IS
Code Optimization

Research Relevant?
Bill Pugh
Univ. of Maryland

Motivation

A Polemic by Rob Pike
Proebsting's Law

|mpact of Economics on Compiler
Optimization by Arch Robison

Some of my own musings

Systems Software Research
IS Irrelevant

* A Polemic by Rob Pike

* Aninteresting read

* |’m not going to try to repeat it
— get it yourself and read

lmpact of Compiler Economics

on Program Optimization
o Tak given by KAI's Arch Robison

o Compile-time program optimizations are similar
to poetry. more are written than actually
published in commercial compilers. Hard
economic reality is that many interesting
optimizations have too narrow an audience to
justify their cost in a general-purpose compiler
and custom compilers are too expensive to write.

Proebsting’s Law

 Moore'slaw
— chip density doubles every 18 months

— often reflected in CPU power doubling every
18 months

* Proebsting'sLaw

— compiler technology doubles CPU power every
18 years

Todd’ sjustification

 Difference between optimizing and non-
optimizing compiler about 4x.

e Assume compiler technology represents 36
years of progress

— compiler technology doubles CPU power every
18 years

— lessthan 4% a year

Let’s check Todd’ s numbers

Benefits from compiler optimization

Very few cases with more than afactor of 2
difference
1.2 to 1.5 not uncommon

— gcc ratio tends to be low
 because unoptimized version is still pretty good

Some exceptions
— Matrix matrix multiplication

Jalepeno comparison

 Jalepeino has two compilers
— Baseline compiler
o Simpleto implement, does little optimization
— optimizing compiler
* aggressive optimizing compiler
o Useresult from another paper

— compare cost to compile and execute using baseline
compiler
— VS. execution time only using opt. compiler

Results (from Arnold et al.. 2000)

= cost of baseline
&= code . T o None-opt
c ~ generation = All-opt
= B and execution, o Best
g compared to
E‘] cost of execution
i of optimized code
o)
L
w 4-
2
i]
E
E: 2
=
2] | |1 I I 1
< I
0

COMmpress jess db javac mpegaudio mtrt jack opt-cmp pBOB Volano average
3956 3000 7060 3991 2747 1669 4134 5025 4770 3777 39.90

Benefits from optimization

o 4x Isareasonable estimate, perhaps
generous

o 36 yearsisarbitrary, designed to get the
magic 18 years

 where will we be 18 years from now?

18 years from now

 If wepull aPentium |11 out of the deep
freeze, apply our future compiler
technology to SPECINTZ2000, and get an
additional 2x speed improvement

— | will be impressed/amazed

Irrelevant 1s OK

e Some of my best friends work on structural
complexity theory

e But If we want to be more relevant,

—what, if anything, should we be doing
differently?

Code optimization Is relevant

* Nobody is going to turn off ther
optimization and discard afactor of 2x

— unless they don’t trust their optimizer

* But we already have code optimization
— How much better can we make 1t?

— A lot of usteach compilers from a 15 year old
textbook

— What can further research contribute?

|mportance of Performance

* |n many situations,
— time to market
— reliability
— safety
 are much more important than 5-15%
performance gains

Code optimization can help

 Human reality Is, people tweak their code
for performance
— get that extra 5-15%
— result is often hard to understand and maintain

— “manual optimization” may even introduce
errors

e Or use C or C++ rather than Java

Optimization of high level code

* Remove performance penalty for
— using higher level constructs
— safety checks (e.g., array bounds checks)
— writing clean, simple code
 no benefit to applying loop unrolling by hand
— Encourage ADT’ sthat are as efficient as
primitive types
* Benefit: cleaner, higher level code gets
written

How would we know?

 Many benchmark programs
— have been hand-tuned to near death

— use such bad programming style | wouldn’t
allow undergraduates to see them

— have been converted from Fortran
 or written by people with a Fortran mindset

An example

 Inwork with a student, generated C++ code
to perform sparse matrix computations

— assumed the C++ compiler would optimize it
well

— Dec C++ compiler passed

— GCC and Sun compiler failed horribly
o factor of 3x slowdown

— nothing fancy; gcc was just brain dead

We need high level benchmarks

* Benchmarks should be codethat is
— easy to understand
— easy to reuse, composed from libraries

— as close as possible to how you would describe
the algorithm

 Languages should have performance
reguirements

— e.g., tall recursion is efficient

Where Is the performance?

 Most all compiler optimizations are micro-
level benchmarks
— Optimizing statements, expressions, etc

e The big performance wins are at a different
level

An Example

 In Java, synchronization on thread local
objectsis “useless’
* Allows classes to be designed to be thread
safe
— without regard to their use
 Lotsof recent papers on removing “useless’
synchronization
— how much can it help

Cost of Synchronization

e Few good public multithreaded benchmarks

e \olano Benchmark
— Most widely used server benchmark
— Multithreaded chat room server

— Client performs 4.8M synchronizations
o 8K useful (0.2%)

— Server 43M synchronizations
e 1.7M useful (4%)

Synchronization in VolanoMark
Client

Ejava.io.BufferedinputStream
Hjava.io.BufferedOutputStream
Ojava.util.Observable

0.9% Ojava.util.Vector

0.9% Ejava.io.FilterInputStream
0.4% meverything else

® All shared monitors

5.6%
1.8%

0.2%

90.3%

7,684 synchronizations on shared monitors
4,828,130 thread local synchronizations

Cost of Synchronization
In VolanoMark

« Removed synchronization of
— Java.io.Bufferedl nputStream
— Javaio.BufferedOutputStream

* Performance (2 processor Ultra 60)

— HotSpot (1.3 beta)

e Original: 4788

o Altered: 4923 (+3%)
— Exact VM (1.2.2)

e Original: 6649

o Altered: 6874 (+3%)

Some observations

* Not abigwin (3%)
 \Which JVM used more of an issue

— Exact VM does a better job of interfacing with
Solaris networking libraries?

e Library design isimportant

— BufferedlnputStream should never have been
designed as a synchronized class

Cost of Synchronization in
SpecVM DB Benchmark

e Program in the Spec JVM benchmark

e Doeslots of synchronization

— > 53,000,000 syncs
e 99.9% comes from use of Vector

— Benchmark is single threaded, all of it
IS useless

e Tried
— Remove synchronizations
— Switching to ArrayList
— Improving the algorithm

Execution Time of Spec VM
09 db, Hotspot Server

40
3511
30-
25-
20+
15-
10+
5-
0O-
Use Change
Original ArrLzJat?/eList ﬁr::;lazi_riZ: ?(r)l?\l/lle?gtret Al
minor Sort
@ Original 35.5 32.6 28.5 16.2 12.8
B Without Syncs 30.3 32.5 28.5 14.0 12.8

L essons

« Synchronization cost can be substantial
— 10-20% for DB benchmark

— Better library design, recoding or better
compiler opts would help

e But thereal problem was the algorithm

— Cost of stupidity higher than cost
of synchronization

— Used built-in merge sort rather than
hand-coded shell sort

Small Research Idea

* Develop atoolsthat analyzes a program
— Searches for quadratic sorting algorithms

e Don’'t try to automatically update algorithm,
or guarantee 100% accuracy

 Lotsof stories about programs that
contained a quadratic sort

— not noticed until it was run on large inputs

Need Performance Tools

 gprof Is pretty bad
o guantify and ssmilar tools are better

— still hard to isolate performance problems
— particularly in libraries

Java Performance

* Non-graphical Java applications are pretty
fast

e Swing performance Is poor to far
— compiler optimizations aren’t going to help
— What needs to be changed?

* Do we need to junk Swing and use adifferent AP,
or redesign the implementation?

— How can tools help?

The cost of errors

e The cost incurred by buffer overruns
— crashes and attacks

e |sfar greater than the cost of even naive
bounds checks

e Others

— general crashes, freezes, blue screen of death
— VIruses

OK, what should we do?

« A lot of steps have already been taken:

— Javaistype-safe, has GC, does bounds checks,
never forgetsto release alock

e But the lesson hasn’t taken hold
— C# alows unsafe code that does raw pointer
Smashing
* 30 does Javathrough JNI
— atransition mechanism only (I hope)

— C# alows you to forget to release alock

Moreto do

 Add whatever static checking we can

— use generic polymorphism, rather than Java' s
generic containers

* Extended Static Checking for Java

Low hanging fruit

Found a dozen or two bugs in Sun’s JDK
hashCode() and equal s(Object) not being in
sync

Defining equals(A) in class A, rather than
equal s(Object)

Reading fields in constructor before they
are written

Use of Double-Checked Locking idiom

L ow handing fruit (continued)

e Very, very ssmple implementation
» False negatives, false positives

* Reguired looking over code to determine if
an error actually exists

— About a50% hit rate on errors

Data structure invariants

e Most useful kinds of invariants

e For example

— thisisadoubly linked list

— nisthelength of the list reachable from p
» Naive checking is expensive

— can we do efficiently?

— good research problem

Data race detection

* Finding errors and performance bottlenecks
INn multithreaded programs is going to be a
big issue

e Toolsexist for dynamic data race detection
— papers say 10-30x slowdown

— commercial tools have a 100-9000x slowdown
— lots of room for improvement

Where do we go from here?

As If People Programmed

e A lot of this comes back to:

* Doing compiler research, as though
programs were written by people

— who are still around and care about getting thelir
program written correctly and quickly

— and who also care about the performance
« arewilling to fix/improve algorithms

— would happily interact with compiler/tools
e If it was useful

If you want to get it published

e Compile dusty benchmarks
— run them on their one data set

« All programs are “correct”

— any deviations from official output Is
unacceptable

— DB benchmark uses unstable shell sort
e can't replace it with stable merge sort

 No human involvement is allowed

Understandable

* Easy to measure the improvement a paper
provides
— what isthe improvement in the SPECINT
numbers?
* Much harder to objectively measure the
things that matter

Consider

A paper allows higher level constructsto be
compiled efficiently

— since they couldn’t be compiled efficiently
before, no benchmarks use them

— author provides his own benchmarks, show
substantial improvement on benchmarks he
wrote

— one person’s high level construct is another’s
contrived example

Human experiments ®

* To determine if some tool can help people
find errors or performance bottlenecks more
effectively

— need to do human experiments

— probably with students
« what do these results say about professional
programmers?
— Very, very hard

e Donein Software Eng.

Some things to think about

e Most of the SPECINT benchmarks are done

— NOo new research Is going to get enough
additional performance out of SPECINT

— to warrant folding it into an industrial strength
compiler

— unless you come up with something very
simple to implement

Encourage use of
high-level constructs

* Reduce performance penalty for good
coding style

 Eliminate motivation and reward for low
level programming

e Example problems:

— remove implicit down casts performed by GJ
— compileaMATLAB-like language

New ways to evaluate papers

e \We need wdl-written benchmarks

* \We need new ways to evaluate papers
— that take programmers into account

The big question

 What are we doing that is going to change
— the way people use/experience computers,
— or the way people write software

 five, ten or twenty years down the road?

o Softwareis hard...
— Improving the way software is written is harder

