US Patent 6,658,423

William Pugh



Detecting duplicate and
near - duplicate files

* Worked on this problem at Google in summer
of 2000

* I have no information whether this is currently
being used

* I know that other people at Google were
exploring other approaches

e I’ll only discuss background work and what
could be discovered from the patent
application



Reasons for confidentiality

e Competitors (e.g., Microsoft)

* Search Engine Optimizers



Problem

* In a web crawl, many duplicate and near
duplicate web pages are encountered

* one study suggested than 30+% are dups
* Multiple URLIs for same page

* http://www.cs.umd.edu/-pugh vs
http://www.cs.umd.edu/users/pugh

* Same web site hosted on multiple host names

e Web spammers



Why near - duplicate?

* Identical web pages are easy to explain, and
easy to cope with

* just use a hash function on web pages
* Near duplicate web pages typically arise from:
* small amounts of dynamic content

* web spammers



Obvious O(#?) algorithm

* We could compare each pair of web pages and
compute edit distance

* Could do this at time query result is generated



What would we do with the

information?

* Identify mirrors or replicated web sites
* Avoid storing near-duplicate copies

* Avoid returning near-duplicate web pages in
results

* Use it to improve page rank calculations



First approach

* Break a document up into chunks (sentences,

paragraphs, shingles, ...)
* Fingerprint each chunk

* Two documents are similar if a large
percentage of their fingerprints are in common

e Still have lots of data to process

* Iceberg query, hard to perform



Broder’s approach

e Andrei Broder of Digital/Compaq/Altavista
had a number of papers on this problem



Shingles

* A k-shingle is a sequence of £ consecutive
words

* The quick brown
* quick brown fox
* brown fox jumped

* fox jumped over



Resemblance

e Let S(A) be the shingles contained in A

* or the 64-bit hashes of the shingles
contained in A

* Resemblance of A and B given by

S(A) N S(B)
S(A)U S(B)




Sampling minima

* Let 0 be a random permutation/hash function

Prob/min(c(S(A))) = min(c(S(B)))| =

NSem—

AN




First Implementation

* Choose a set of £ random min-wise
independent permutations

* For each document, keep a sketch of the £,
minima shingles (samples)

* Estimate similarity by counting common
samples



SuperShingles

* Divide samples into £ groups of s samples (¢ =

k*s)
* Fingerprint each group => feature

* Two documents are considered near-duplicates
if they have more than r features in common



Sample values

* Looking of resemblance of 90%

e Sketch size = 48 , divide into 6 groups of 14
samples

* Need =2 identical groups/features to be
considered near duplicates



How does this work?

* Similarity model is OK, has good and bad

features

* Can easily compare two documents to see if
they are similar

e Expensive to find all similar document pairs



Finding all near - duplicate
document pairs

* Want to find all document pairs that have
more than 7 fingerprints in common

* Discard all fingerprints/features that occur in a
single document

* If r > 1, we know have an iceburg query

* lots of fingerprints that occur in two or
more non-near-duplicate documents



US Patent 6,658,423

o Take the list of words (or shingles)
e Apply a hash function to each word

e Use hash value to determine which list it is

appended to
 Compute fingerprint of each list

* Two documents are similar if they have any
fingerprints in common



send to list

fox

jumped |

over

the

lazy

dog

quick

the

brown




send to list

fox

dog

quick

over

the

jumped

brown

the

lazy




Similarity

* Different metric of similarity
* An edit consists of:
* removing any or all occurrences of a word
* adding any number of occurrences of a word

e Edit distance is minimum number of edits
required to convert one document into
another



Will two documents have a
fingerprint in common?

e Assume we use 4 lists/fingerprints per
document

* FEach edit will cause one randomly selected
fingerprint to change

* How many changes are needed to create a high
probability that all fingerprints have been
changed?



L2
z
0
D
£
—
[
-
Y]
B
L
3
i -
)
—
2
i
3
B
L
=
A
L
—
0
-
L

100.00%

10.00%

15

20
Words changed




False Positive Rate

* 0.1% seems like a pretty low false positive rate
* unless you are indexing billions of web pages

* Need to be very careful about deciding to
discard web pages from index

* Less careful about eliminating near
duplicates from query results



Can run test multiple times

100.00% -
L0
@
¥
o
T 10.00% | A
=
-
|-
T
Qo
—
= m—(ONCE
o .
2 1.00% | R Twice
= Three times
+ Four times
i
e
=
3
= 0.10%
T
i
O
EIE:
0-010/0 T T T T T T T |
0 5 10 15 20 25 30 35 40
Words changed




Can vary # of lists and
number of repeats

100.00% |,

10.00% |




Discarding unique
fingerprints

e Hash fingerprints into bitmaps to remove
unique fingerprints

* two bits per hash value (o, 1 or many)
* first pass to count, second pass to discard

* Repeat passes with difterent hash function to
handle collisions

e Partition fingerprints if we can’t create bitmaps
that are sparse enough



Finding clusters

* Sort fingerprint, docID pairs by fingerprint
* Perform union-find on docIDs
* Result is clusters of near-duplicate documents

e with an assumption that similarity is
transitive



Similarity Measures

* Replacement of one word with another counts
as two changes

* no matter how many replacements occur
* Moving a big chunk of text is a big change

* unless you use a order-insensitive hash
function

e Absolute diff, not % dift



Conclusion

e Unknown

* I don’t know what Google has done with this
idea

* although they seem to be using something

* I haven’t been able to talk with anyone else
about this idea

e until now



