
Scalable Inference in Hierarchical Generative Models

Thomas Dean
Department of Computer Science

Brown University, Providence, RI 02912

Abstract

Borrowing insights from computational neuroscience, we present a family of inference algorithms for a class
of generative statistical models specifically designed to run on commonly-available distributed-computing hardware.
The class of generative models is roughly based on the architecture of the visual cortex and shares some of the same
structural and computational characteristics. In addition to describing several variants of the basic algorithm, we
present preliminary experimental results demonstrating the pattern-recognition capabilities of our approach and some
of the characteristics of the approximations that the algorithms produce.

1 Introduction
Lee and Mumford [9] propose a generative model of the visual cortex that combines top-down and bottom-up inference,
employs invariant and compositional representations for encoding and retrieving patterns, and supports associative
recall, pattern completion and sequence prediction among other functions. Their model is cast as a graphical statistical
model providing clear semantics in terms of a joint distribution over a set of random variables representing features of
the target pattern space. While there are many inference algorithms for graphical models, none appear up to the task
of learning parameters and absorbing evidence on the scale of the primate visual cortex. We propose to remedy this
situation.

Figure 1 shows the first four regions of the temporal cortex — V1, V2, V4 and the inferotemporal cortex (IT) —
illustrated, on the left, as a stack of increasingly abstract visual features and their associated processing units, and, on
the right, as they are arranged on the cortical sheet. The figure also depicts the postulated interaction between regions
implementing both top-down and bottom-up communication. The bottom-up communications are used to combine
more primitive features into more abstract ones and the top-down communications are used to exploit expectations
generated from prior experience.

Figure 2 derives from Figure 1 by associating each cortical region with a random variable encoding knowledge
about the probabilistic relationships among features in a hierarchy of such features. Information propagates up and
down the hierarchy and the marginal probabilities associated with the variables are updated to reflect the evidence
presented to the bottommost level.

Let xV1, xV2, xV4 and xIT represent the four cortical regions and xO the observed data (input). Using the chain rule
and the simplifying assumption that in the sequence (xO, xV1, xV2, xV4, xIT) each variable is independent of the other

≡
? ? ?

666

ITV4V1 V2

6 ?

?6

6 ?

IT

V2

V1

V4

Figure 1: A depiction of the first four regions of the temporal cortex

1

P (xO|xV1)P (xV1|xV2)

? ?

-

6 6 6

xO xV1 xV2

P (xV1|xV2) P (xV2|xV4)

xV4

P (xV4|xIT)

P (xV2|xV4)P (xV4|xIT)P (xV1|xV2)P (xV2|xV4)

?

Figure 2: The hierarchical Bayesian model proposed by Lee and Mumford. The activity in the ith region is influenced
by bottom-up feed-forward data xi−1 and top-down probabilistic priors P (xi|xi+1) representing the feedback from
region i + 1.

variables given its immediate neighbors in the sequence, we write the equation relating the four regions as

P (xO, xV1, xV2, xV4, xIT) = P (xO|xV1)P (xV1|xV2)P (xV2|xV4)P (xV4|xIT)P (xIT)

resulting in a graphical model or Bayesian network based on the chain of variables:

xO ← xV1 ← xV2 ← xV4 ← xIT

The primate cortex consists of approximately 1011 sparsely-connected neurons organized in columnar structures
each of which is composed of roughly 104 cells. Even if we assign only one variable to model each columnar structure
we would end up with a network consisting of more than 107 variables, a formidable challenge for any inference
algorithm.

2 Generalized Pyramid Graphs
Clearly the cortex has a structure that is significantly more complicated than indicated by the simple schematic shown
in Figure 1. To model both the hierarchical arrangement of regions and the structure within regions, we employ a
class of acyclic graphs called pyramid graphs, a term borrowed from [11] in which it is used to characterize a class of
Bayesian networks for which loopy belief propagation works reasonably well.

A generalized pyramid graph is a directed acyclic graph G = (V,E) whose N = |V | nodes are partitioned into
K levels, with level one designating the bottommost or input level and level K designating the topmost or root level.
Each directed edge in E connects a node in level k to a node in level k − 1 (inter-level edges) or to another node in
level k (intra-level edges). Each child level k has a unique parent level k + 1 for all k such that 0 < k < K. Let i be a
node in level k and fi = {j : (i, j) ∈ E} be the set of children of i in level k − 1; fi is said to be the receptive field of
i. For any two adjacent nodes i and j in level k, their respective receptive fields fi and fj may or may not overlap.

The nodes in each level are arranged in a square grid. Two nodes in a given level are grid adjacent if they are
next to one another in the grid either along a diagonal or along one of the four directions aligned with the grid axes.
Two nodes that are grid adjacent may or may not be adjacent in G. The nodes comprising a given receptive field are
arranged in a square sub grid of the grid for the level containing the receptive field.

The receptive fields for nodes that are grid adjacent to one another in a given parent level can overlap or share
nodes in the child level. It is also possible for the receptive fields for two nodes that are not grid adjacent in a given
level to overlap in the child level, for example, in the case in which the overlap for a level is greater than half the width
of the receptive fields for that level. The overlap for a given level is specified as an integer used to determine how
two receptive fields share nodes depending on the arrangement of the nodes associated with the receptive fields in the
parent level. Figure 3 depicts four generalized pyramid graphs that we will discuss at some length in Section 6.

3 Pyramidal Bayesian Networks
A graphical model is a compact representation of a joint probability distribution over a set of random variables whose
conditional dependencies are completely characterized by a graph in which each random variable is associated with
a vertex. Bayesian networks (BNs) and Markov random fields (MRFs) are examples of graphical models. In a given

2

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(a)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(b)

−1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

(c)

−1 −0.5 0 0.5 1 1.5
−3

−2.5

−2

−1.5

−1

−0.5

0

(d)

Figure 3: The four pyramid-graph Bayes networks referred to in the text

graphical model, some of the nodes are observed and are assigned values subsequent to inference and the remaining
variables are hidden. A graphical model is parameterized by assigning each node in the graph a conditional probability
density (CPD) (in the case of directed models such as Bayesian networks) or a potential function (in the case of
undirected Markov random fields).

We use generalized pyramid graphs to represent the dependency structure for a class of graphical models called
pyramidal Bayesian networks (PBNs). Level one corresponds to the input level — the level in which evidence is added
to the Bayesian network — and consists of all the terminal nodes in the Bayesian network.

A given level is either homogeneous, meaning all the nodes in the level have the same CPDs, or inhomogeneous,
meaning their parameters differ and are established separately. In the case of homogeneous levels, the parameters for all
nodes in a given level are tied to expedite inference. We limit the families of allowable densities to just Gaussians and
tabular CPDs though the methods described here can be extended to a broader class of continuous densities using non-
parametric belief propagation methods [13, 7]. A level can have a mix of discrete (tabular) and continuous (Gaussian)
nodes.

3

@
@

@
@R

@
@

@
@R

@
@

@
@R

@
@

@
@R

@
@

@
@R

@
@

@
@R

@
@

@
@R

"!

"!

"!

"!

"!

"!

"!

"!

@
@

@
@R

�
�

�
�	

�
�

�
�	

�
�

�
�	

�
�

�
�	

--

-

-

@
@

@
@R

�
�

�
�	

-

-

@
@

@
@R

�
�

�
�	

�
�

�
�	

-

-

-

�
�

�
�	

�
�

�
�	

-

�
�

�
�	

�

	

�

�

	

�

�

	

�
�

�

�

�

�

	

�

�

	

�

�

	

�

y1 y2 y3

"!

y4

"!

"!

"!

"!

"!

"!

x2

v1

1 2 3

5

6

7

4

w1

z2 z3 z4 z5

x1

w2

x3

z1

Figure 4: The component problems (subnets) associated with a simple five-level pyramid-graph Bayes network

���������������14

�� ��1 �� ��2

�� ��5

�� ��3

�� ��6

�� ��7

�
�

�
��

@
@

@
@I

�
�

�
��

@
@

@
@I

�
�

�
��

@
@

@
@I

�
�

�
��

PPPPPPPPPPPPPPPi�� ��

Figure 5: The subnet graph associated with the decomposition of the pyramid-graph Bayes network shown in Figure 4

4 Hierarchical Expectation Refinement
In this section, we describe an algorithm called hierarchical expectation refinement that operates by decomposing
the problem of learning a large pyramidal Bayesian network (PBN) into a set of more tractable component learning
problems. The problem of estimating the parameters of a PBN is decomposed into K subproblems, one for each level.
Each of these subproblems is further subdivided into smaller component learning problems corresponding to graph
fragments that are used to create small Bayesian networks — referred to here as subnets — that can be solved in
isolation. Learning proceeds level-by-level from the bottom up starting from the input level. Learning within a level
can proceed simultaneously, in parallel on all the subnets associated with that level. For simplicity of presentation, we
assume that all the nodes in the BN are discrete and their corresponding CPDs are represented as conditional probability
tables (CPTs). We begin with the example shown in Figure 5.

Figure 4 depicts a five-level PBN showing the decomposition of the first layer into three subnets. The three dashed
boxes enclose the variables involved in each of the component learning problems associated with the first layer. All
edges that extend outside of a dashed box are eliminated for purposes of parameter estimation, thereby isolating a
relatively small and thus tractable subgraph characterized by the following joint probability distribution for the learning

4

component labeled 1 in Figure 4.

P (z1, z2, z3, y1, y2) = P (z1|y1)P (z2|z1, y1, y2)P (z3|z2, y2)P (y2|y1)P (y1)

We estimate the parameters for this subnet using expectation maximization with a training set of assignments to the
variables {z1, z2, z3}— the set of variables {y1, y2} are hidden. We use the estimated parameters to quantify P (z1|y1)
and P (z2|z1, y1, y2) in the PBN and throw away the rest.

Generalizing, suppose we want to learn the parameters for a node in level k having already learned the parameters
for all nodes in levels k−1, k−2, . . . , 1. Recall that for any node in level k, its parents are either in level k or k+1. We
define the extended family of a node x in level k as the parents of x and the children of those parents of x that are in level
k. To learn the parameters associated with a node x in level k (the parameters for P (x|Parents(x))), we construct a
component BN with a set nodes corresponding to the extended family of x. In the component BN, the nodes in level k
are observed and those in level k + 1 are hidden. We initialize the CPTs of variables in the component BN to random
distributions with Dirichlet priors, collect a sufficiently large set of samples of the hidden nodes in the component, and
use this set of samples as a training set for learning the component parameters. We assign the parameters of the CPT
for x in the PBN to be the same as those of the CPT for x in the component BN.

In the most straightforward version of the learning algorithm, we learn all the parameters for variables in level k
before proceeding to level k + 1. In learning the parameters for variables in level one, the training set of assignments
to variables in level one correspond to inputs. In the case of the assignments required for estimating the parameters of
variables at level k > 1, the training data is acquired by sampling from the posterior belief function Bel(~x) = P (~x|ξ)
where ~x is the vector of (observed) variables in the component learning problem at level k and ξ is an assignment to
the (observed) variables in the input level of the PBN.

In the hand-written-digit-recognition experiments described in Section 6, we learn the parameters for all but the
root and penultimate levels in an unsupervised manner. The subnets corresponding to the penultimate level (typically
there is only one) are then trained as a classifier in a supervised manner using the supplied training labels.

There are a number of obvious optimizations. Instead of creating a separate component problem for each node in
a level, we compute the maximal sets [15] of the collection of sets corresponding to the extended families for each
node. We then use these maximal sets to construct the set of component BNs. When we estimate the parameters
of a component BN, we use the learned parameters to quantify all those variables whose extended family is a subset
of the maximal set associated with the component BN, thereby reducing the total number of component problems
considerably. For a homogeneous level, we construct a single component BN which effectively ties the parameters for
all the nodes in that level.

We use several algorithms for inference. Exact inference on general graphical models is NP hard. Even so, fast
algorithms exist that perform exact inference on graphical models consisting of several hundreds or even thousands
of nodes. For exact inference, we use an implementation of Lauritzen and Spiegelhalter’s [8] junction-tree algorithm
(referred to as JTREE in the following).

For approximate inference, we use loopy belief propagation [11] implemented using one of two belief-propagation
algorithms: Pearl’s original message-passing algorithm [12] (PEARL) and a variant (BELPROP) based on Aji and
McEliece’s GDL (Generalized Distributive Law) algorithm that exhibits better convergence [1] on our networks. As
an alternative to JTREE, PEARL and BELPROP, we can also exploit the structure induced by the component BNs to
perform approximate inference.

Figure 5 depicts a graph G = (V,E) — the subnet graph — in which the vertices are subnets V = {si} and there
is an edge (si, sj) ∈ E just in case si has a hidden node which is an observed node of sj . We can use this subnet graph
to perform inference by propagating samples from the input level to the root as follows: As soon as a subnet’s observed
nodes are instantiated, we compute the subnet’s posterior distribution and the MAP assignment to its hidden variables.
This assignment is then propagated to the subnet’s parent subnets in the subnet graph. We refer to this algorithm as
SUBNET in the following.

5 Implementation and Evaluation
The approach described in the previous section was designed to be implemented on a compute cluster using MPI
(Message Passing Interface) code to handle communication between processes responsible for the component learning
problems. While we haven’t yet realized a parallel implementation, we have developed a non-parallel prototype in Mat-
lab using Kevin Murphy’s Bayes Net Toolbox [10] which is available for download at http://www.cs.brown.

5

edu/∼tld/projects/cortex/prototype.tar.gz and includes all of the code required to replicate the ex-
periments discussed in this section.

We tested our ideas on the problem of recognizing handwritten digits. Yann LeCun has taken a subset of images
from the National Institute of Science and Technology’s (NIST) database of handwritten digits, size-normalized each
digit, and centered it in a fixed-sized image to produce a data set consisting of 30,000 training images of digits produced
by a set of 250 writers and 10,000 test images produced by an additional set of 250 writers disjoint from the first set.
LeCun’s data set is available at http://yann.lecun.com/exdb/mnist/.

In our experiments on the NIST hand-written-digit data set, we consider four PBNs, the first of which is small
enough that we can perform all of the required inference directly on the global model (the full PBN) and compare
the performance on the global model with the performance on various decompositions of the global model. Inference
plays three different roles: (1) inference is required to generate the samples required for local-model (subnet) parameter
estimation, (2) once a sufficient number of samples has been obtained, inference is required to estimate the parameters
of the local models, and (3) once the model parameters have all been learned, inference is required for evaluation
purposes. If the global model is to be used for inference, then the local-model parameters are used to update the
parameters of the global model.

To investigate the factors governing performance, we use different algorithms in each of the three roles where infer-
ence is required. For instance, we might generate samples and perform evaluation using an exact inference algorithm
applied to the global model, but update the parameters of the global model from the local models. Such an experiment
provides insight into how well the local models perform in learning generative models. We can then substitute an
approximate inference algorithm that is more likely to scale with the size of the global model and evaluate the impact
of the approximation on performance.

6 Preliminary Experimental Results
The first PBN was designed with two characteristics in mind: (1) create a network that exhibits the features we consider
most important in this architecture: multiple levels, overlapping receptive fields, and intra-level edges, and (2) make
the network small enough that it is possible to perform exact inference on the global model. This first PBN is shown
in Figure 3.a and summarized as follows (WIDTH, OVERLAP and INTRA refer to, respectively, the width of the
receptive fields, the number of rows/columns of overlap, and whether or not there are intra-level edges with respect to
a given level):

LEVEL WIDTH OVERLAP INTRA SIZE SUBNETS
4 1 0 0 1× 1 1
3 3 1 1 3× 3 1
2 3 1 0 7× 7 4
1 4 0 0 28× 28 NA

TOTAL 843 6

The input level maps directly onto the 28×28 eight-bit images of digits comprising the data set. The largest subnet
has 29 nodes. The total number of parameters is 1,058,064. In this and all the models that follow, the maximum number
of parameters in a single CPD is 150,000, corresponding to a random variable with 16 possible states and four parents
each of which has 10 possible states. In all of the PBNs, the input level is homogeneous consisting of conditional
Gaussian nodes implementing a mixture-of-Gaussians classifier applied to either a 3× 3 or 4× 4 image patch. All the
other levels are inhomogeneous and all the other nodes are discrete.

In describing each experiment, we specify the number of patches used to train the input level (# PATCH), the
number of images used for training the other levels (# TRAIN), the number of images used to evaluate performance (#
TEST), the percentage of training images correctly classified (% TRAIN), the percentage of testing images correctly
classified (% TEST), and the CPU hours required for training and evaluation (# HOUR). In addition, we identify
the inference algorithm used for each of the three roles mentioned above by specifying a triple, ALG1/ALG2/ALG3,
where ALGi is one of JTREE, PEARL, BELPROP, SUBNET or NA, and ALG2 and ALG3 serve as shorthand for
ALG/ALG and ALG/ALG/ALG respectively; JTREE/NA/JTREE serves as a benchmark for the smaller networks.
Here are the results of some representative experiments that emphasize the implications of using SUBNET to estimate
the parameters of the global model:

6

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
SUBNET/JTREE2 10,000 1,000 1,000 99.50 52.70 2.89
SUBNET/JTREE2 20,000 10,000 5,000 95.90 78.86 20.16
SUBNET/JTREE2 40,000 20,000 10,000 93.24 81.34 74.55
JTREE/NA/JTREE 10,000 1,000 1,000 100.00 50.30 2.18
JTREE/NA/JTREE 20,000 10,000 5,000 99.45 81.34 19.85

If we substitute loopy belief propagation for exact inference, we get mixed results due to the fact that PEARL
failed to converge on most of the training and testing examples (BELPROP also occasionally failed to converge but on
a much smaller set):

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
SUBNET/PEARL2 10,000 400 200 46.25 19.50 9.97

SUBNET/BELPROP2 10,000 1,000 1,000 75.20 45.70 44.67
BELPROP/NA/BELPROP 10,000 1,000 1,000 88.20 47.60 29.62

If we use SUBNET for sampling and evaluation, we observe a pattern in which performance on the training set
falls off if we use SUBNET just for sampling and JTREE for evaluation, but is restored if we use SUBNET in both
roles:

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
SUBNET2/JTREE 10,000 1,000 1,000 69.20 40.90 2.57
SUBNET2/JTREE 20,000 10,000 5,000 65.22 54.54 20.17
SUBNET2/JTREE 40,000 20,000 10,000 70.83 69.06 42.77

SUBNET3 10,000 1,000 1,000 99.90 38.10 3.45
SUBNET3 20,000 10,000 5,000 97.30 66.98 17.45
SUBNET3 40,000 20,000 10,000 95.71 77.69 39.17

The PBN shown in Figure 3.b is the same as that shown in Figure 3.a except we eliminate the intra-level edges
in level 3 in order to evaluate the impact of intra-level edges. This PBN also has far fewer parameters than our first
experimental model, 658,572 versus 1,058,064.

LEVEL WIDTH OVERLAP INTRA SIZE SUBNETS
4 1 0 0 1× 1 1
3 3 1 0 3× 3 1
2 3 1 0 7× 7 4
1 4 0 0 28× 28 NA

TOTAL 843 6

We get some reduction in performance when using exact inference for sampling and evaluation:

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
SUBNET/JTREE2 10,000 1,000 1,000 78.00 62.50 2.89
SUBNET/JTREE2 20,000 10,000 5,000 74.03 69.68 20.16
JTREE/NA/JTREE 10,000 1,000 1,000 97.00 70.08 6.19
JTREE/NA/JTREE 20,000 10,000 5,000 92.43 82.40 49.03

but PEARL and BELPROP converge in all cases. The running times for PEARL and BELPROP have more to do
with Matlab’s relatively poor performance on problems that cannot be easily vectorized than they have to do with the
algorithms themselves which are desirable because they can be implemented to exploit parallelism.

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
SUBNET/PEARL2 10,000 1,000 1,000 73.30 63.40 60.08

SUBNET/BELPROP2 10,000 1,000 1,000 76.20 63.20 33.55
SUBNET3 10,000 1,000 1,000 81.50 67.70 1.81
SUBNET3 20,000 10,000 5,000 78.33 75.24 17.68

BELPROP/NA/BELPROP 10,000 1,000 1,000 83.10 63.70 47.10

7

The PBN shown in Figure 3.c was designed to test the impact of adding an additional level. The resulting network
has 42 subnets, the largest of which has 40 nodes. The total number of parameters is 23,346,720:

LEVEL WIDTH OVERLAP INTRA SIZE SUBNETS
5 1 0 0 1× 1 1
4 3 1 1 3× 3 1
3 3 1 0 7× 7 4
2 4 2 0 16× 16 36
1 4 2 0 34× 34 NA

TOTAL 1471 42

This network was too large for the other algorithms and performed less well than the previous two but still rea-
sonable when one considers the ratio of of training examples to total number of parameters. Further experiments on
networks of this size will have to wait for the parallel implementation, which should reduce the training and evaluation
time to less than an hour for the case of 1,000 training and testing examples.

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
SUBNET3 10,000 100 100 100.00 30.00 6.27
SUBNET3 10,000 1,000 1,000 100.00 31.20 43.05

Finally, the PBN shown in Figure 5.d was designed to reduce the total number of parameters somewhat while
using smaller receptive fields and hence encouraging more localized features in the lower levels. Figure 5.d uses 3× 3
receptive fields with an overlap of two rows/columns at the lowest level. It has the same number of subnets as the
previous network but only 6,315,228 parameters total:

LEVEL WIDTH OVERLAP INTRA SIZE SUBNETS
5 1 0 0 1× 1 1
4 3 1 1 3× 3 1
3 3 1 0 7× 7 4
2 3 2 0 15× 15 36
1 3 2 0 31× 31 NA

TOTAL 1245 42

Performance is respectable on the few experiments run so far with some reduction in performance on the training
data, but good performance on the test examples. As in other experiments involving SUBNET3, performance on the
training data goes down slightly (down 3%) while testing performance improves (up 10%).

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
SUBNET3 10,000 1,000 1,000 83.00 65.00 12.79
SUBNET3 20,000 10,000 5,000 80.00 75.00 191.96

SUBNET3 performs inference in a purely bottom-up fashion unlike other algorithms such as SUBNET/PEARL2

that propagate information both up and down the hierarchy. One obvious alternative is to perform a variant of belief
propagation that operates directly on the subnet graph. Subnets can then serve as they do in other algorithmic variants
to couple nearby features and thus serve both diagnostic and causal inference.

To test this idea, we implemented an instance of the generalized belief propagation framework described in [14]
which is referred to as GBP in the following. In GBP, belief propagation is carefully orchestrated in three passes of
the subnet graph. At the start of the first pass, subnets on the input level incorporate the new evidence and propagate
marginal distributions over shared variables to level-two subnets adjacent in the subnet graph. The marginals are
computed using the posterior distribution (which now incorporates the new evidence) to marginalize out variables in
the intersection of the two adjacent subnets.

Evidence continues to propagate up the subnet graph until it reaches the highest level in which all of the subnet
parameters have already been learned. In the second pass, marginals are propagated back down to the input level. The
third pass is essentially the same as the first pass and completes the process of distributing the new evidence throughout
the subnet graph.

8

To get some idea of how the additional passes impact performance we compare GBP to the SUBNET3 algo-
rithm and our benchmark JTREE/NA/JTREE. The next table shows the results for a set of experiments on the net-
work shown in Figure 3.a. We note that GBP3 significantly outperforms SUBNET3 and compares favorably with
JTREE/NA/JTREE.

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
GBP3 10,000 1,000 1,000 99.00 55.50 3.20
GBP3 20,000 10,000 5,000 94.79 78.96 29.11

SUBNET3 10,000 1,000 1,000 99.90 38.10 3.45
SUBNET3 20,000 10,000 5,000 97.30 66.98 17.45

JTREE/NA/JTREE 10,000 1,000 1,000 100.00 50.30 2.18
JTREE/NA/JTREE 20,000 10,000 5,000 99.45 81.34 19.85

Next we provide the results of a set of experiments on the same network but without the intra-level edges as shown
in Figure 3.b. In this case, the difference in performance between GBP3 and SUBNET3 is not significant and both
manifest a marked reduction in accuracy on the training data when compared with JTREE/NA/JTREE.

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
GBP3 10,000 1,000 1,000 79.80 68.00 2.75
GBP3 20,000 10,000 5,000 79.97 75.04 25.81

SUBNET3 10,000 1,000 1,000 81.50 67.70 1.81
SUBNET3 20,000 10,000 5,000 78.33 75.24 17.68

JTREE/NA/JTREE 10,000 1,000 1,000 97.00 70.08 6.19
JTREE/NA/JTREE 20,000 10,000 5,000 92.43 82.40 49.03

Finally, we compare the performance of GBP3 and SUBNET3 on the network shown in Figure 6.d. We don’t as yet
have an explanation for why GBP3 performs less well than SUBNET3 on the training data but outperforms SUBNET3

on the testing data, but this behavior was observed in several similar experiments involving this network.

ALGORITHM # PATCH # TRAIN # TEST % TRAIN % TEST # HOUR
GBP3 10,000 1,000 1,000 77.90 68.70 20.90

SUBNET3 10,000 1,000 1,000 83.00 65.00 12.79

7 Related Work and Conclusions
We are essentially implementing expectation maximization [2] in a distributed but highly structured model (hierarchi-
cally arranged in levels with topologies that embed in the plane — or nearly so). We expect that for many perceptual
learning problems the particular way in which we decompose the parameter-estimation problem (which is related to
Hinton’s weight-sharing and parameter-tying techniques) will avoid potential problems due to early (and permanently)
assigning parameters to the lower layers.

We were originally attracted to the idea of level-by-level parameter estimation in reading George and Hawkins’
“A hierarchical Bayesian model of invariant pattern recognition in the Visual Cortex” [3]. In the algorithm described
in [3], each node in a Bayesian network collects instantiations of its children that it uses to derive the state space
for its associated random variable and estimate the parameters for its children’s CPDs. The states that comprise the
state space for a given node correspond to perturbed versions (exemplars) of the most frequently appearing vectors of
instantiations of its children. Their network is singly connected and, for this class of graphs, Pearl’s belief-propagation
algorithm is both exact and efficient (it scales linearly in the diameter of the underlying graph).

Hinton, Osindero and Teh [6] present a hybrid model combining Boltzmann machines and directed acyclic Bayesian
networks and an improvement and generalization on Hinton’s method of contrastive divergence [4]. The authors present
a greedy, level-by-level approach to learning a generative model similar to the one proposed by Lee and Mumford [9].

SUBNET3 is medium-grain parallelizable with each subnet running on a separate processor (or, as is often the case,
if there are fewer processors than subnets, using the strategy depicted in Figure 6) and communication fixed through
the sharing of hidden/observed random variables as specified in the subnet graph. That the local computations yield a

9

Figure 6: In the parallel implementation, subnets are allocated to processors using a roughly columnar arrangement so
that subnets that are adjacent in the subnet graph tend to run on the same processor.

reasonably good approximation of the global joint distribution is very promising. Our preliminary results suggest that
inference via intra-level edges is potentially problematic, but we are developing a hybrid model whereby inter-level
edges are directed and intra-level edges are undirected with inference performed in a semi-synchronous manner. In
this model, which is related to the model described in Hinton, Osindero and Bao [5], propagation is carried out within
all levels simultaneously, followed by propagation between all adjacent levels simultaneously, and then repeating this
cycle until quiescence.

References
[1] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. IEEE Transactions on Information

Theory, 46(2):325–343, 2000.

[2] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society, 39 (Series B):1–38, 1977.

[3] Dileep George and Jeff Hawkins. A hierarchical Bayesian model of invariant pattern recognition in the visual
cortex. In Proceedings of the International Joint Conference on Neural Networks. IEEE, 2005.

[4] G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771–
1800, 2002.

[5] Geoffrey E. Hinton, Simon Osindero, and Kejie Bao. Learning causally linked Markov random fields. In
Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of the 10th International Workshop on Arti-
ficial Intelligence and Statistics, January 6–8, 2005, Savannah Hotel, Barbados, pages 128–135. Society for
Artificial Intelligence and Statistics, 2005.

[6] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets.
Submitted to Neural Computation, 2005.

[7] M. Isard. PAMPAS: real-valued graphical models for computer vision. In Proceedings of the 2003 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition: Volume I, pages 613–620, 2003.

[8] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with probabilities on graphical structures
and their application to expert systems. Journal of the Royal Statistical Society, 50(2):157–194, 1988.

[9] Tai Sing Lee and David Mumford. Hierarchical Bayesian inference in the visual cortex. Journal of the Optical
Society of America, 2(7):1434–1448, July 2003.

10

[10] Kevin Murphy. The Bayes net toolbox for Matlab. Computing Science and Statistics, 33, 2001.

[11] Kevin Murphy, Yair Weiss, and Michael Jordan. Loopy-belief propagation for approximate inference: An em-
pirical study. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 467–475.
Morgan Kaufmann, 2000.

[12] Judea Pearl. Distributed revision of composite beliefs. Artificial Intelligence, 33:173–216, 1987.

[13] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky. Nonparametric belief propagation. In Proceedings of the
2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: Volume I, pages 605–
612, 2003.

[14] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding belief propagation and its generaliza-
tions. In Exploring artificial intelligence in the new millennium, pages 239–269. Morgan Kaufmann Publishers
Inc., San Francisco, 2003.

[15] Daniel Yellin. Algorithms for subset testing and finding maximal sets. In Proceedings of the 3rd Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 386–392, 1992.

11

