e Sequential
consistency

— Interleave memory
operations consistent
with original ordering
In each thread

a=0:b=0

T,

MM’s can interfere with
optimization

In each thread, no ordering constraint
between actions In that thread

Compiler could decide to reorder

Processor architecture might perform out of
order

Seqguential consistency prohibits amost all
reordering of memory operations

— unless you can prove accessed by single thread

Do programmers care about the
detalls of MM’ s?

* |f you are writing synchronization
primitives
— Y ou care deeply about the memory model your
PrOCESSor supports

e But if you have synchronized everything
properly

— do you really care?

The Java Memory Model
 |dea (apparently):

— threads have alocal memory (cache, registers?)
— Threads fill from/flush to global memory

o System modeled by constraints between actions
— Use/assign actions correspond to thread computations
— load/store actions correspond to thread fill/flush actions
— read/write actions are main memory actions

* Not like any other memory model
— don’'t ask me why, or ask me to defend it

Memory Model actions,
without prescient stores

a=0;b=0
X=a y =b | B5FC use b
- v
! ! assign b assign a
b=1 a=1

~.

not possible: x=1& y=1

Memory Model actions,
without prescient stores

a=0:b=0

T,

X b

read a

load a/

4

uUSe a

v

assign b

= a y =
l l
b=1 a=1

~.

not possible: x=1& y=1

use b

assign a

Memory Model actions,
without prescient stores

a=0:b=0

T,

X b

= a y =
l l
b=1 a=1

~.

not possible: x=1& y=1

/ read a
Io?da read b Ioaflb
usiea ust
assgnb assign a

Memory Model actions,

without prescient stores

read a
load a/ read b

a=0:b=0

T,

X

b

b

Y

uUSe a

v

assign b

: %

1

~.

not possible: x=1& y=1

N

store b

load b

use b

\ write b

assign a

Memory Model actions,
without prescient stores

a=0:b=0

T,

X

b

b

: %

1

~.

not possible: x=1& y=1

/reada
Io?da readb\‘loaslb
usiea ust
assw{rjb assfna

store b
\ write b

store a

/

Wwrite a

Memory Model actions,
with prescient stores

a=0:b=0

X=a ><) =Db
b=1 1

posshleex=1& y=1

/reada
Io?da readb\‘loaslb
uslea usJyeb
assgnb assign a

store b
\ write b

store a

/

Wwrite a

Coherent memory

e Onceyou seean
update by another

thread A

— can't forget that T a =PpX
you'’ ve seen the update l

e Cannot reorder two b= p.x
reads of the same /

memory location

Reads kill reuse

e Must treat “may reads’ [PERSIG I
as kills point to same object
— aread may cause your A
thread to become aware p.X++ a = p.X
of awrite by another |
thread b= qx
e Can'treplacec=p.x N
withc=a C=p.X

assert(p=qimpliesaf b £ ¢) 1

Most JV M’ s violate Coherence

e Every JVM I’vetested that eiminates
redundant |oads violates Coherence:

— Sun’s Classic Wintel VM

— Sun’s Hotspot Wintel VM
—IBM’s 1.1.7b Wintel VM

— Sun’s production Sparc Solaris VM
— Microsoft' s VM

o Bug # 4242244 in Javasoft’ s bug parade
— JVM’s don’'t match spec

12

lmpact on Compiler
Optimizations?
Preliminary work by Dan Scales, DecWRL

Made reads kill, have side effects
Better Is probably possible,

out will require work compress 118 | mpegaudio| 1.44
. jess 1.03 richards 0.98

Reads have side effects ¢ 101 mirt 1.02
db 1.04 jack 1.06

nut can be done S 108 lisop e
Specu|a[|ve|y javac 0.99 tmix 1.11

— change intermediate representation

13

Should the IMM
require Coherence?

* Present In many processor memory models
— They don't have the aliasing problem

« Comesat acost
— performance
— rethinking compiler design
* Violated by existing VM’s
— programmers can’'t depend on it

14

Thereally bad news

The IMM Isamess

| tried to prove that the IMM required
exactly coherence

— Was able to prove it requires coherence

Tried to prove it requires nothing more
— Got anhasty counter example

Ordering constraints between memory
operations on different memory locations

15

Counter Example

e Consider the following code,
and arun in which

— p and g happen to reference the same object
— the read of g.x sees adifferent value than p.x

| =T1.y;

j = pX;

// concurrent write to p.x
K =q.X;

P.X =42,

16

[/ p& qarealiased

| =T1.y;

j =pX;

// concurrent write to p.x
K =q.X;

P.X =42,

17

[/ p& qarealiased

| =T1.y;

j =pX;

// concurrent write to p.x
K =q.X;

P.X =42,

user.y

use p.x

use p/g.x

assign p.x

17

Il p& qareaiased §17.3, bullet 1: al use and assign actions
-] must occur in their original order
| =1y,

j =pX;

// concurrent write to p.x
K =q.X;

P.X =42,

user.y

use p.x

use p/g.x

assign p.x

17

Il p& qareaiased §17.3, bullet 1: al use and assign actions
-] must occur in their original order
| =1y,

j =pX;

// concurrent write to p.x
K =q.X;

P.X =42,

user.y

:

use p.x

v

use p/g.x

v

assign p.x

17

[/ p& qarealiased

| =T1.y;

j =pX;

// concurrent write to p.x
K =q.X;

P.X =42,

user.y

:

use p.x

v

use p/g.x

v

assign p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

17

[/ p& qarealiased

| =T1.y;

j =pX;

// concurrent write to p.x
K =q.X;

P.X =42,

load r.y
user.y /

:

use p.x

v

use p/g.x

v

assign p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

17

[/ p& qarealiased

| =T1.y;

j =pX;

// concurrent write to p.x
K =q.X;

P.X =42,

load r.y
user.y /

:

use p.x

v

use p/g.x

v

assign p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;
P.X =42,

:

use p.x

v

use p/g.x

v

assign p.x

read r.y

load 1.y)’/
user.y /

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

17

Il p& qareaiased §17.3, bullet 1: al use and assign actions
must occur in their original order

| =T1.y;
j — p X §17.3, bullet 4: aload or assign before a use
")
/I concurrent write to p.x § 17.3, 2nd list of bullets, bullet 1: for each
k — q X load, a corresponding preceding read
")
p-X _ 421 read r.y

load r.y read px
user.y /
load p.Xx

:

use p.x

v

use p/g.x

v

assign p.x

17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p'X = 42; read r.y

load r.y read px
usery /
load p.Xx

usepx f/

Ioad p/q.x o read p/q.x

use p/q X [

v

assign p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p'X = 42; read r.y

load r.y read px
usery / 1
load p.Xx

e

' write p.x
use p X l

Ioad p/q.x o read p/q.x

use p/q X [

v

assign p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p'X = 42; read r.y
load r.y read px
user.y ’/ l
l load p.x write p.x o
use p.x l
y o read pigx
use p/g.x load pig.x b
v
assign p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p'X = 42; read r.y
load r.y read px
user.y ’/ l
l load p.x write p.x o
use p.x l
y o read pigx
use p/g.x load pig.x b
v
assign p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

8§ 17.6, bullet 1. between an assign and an
unlock (or thread termination!), a store
must intervene

17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p'X = 42; read r.y
load r.y read px
user.y / ’/ l
l load p.x write p.x o
use p.x l
y o read pigx
use p/g.x load pig.x b
!
asSgN PX[~»Istore p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

8§ 17.6, bullet 1. between an assign and an
unlock (or thread termination!), a store
must intervene

17

[/ p& qarealiased

| =T1.y;

j = pX;

// concurrent write to p.x
K =q.X;
P.X =42,

read r.y

load r.y

read p.X

user.y f/

:

use p.x

v

use p/g.x

v

assign P-X[~»Igtore p.x

v
load IO'X”/write p.X o

v

load p/q.x o read p/q.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

8§ 17.6, bullet 1. between an assign and an

unlock (or thread termination!), a store
must intervene

§17.3, 2nd list of bullets, bullet 2: for each
store, a corresponding following write

17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p'X = 42; read r.y
load r.y read px
user.y / ’/ l
l load p.x write p.x o
use p.x l
y o read pigx
use p/g.x load pig.x b
!
asSgN PX[~»Istore p.x

[write px

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

8§ 17.6, bullet 1. between an assign and an

unlock (or thread termination!), a store
must intervene

§17.3, 2nd list of bullets, bullet 2: for each
store, a corresponding following write

17

Il p& qareaiased §17.3, bullet 1: al use and assign actions
-] must occur in their original order
| =1y,

j — p X §17.3, bullet 4: aload or assign before ause

")
/I concurrent write to p.x § 17.3, 2nd list of bullets, bullet 1: for each
k — q X load, a corresponding preceding read

"]
P.X = 42, p— § 17.6, bullet 1; between an assign and an
r ry unlock (or thread termination!), a store
load r.y must intervene

/ read p.X
user.y ’/ l §17.3, 2nd list of bullets, bullet 2: for each
l load p.Xx « store, acorresponding following write

write p.x
use p.x
f elad ; 8§ 17.8: A prescient store can occur before
| I€a0 P/g.X | the corresponding assign
use plox &~ 11020 plg X esponding assig
as3gn P-X[~»|store p.x

17

[write px

Il p& qareaiased §17.3, bullet 1: al use and assign actions
-] must occur in their original order
| =1y,

j — p X §17.3, bullet 4: aload or assign before ause

")
/I concurrent write to p.x § 17.3, 2nd list of bullets, bullet 1: for each
k — q X load, a corresponding preceding read

"]
P.X = 42, p— § 17.6, bullet 1; between an assign and an
r ry unlock (or thread termination!), a store
load r.y must intervene

/ read p.X
user.y ’/ l §17.3, 2nd list of bullets, bullet 2: for each
l load p.Xx « store, acorresponding following write

write p.x
use p.x
f elad ; 8§ 17.8: A prescient store can occur before
| I€a0 P/g.X | the corresponding assign
use plox &~ 11020 plg X esponding assig
aSgNpP.X| store p.x

17

[write px

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p'X = 42; read r.y
load r.y read px
user.y / ’/ l
l load p.x write p.x o
use p.x l
y o read pigx
use p/g.x load pig.x b
v
assignp.X| |store p.x
P ~,

write p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

8§ 17.6, bullet 1. between an assign and an
unlock (or thread termination!), a store
must intervene

§17.3, 2nd list of bullets, bullet 2: for each
store, a corresponding following write

§ 17.8: A prescient store can occur before
the corresponding assign

§ 17.8, bullet 3: No load intervenes
between the assign and the corresponding
prescient store 17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p'X = 42; read r.y
load r.y read px
user.y / ’/ l
l load p.x write p.x o
use p.x l
y o read pigx
use p/g.x load pig.x b
I
assignp.X| |store p.x
P ~,

write p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

8§ 17.6, bullet 1. between an assign and an
unlock (or thread termination!), a store
must intervene

§17.3, 2nd list of bullets, bullet 2: for each
store, a corresponding following write

§ 17.8: A prescient store can occur before
the corresponding assign

§ 17.8, bullet 3: No load intervenes
between the assign and the corresponding
prescient store 17

[/ p& qarealiased
| =T1.y;
] =P.X,

// concurrent write to p.x

K =q.X;

p-X - 42; / readr.y
load r.y read px
user.y ’/ l
l load px write p.x o
use p.x l
v] read plg.x
USe plaX load p/g.x P9
el
asSgnp.Xj |store p.xL

write p.x

§17.3, bullet 1: all use and assign actions
must occur in their original order

§17.3, bullet 4: aload or assign before a use

§17.3, 2nd list of bullets, bullet 1: for each
load, a corresponding preceding read

8§ 17.6, bullet 1. between an assign and an
unlock (or thread termination!), a store
must intervene

§17.3, 2nd list of bullets, bullet 2: for each
store, a corresponding following write

§ 17.8: A prescient store can occur before
the corresponding assign

§ 17.8, bullet 3: No load intervenes
between the assign and the corresponding
prescient store 17

Memory barriers required

* Many processors have arelaxed memory
model

e Thisconstraint (read of r.y before write of
P.X) not supported on most relaxed memory
models

 Memory barrier required

18

Reordering memory references

* Read of r.y must occur before write to p.x
— but read of r.y could occur after read of p.x

« Canwereorder read of r.y and p.x asa
compiler optimization
— and use asimple internal representation
* e.g., bytecode

19

Reordering
memory
refsin IR

20

getfield r.y
getfield p.x
getfield g.x

putfield p.x

Reordering
memory
refsin IR

20

getfield r.y
getfield p.x
getfield g.x

putfield p.x

\

Reordering
memory
refsin IR

20

getfield r.y
getfield p.x

getfield g.x

putfield p.x

Reordering
memory
refsin IR

20

getfield r.y
getfield p.x

getfield g.x

putfield p.x

Reordering
memory
refsin IR

20

getfild ry Reordering
getfield p.x memory
getfield g.x refsin IR
putfield p.x

l

use p/g.x

=
=
=
D
o
x

20

getfild ry Reordering
getfield p.x memory
getfield g.x refsin IR
putfield p.x

l

use p/g.x

=
=
=
D
o
x

20

getfield r.y
getfield p.x

getfield g.x

putfield p.x

getfield p.x
getfieldr.y
getfield g.x

putfield p.x

Reordering
memory
refsin IR

20

getfield ry getfield p.x Reordering
getfield p.x getfidld ry memory
getfield g.x getfield g.x refsin IR

putfield p.x putfield p.x

20

getfield r.y
getfield p.x
getfield g.x

putfield p.x

getfield p.x
getfieldr.y
getfield g.x

putfield p.x

Reordering
memory
refsin IR

20

Reorder uses of p.x andr.y

* Reorder the
bytecodes for
reading p.x and r.y

— reorder uses

e Don't need to
perform the read of
r.y before the write
of p.x

read p.x
load p.x / i
b write p.x g
use p.x
read r.y
load r.y
A 4
user.y
i load pl.x }ﬂ/ read p/.x
use p/g.x | fq l
l store p.x .
assgn p-x write p.x

21

getfieldr.y getfield p.x
getfield p.x getfield r.y
getfield g.x getfield g.x
putfield p.x putfield p.x
reorder f
reads of
r.y and p.x ——

load r.y

l

=
=
=
D
o
x

getfieldr.y getfield p.x
getfield p.x getfield r.y
getfield g.x getfield g.x
putfield p.x putfield p.x
reorder f \
reads of
r.y and p.x ——

load r.y

l

use p/g.x

=
=
=
D
o
x

getfield r.y
getfield p.x
getfield g.x

putfield p.x

getfield p.x
getfieldr.y
getfield g.x

putfield p.x

getfield r.y
getfield p.x
getfield g.x

putfield p.x

getfield p.x
getfieldr.y
getfield g.x

putfield p.x

getfield r.y
getfield p.x
getfield g.x

putfield p.x

getfield p.x
getfieldr.y
getfield g.x

putfield p.x

getfieldr.y
getfield p.x
getfield g.x

putfield p.x

getfield p.x
getfieldr.y
getfield g.x

putfield p.x

getfield r.y
getfield p.x
getfield g.x

putfield p.x

getfield p.x
getfieldr.y
getfield g.x

putfield p.x

invalid!

getfield r.y
getfield p.x
getfield g.x

putfield p.x

getfield p.x
getfieldr.y
getfield g.x

putfield p.x

[meox] &7

invalid!

invalid!

getfield r.y
getfield p.x

getfield g.x

putfield p.x

getfield p.x
getfieldr.y

getfield g.x

putfield p.x

invalid

N

[meox] &7

invalid!

invalid!

getfield r.y
getfield p.x

getfield g.x

putfield p.x

invalid!

getfield p.x
getfieldr.y

getfield g.x

putfield p.x

invalid

N

[meox] &7

invalid!

invalid!

If you respect the current MM

 If you want to do any reordering of memory
references

— Must use IMM’ s double indirection in your
compiler’s intermediate representation

— Must reason about whether there exists any
downstream component that might do a
reordering that, when composed with your
reordering, isillegal

* e.g., the processor

23

o | went over it with Guy Steele

— agrees (tentatively) that with constraints |
derived

e Definitely not intended

o Argument for scrapping the current IM M

— patchesto fix it will just make it harder to
understand

e just hide the bugs, not fix them

Thisisugly 5“6/;3 §

24

What do we need/want?

* Need to be able to reason about whether
compiler transformations are legal with
respect to memory model

— The clearer, the better

« \Want to avoid changing/discarding
compiler techniques for non-synchronized

code

25

My proposed
Java Memory Model

e Actionswithin athread can be reordered in

any way that respects the data dependencies
within that thread

» Global behavior some interleaving of
reordered actions

* Also needto allow for scalar replacement
(equivalently write buffers) and dead store
e imination

o Plusstuff for locks and volatile variables

26

The Java memory model
IS too weak

 |dioms used by many programmers aren’t
thread safe, but

— arewidely used (including in Sun’s JDK)
— are thought to be safe by many
— create initialization-saf ety 1ssues
— create type-safety issues in implementation
 Joshua Bloch of Javasoft first highlighted
thisissue
e (Only issue for multiprocessor systems)

Could see reference to object
before fields of object

e Thisisn't guaranteed to work

class A {
Point p;
synchronized void setPos(int x, int y) {
p = new Point(X, y);
}
double distanceToOrigin() {
// not synchronized
Point g = p;
return Math.sgrt(q.x*g.x + g.y*a.y);
}
}

28

Reading Garbage

« Animplementation issue, not a spec Issue

o What If another thread sees an object before
the writes that initialize the objects fields to
default values (e.g., null)?

— major type safety breach

— not aproblem if objects allocated out of pre-
zeroed memory

o What If another thread sees an object before
the writes that initialize the object header? 2

9

Are constructors special ?

e Writesin constructor:
synchronized void setPos(int x, int y) {
p = new Point(X, y);

}

e writes outside of constructor:
synchronized void setPos(int x, int y) {
Point tmp = new Point();
tmp.X = X;
tmp.y = y;}
p=tmp;
}

My suggestion for fixing this

e The system must not reorder:
— A write during the construction of object X

— A store of areferenceto X
e after the constructor for X has terminated

* Read side handled aready by requiring data
dependence be respected

31

Commentary

* Doesn’'t handle the general case
— outside of constructors

e Doesan’'t use barriers

— lightweight object construction becomes
heavyweight
e e.0. unboxed complex numbers
— memory barriers harder to eliminate through
analysis
» Leverages off of barriersthat might be
required for garbage collection

32

Summary

No one understands the current modeal

Java memory model 1stoo strong
— Coherence
— Hairball
Java memory model I1stoo weak
— Initialization safety 1ssues
— type safety implementation issue
Consensus isthat it needs to be replaced
— but with what?

Questions?

