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 Detecting duplicate and 
near - duplicate files

• Worked on this problem at Google in summer 
of 2000

• I have no information whether this is currently 
being used

• I know that other people at Google were 
exploring other approaches

• I’ll only discuss background work and what 
could be discovered from the patent 
application



Reasons for confidentiality

• Competitors (e.g., Microsoft)

• Search Engine Optimizers



Problem
• In a web crawl, many duplicate and near 

duplicate web pages are encountered

• one study suggested than 30+% are dups

• Multiple URL’s for same page

• http://www.cs.umd.edu/~pugh vs 
http://www.cs.umd.edu/users/pugh

• Same web site hosted on multiple host names

• Web spammers



Why near - duplicate?

• Identical web pages are easy to explain, and 
easy to cope with

• just use a hash function on web pages

• Near duplicate web pages typically arise from:

• small amounts of dynamic content

• web spammers



Obvious O(n2) algorithm

• We could compare each pair of web pages and 
compute edit distance

• Could do this at time query result is generated



What would we do with the 
information?

• Identify mirrors or replicated web sites

• Avoid storing near-duplicate copies

• Avoid returning near-duplicate web pages in 
results

• Use it to improve page rank calculations



First approach

• Break a document up into chunks (sentences, 
paragraphs, shingles, ...)

• Fingerprint each chunk

• Two documents are similar if a large 
percentage of their fingerprints are in common

• Still have lots of data to process

• Iceberg query, hard to perform



Broder’s approach

• Andrei Broder of Digital/Compaq/Altavista 
had a number of papers on this problem



Shingles
• A k-shingle is a sequence of k consecutive 

words

• The quick brown

• quick brown fox

• brown fox jumped

• fox jumped over

• ...



Resemblance

• Let S(A) be the shingles contained in A

• or the 64-bit hashes of the shingles 
contained in A

• Resemblance of A and B given by
|S(A) ∩ S(B)|

|S(A) ∪ S(B)|



Sampling minima

• Let σ be a random permutation/hash function 

Prob[min(σ(S(A))) = min(σ(S(B)))] =
|S(A) ∩ S(B)|

|S(A) ∪ S(B)|



First Implementation 

• Choose a set of t random min-wise 
independent permutations

• For each document, keep a sketch of the ! 
minima shingles (samples)

• Estimate similarity by counting common 
samples



SuperShingles

• Divide samples into k groups of s samples (t = 
k*s)

• Fingerprint each group => feature

• Two documents are considered near-duplicates 
if they have more than r features in common



Sample values

• Looking of resemblance of 90%

• Sketch size = 48 , divide into 6 groups of 14 
samples

• Need r=2 identical groups/features to be 
considered near duplicates



How does this work?

• Similarity model is OK, has good and bad 
features

• Can easily compare two documents to see if 
they are similar

• Expensive to find all similar document pairs



Finding all near - duplicate 
document pairs

• Want to find all document pairs that have 
more than r fingerprints in common

• Discard all fingerprints/features that occur in a 
single document

• If r > 1, we know have an iceburg query

• lots of fingerprints that occur in two or 
more non-near-duplicate documents
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• Take the list of words (or shingles)

• Apply a hash function to each word

• Use hash value to determine which list it is 
appended to

• Compute fingerprint of each list

• Two documents are similar if they have any 
fingerprints in common
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Similarity

• Different metric of similarity

• An edit consists of:

• removing any or all occurrences of a word

• adding any number of occurrences of a word

• Edit distance is minimum number of edits 
required to convert one document into 
another



Will two documents have a 
fingerprint in common?

• Assume we use 4 lists/fingerprints per 
document

• Each edit will cause one randomly selected 
fingerprint to change

• How many changes are needed to create a high 
probability that all fingerprints have been 
changed?



0.01%

0.10%

1.00%

10.00%

100.00%

0 5 10 15 20 25 30 35 40
Words changed



False Positive Rate

• 0.1% seems like a pretty low false positive rate

• unless you are indexing billions of web pages

• Need to be very careful about deciding to 
discard web pages from index

• Less careful about eliminating near 
duplicates from query results



Can run test multiple times
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Can vary # of lists and 
number of repeats
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Discarding unique 
fingerprints

• Hash fingerprints into bitmaps to remove 
unique fingerprints

• two bits per hash value (0, 1 or many)

• first pass to count, second pass to discard

• Repeat passes with different hash function to 
handle collisions

• Partition fingerprints if we can’t create bitmaps 
that are sparse enough



Finding clusters

• Sort fingerprint, docID pairs by fingerprint

• Perform union-find on docIDs

• Result is clusters of near-duplicate documents

• with an assumption that similarity is 
transitive



Similarity Measures

• Replacement of one word with another counts 
as two changes

• no matter how many replacements occur

• Moving a big chunk of text is a big change

• unless you use a order-insensitive hash 
function

• Absolute diff, not % diff



Conclusion

• Unknown

• I don’t know what Google has done with this 
idea

• although they seem to be using something

• I haven’t been able to talk with anyone else 
about this idea

• until now


