
US Patent 6,658,423
William Pugh

 Detecting duplicate and
near - duplicate files

• Worked on this problem at Google in summer
of 2000

• I have no information whether this is currently
being used

• I know that other people at Google were
exploring other approaches

• I’ll only discuss background work and what
could be discovered from the patent
application

Reasons for confidentiality

• Competitors (e.g., Microsoft)

• Search Engine Optimizers

Problem
• In a web crawl, many duplicate and near

duplicate web pages are encountered

• one study suggested than 30+% are dups

• Multiple URL’s for same page

• http://www.cs.umd.edu/~pugh vs
http://www.cs.umd.edu/users/pugh

• Same web site hosted on multiple host names

• Web spammers

Why near - duplicate?

• Identical web pages are easy to explain, and
easy to cope with

• just use a hash function on web pages

• Near duplicate web pages typically arise from:

• small amounts of dynamic content

• web spammers

Obvious O(n2) algorithm

• We could compare each pair of web pages and
compute edit distance

• Could do this at time query result is generated

What would we do with the
information?

• Identify mirrors or replicated web sites

• Avoid storing near-duplicate copies

• Avoid returning near-duplicate web pages in
results

• Use it to improve page rank calculations

First approach

• Break a document up into chunks (sentences,
paragraphs, shingles, ...)

• Fingerprint each chunk

• Two documents are similar if a large
percentage of their fingerprints are in common

• Still have lots of data to process

• Iceberg query, hard to perform

Broder’s approach

• Andrei Broder of Digital/Compaq/Altavista
had a number of papers on this problem

Shingles
• A k-shingle is a sequence of k consecutive

words

• The quick brown

• quick brown fox

• brown fox jumped

• fox jumped over

• ...

Resemblance

• Let S(A) be the shingles contained in A

• or the 64-bit hashes of the shingles
contained in A

• Resemblance of A and B given by
|S(A) ∩ S(B)|

|S(A) ∪ S(B)|

Sampling minima

• Let σ be a random permutation/hash function

Prob[min(σ(S(A))) = min(σ(S(B)))] =
|S(A) ∩ S(B)|

|S(A) ∪ S(B)|

First Implementation

• Choose a set of t random min-wise
independent permutations

• For each document, keep a sketch of the !
minima shingles (samples)

• Estimate similarity by counting common
samples

SuperShingles

• Divide samples into k groups of s samples (t =
k*s)

• Fingerprint each group => feature

• Two documents are considered near-duplicates
if they have more than r features in common

Sample values

• Looking of resemblance of 90%

• Sketch size = 48 , divide into 6 groups of 14
samples

• Need r=2 identical groups/features to be
considered near duplicates

How does this work?

• Similarity model is OK, has good and bad
features

• Can easily compare two documents to see if
they are similar

• Expensive to find all similar document pairs

Finding all near - duplicate
document pairs

• Want to find all document pairs that have
more than r fingerprints in common

• Discard all fingerprints/features that occur in a
single document

• If r > 1, we know have an iceburg query

• lots of fingerprints that occur in two or
more non-near-duplicate documents

US Patent 6,658,423

• Take the list of words (or shingles)

• Apply a hash function to each word

• Use hash value to determine which list it is
appended to

• Compute fingerprint of each list

• Two documents are similar if they have any
fingerprints in common

over thejumped lazy dog

quick the

brown

fox

send to list

over

the

jumped

lazy

dog

quick the

brown

fox

send to list

Similarity

• Different metric of similarity

• An edit consists of:

• removing any or all occurrences of a word

• adding any number of occurrences of a word

• Edit distance is minimum number of edits
required to convert one document into
another

Will two documents have a
fingerprint in common?

• Assume we use 4 lists/fingerprints per
document

• Each edit will cause one randomly selected
fingerprint to change

• How many changes are needed to create a high
probability that all fingerprints have been
changed?

0.01%

0.10%

1.00%

10.00%

100.00%

0 5 10 15 20 25 30 35 40
Words changed

False Positive Rate

• 0.1% seems like a pretty low false positive rate

• unless you are indexing billions of web pages

• Need to be very careful about deciding to
discard web pages from index

• Less careful about eliminating near
duplicates from query results

Can run test multiple times

0.01%

0.10%

1.00%

10.00%

100.00%

0 5 10 15 20 25 30 35 40
Words changed

Once
Twice
Three times
Four times

Can vary # of lists and
number of repeats

0.01%

0.10%

1.00%

10.00%

100.00%

0 5 10 15 20 25 30

Discarding unique
fingerprints

• Hash fingerprints into bitmaps to remove
unique fingerprints

• two bits per hash value (0, 1 or many)

• first pass to count, second pass to discard

• Repeat passes with different hash function to
handle collisions

• Partition fingerprints if we can’t create bitmaps
that are sparse enough

Finding clusters

• Sort fingerprint, docID pairs by fingerprint

• Perform union-find on docIDs

• Result is clusters of near-duplicate documents

• with an assumption that similarity is
transitive

Similarity Measures

• Replacement of one word with another counts
as two changes

• no matter how many replacements occur

• Moving a big chunk of text is a big change

• unless you use a order-insensitive hash
function

• Absolute diff, not % diff

Conclusion

• Unknown

• I don’t know what Google has done with this
idea

• although they seem to be using something

• I haven’t been able to talk with anyone else
about this idea

• until now

