
Aksimentiev Group
Department of Physics,
Center for the Physics of Living Cells and
Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign

Images & animations

of DNA nanostructures

with VMD

Authors:
David Winogradoff
Manish Shankla
Aleksei Aksimentiev

CONTENTS 2

Contents

1 Introduction 2

2 Representations specific to DNA nanostructures 5
2.1 Chickenwire . 5
2.2 Nice quicksurf representation . 6
2.3 Cylinders a la cadnano . 8

3 Creating a fancy image 9

4 Animation of a static structure 13

5 Animation of a trajectory 16
5.1 Straightforward animation of a trajectory 16
5.2 Advanced topic: movie with representation transitions 18

1 Introduction

In this tutorial, you will be shown how to make an image using Tachyon through
VMD’s graphical interface. Tachyon is a ray-tracing program written to run
very quickly, taking advantage of multiple computer cores. In general, ray-
tracing renderers use a realistic lighting model that can properly model shadows,
yielding a sense depth to the final image.

This tutorial focuses on features recently added to VMD [1] that affect
Tachyon renderings, and does not attempt to be a comprehensive guide to im-
age making with VMD. We assume you have a working knowledge of VMD and
refer inexperienced readers to the VMD tutorial. Furthermore, we assume the
reader has VMD, Tachyon, and MSMS installed.

If you are unfamiliar with VMD, please take a look at Fig. 1. For the
purpose of this tutorial, we recommend that you have all four of the windows
shown throughout all your VMD sessions. Fig. 1 provides an explanation of how
to initialize the “Representations window” and “Tk Console” (often abbreviated
‘TKcon’).

http://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html/index.html

1 INTRODUCTION 3

1. Main window

2. Display window 3. Representation window

4. The TK console

Figure 1: Here we highlight four different windows we suggest you to open in
any session of VMD. By default, only windows 1 & 2 will appear. Open window
3 by clicking on the “Graphics” tab of the main window, then on “Representa-
tions...”. To open window 4, click on the main window’s “Extensions” tab, and
then on “Tk Console”.

1 INTRODUCTION 4

Below is an outline of the entire tutorial, with the subfolders and files pro-
vided.

tutorial-files-provided:

|

|-- 1.0-chickenwire/

| |-- hextube.psf

| |-- equil_k0.pdb

| |-- chickenwire.psf, chickenwire.for.make_ndx

| |-- pdb2chickenwire.pl

|-- 1.1-nice-quicksurf/

| |-- stickman-1.psf

| |-- stickman-1.0.dcd

| |-- renderFrame.tcl

|-- 1.2-cylinders/

| |-- FS-v4_02_topBeam_cadnano25.json

|-- 2.0-pointer-fancy/

| |-- pointer_v1_12_from_dietz-3.{psf,pdb}

| |-- draw_stage_y.tcl

|-- 3.0-animation-from-static-structure/

| |-- bunny-3.{psf,pdb}

| |-- view_change_render.tcl

|-- 4.0-fret-plate-movie/

| |-- plate-capture-1.{psf,pdb,dcd}

| |-- pot-600-cut-ds2.dx

| |-- fret-plate.mpg

|-- 4.1-pointer-trajectory-movie/

| |-- 1_make_movie.py

| |-- Final_clip.mp4

| |-- frames/

| | |-- frame_{0..458}.png

| |-- images/

| | |-- png frames for transitions

| |-- pointer_v1_12_from_dietz-1.{psf,pdb,dcd}

| |-- pointer_v1_12_from_dietz.json

| |-- step1-cylinders.vmd

| |-- step1_make_transparent.tcl

| |-- step2_showPlane.tcl

| |-- step3_highlight_junction.tcl

| |-- step4_convertTGAtoPNG.sh

|

|-- follow along with: dna-nanostructure-visualization.pdf

2 REPRESENTATIONS SPECIFIC TO DNA NANOSTRUCTURES 5

2 Representations specific to DNA nanostruc-

tures

In Section 2, you will make three static images, each with a different representa-
tion. In the first “chickenwire” subsection, you will make a new PDB file based
on atomistic topology and coordinate files using a perl script, then render an
image of that PDB with VMD. The second “quicksurf” subsection will provide
an example of using a single script to automate the entire process of loading
and rendering a coarse-grained structure in VMD. In the third “cylinders” sub-
section, you will start from a .json cadnano file, and generate topology and
coordinate files, along with a TCL script that will draw a set of cylinders as
separate graphics.

2.1 Chickenwire

To start, you will generate an image of a relaxed atomistic structure in what we
refer to as a chickenwire representation. To access the required files, you need
to cd into the 1.0-chickenwire subfolder of
(/home/ubuntu/Desktop/TCBGTutorials/dna-nanostructure-visualization),
and run pdb2chickenwire.pl. This script requires chickenwire.for.make ndx,
which we have already provided. It can also be found in an archive generated
from the ENRG MD webserver (http://bionano.physics.illinois.edu/origami-structure).
From the commandline (Note: \ indicates line continuation; this should
be run as a single line):

>> ./pdb2chickenwire.pl --ndx=chickenwire.for.make_ndx \

equil_k0.pdb > chickenwire.pdb

Using the provided file chickenwire.psf (which also can be generated from
the ENRG MD webserver), you can load chickenwire.pdb into VMD, from
the command line:

>> vmd chickenwire.psf chickenwire.pdb

To generate the image in Fig. 2A, we used the following settings (which can be
set in the GUI): a white background; Coloring Method of “SegName”; Drawing
Method “Licorice” with Bond Radius 2.5, Sphere Resolution 50, Bond Resolu-
tion 50; Material Goodsell; Shadows On; Amb. Occl. On; AO Ambient 1.0; AO
Direct 0.2.

2 REPRESENTATIONS SPECIFIC TO DNA NANOSTRUCTURES 6

A. Chickenwire B. Modified Quicksurf C. Cylinders

Figure 2: Origami-specific representations from VMD.

2.2 Nice quicksurf representation

In this section, we will provide an example of how to load, modify and render a
coarse-grained structure within a single script, renderFrame.tcl. After cd’ing
into the 1.1-nice-quicksurf subfolder of
(/home/ubuntu/Desktop/TCBGTutorials/dna-nanostructure-visualization),
open a session of VMD (click on the icon, or type >> vmd from the comman-
dline). Once VMD is initialized, open a TK console window (VMD Main →
Extensions → TK Console); click on that window and type the following:

TK>> source renderFrame.tcl

“Sourcing” runs every line in the script. Below, we annotate what different
blocks of code in the TCL script do.
Load in the molecule:

set PSF stickman-1.psf

set DCD stickman-1.0.dcd

set ID [mol new $PSF]

mol addfile $DCD waitfor all

2 REPRESENTATIONS SPECIFIC TO DNA NANOSTRUCTURES 7

Define display settings

color Display Background white

display backgroundgradient off

display depthcue 0

display projection Perspective

display distance -1

display height 1

Redefine “red” and “blue”:

color change rgb blue 0.27 0.52 0.9

color change rgb red 0.9 0.45 0.33

Set selection and material:

mol material AOChalky

mol representation QuickSurf 5.700000 1.000000 4.000000 1.000000

mol selection "all"

mol color colorID 0

mol addrep $ID

Set ambient occlusion and lighting options:

display aodirect 0.600000

light 0 off

display shadows on

display ambientocclusion on

display aoambient 0.900000

display dof off

display dof_fnumber 660.000000

display dof_focaldist 3.700000

render aasamples TachyonInternal 16

render aosamples TachyonInternal 64

Resize the display window, rotate and scale the structure:

display resize 800 800

display update ui

rotate x by -90

display update ui

scale by 0.4

2 REPRESENTATIONS SPECIFIC TO DNA NANOSTRUCTURES 8

Perform the rendering:

render TachyonInternal stickman-tach-inter.ppm

This last line (render ...) can be modified to choose another renderer (e.g.
TachyonLOptiXInternal), or this line can be commented out, and the user could
modify the viewing angle or representation further using the GUI.

The result from this script is visually shown in Fig. 2B.

2.3 Cylinders a la cadnano

At the time of writing this tutorial, you cannot load a cadnano JSON file di-
rectly into VMD. For this third subsection, you will be provided with just a
.json file, and you will run mrdna with an optional tag (--draw-cylinders) to
generate atomistic topology and coordinate files, along with a TCL script that
will separately draw cylinders in VMD (as graphics separate from the molecule).
The cylinder representation was inspired by the standard graphical output style
of cadnano. You need to cd into the 1.2-cylinders subfolder of
(/home/ubuntu/Desktop/TCBGTutorials/dna-nanostructure-visualization).
In this example, you will use FS-v4 02 topBeam cadnano25.json.
After cd’ing into the 1.2-cylinder subfolder, run the following instance of
mrdna from the commandline:

>> mrdna -d . -g 0 --draw-cylinders \

FS-v4_02_topBeam_cadnano25.json

The model will be built (i.e. FS-v4 02 topBeam cadnano25.psf,pdb,namd,exb),
along with the additional file FS-v4 02 topBeam cadnano25.cylinders.tcl.
Inside an open VMD session, run the following in the TKcon:

TK>> mol new FS-v4_02_topBeam_cadnano25.psf

TK>> mol addfile FS-v4_02_topBeam_cadnano25.pdb

TK>> source FS-v4_02_topBeam_cadnano25.cylinders.tcl

Double-stranded DNA helices will be represented by cyan cylinders, and stretches
of single-stranded DNA by narrower orange cylinders. After sourcing the TCL
file, the following options were set: Background white; AO Ambient 1.2 (Note:
to have such a value above 1.0, from the TKcon you must run (TK>> display

aoambient 1.2)); AO Direct 0.2; Shadows On; Amb. Occl. On.
The resulting visualization is Fig. 2C.

3 CREATING A FANCY IMAGE 9

3 Creating a fancy image

In Section 3, we will only provide you with coarse-grained topology and coor-
dinate files, and we will walk you through using VMD to make a fancy image,
featuring multiple selections, representations, and transparencies. First, cd into
the 2.0-pointer-fancy subfolder of
(/home/ubuntu/Desktop/TCBGTutorials/dna-nanostructure-visualization),
and load your molecule of interest. From the commandline:

>> cd 2.0-pointer-fancy

>> vmd pointer_v1_12_from_dietz-3.{psf,pdb}

This structure is output from mrdna run with pointer v1 12 from dietz.json.
One key feature of a PDB file is that it has two fields (i.e. columns) known as
“occupancy” and “beta” for every atom (or bead) in the file. mrdna has been
designed to output PDB files every major step of the multi-resolution process
that contain the helix ID as “occupancy” and the cadnano nucleotide ID as
“beta”, so the beta values will be determined by your .json file.

To create a fancy image, we will make four different representations (ab-
breviated as rep. henceforth). Open a representations window (VMD Main →
Graphics → Representations...), and create four reps. writing the following into
the “Selected Atoms” field:

1. z<-275 and not (same occupancy as (abs(x)<5))

2. beta 79 to 81

3. same occupancy as (abs(x)<5)

4. same occupancy as (abs(x)<5)

Rep. 1 combines a geometric condition with logic about helices. Rep. 2 selects
a range of cadnano nucleotide IDs at the center of the pointer structure. Reps.
3 & 4 select a range of helices that span the y- and z-axes.
Drawing Method. The Drawing Method of reps. 1, 2, 4 are Quicksurf, with
some variation in the specific presets for (Radius Scale, Density Isovalue, Grid
Spacing): 1 (3.5, 0.5, 3.0), 2 (6.0, 0.5, 3.0), 4 (4.0, 0.5, 3.0). And rep. 3 will be
drawn as “CPK” with Sphere Scale 10.0, Sphere Resolution 50, Bond Radius
10.0, Bond Resolution 50.
Color. After setting the background to white (VMD Main → Graphics → Col-

ors... → Display → Background → white), we will distinguish each rep. with
a different “ColorID”; click on the down arrow next to “Coloring Method”
(Graphical Representations → Coloring Method) and select “ColorID”; then, for

3 CREATING A FANCY IMAGE 10

each selection, choose the following colors: 1 (1 red), 2 (0 blue), 3 (4 yellow), 4
(8 white). To modify VMD’s definitions of “red” and “blue” type the following
into the TKConsole:

TK>> color change rgb red 0.9 0.45 0.33

TK>> color change rgb blue 0.27 0.52 0.9

Material. Reps. 1–3 will be drawn with Material “AOChalky”. For rep. 4,
we will create a new material that is semi-transparent. Navigate to Materials
(VMD Main → Graphics → Materials...). Then, highlight “AOChalky” and click
on the button “Create New”. This will copy the presets (i.e. Ambient, Diffuse,
Specular, ...) of “AOChalky” with the new name “Material23” (if desired,
you can change this name of your new material). For Material23, drag the
“Opacity” slider to 0.20 (Note: this can also be done from the TkConsole TK>>

material change opacity Material23 0.2). Also for Material23, turn on
“Angle-Modulated Transparency” by clicking of the box marked such.
Display Settings. You have a choice between “Perspective” and “Ortho-
graphic” views under the “Display”tab of VMD Main. To make this image, We
will select “Perspective” Under the display settings (VMD Main → Display →
Display Settings), set the “Screen Hgt” to 1.0 and “Screen Dist” to -1.0. Be
aware: this setting will make the image shown in your display window very sen-
sitive to rotations made by moving your mouse. Under Ray Tracing Options,
turn shadows and ambient occlusion on. Turn AOambient to 1.2, and AODirect
to 0.2. Furthermore, turn on DoF (i.e. depth-of-field), keeping the f/stop and
focal distances as default, since they will be changed interactively later when
rendering the image. Note: setting AOAmbient to above 1.0 needs to be done
from the TKcon:

TK>> display aoambient 1.2

Adding a stage. Optionally, you can add a stage beneath your image. We
have chosen to orient our structure so that, in VMD’s display window, the
positive y-axis is vertical, positive z is to the right, and positive x is pointing
into the screen. This orientation can be achieved by hand in the rotation mode
in VMD’s display window. If the axes are not showing in your window, turn
them on (VMD Main→ Display→ Axes) and select “Origin” from the pull-down
menu. The positive x-, y-, and z-directions will be shown as red, green, and
blue arows, respectively. In such a case, we want a stage to be a plane with
a specific value in y. Once you have the orientation described above, type the
following into the TKcon:

3 CREATING A FANCY IMAGE 11

TK>> source draw_stage_y.tcl

TK>> draw_stage_y -100

Figure 3: DNA origami pointer structure, drawn in VMD with the interactive
Tachyon OptiX renderer. It includes several different selections, drawing meth-
ods, materials, and colors. Also note that its shadow is cast upon a user-drawn
stage beneath the structure.

You can examine the content of draw stage y.tcl with a text editor, and copy
the file with a new name to make a script that would draw a plane in x or z,
if desired. After writting the lines above in the TKcon, it is possible that the
plane drawn will slice through the structure itself. If that is the case, you can
move the structure vertically in y, also in the TKcon, e.g. :

3 CREATING A FANCY IMAGE 12

TK>> set all [atomselect top "all"]

TK>> $all moveby "0 10 0"

These lines select the entire structure, and then move it 10 Å in the positive y

direction. The second line can be repeated several times, to obtain the desired
height above the stage drawn. Note: draw stage y.tcl draws a white stage,
in AOChalky material, both of which can be changed easily.
Rendering. Before rendering, we recommend that you save your current vi-
sualization state (VMD Main → File → Save Visualization State); you will then
be prompted to provide a filename, including the path desired; we recommend
the path to be the same location as the psf,pdb and the name to be something
along the lines of “pointer-visual-state.vmd”; you can include the date in the
filename as well, if desired.

In this example we will explain how to use the “TachyonL-OptiX (interac-
tive, GPU-accelerated)” renderer, for which you will need to have a GPU. There
are several advantages to this renderer: (1) it is interactive, i.e. you can rotate,
zoom, and translate after starting to render and before the image file is gener-
ated; and (2) OptiX rendering is fast, much faster than the standard Tachyon
renderer.

Go to the “File Render Controls” (VMD Main→ File→ Render...), select the
above-stated renderer, provide a unique filename (e.g. pointer-stage-optic.ppm),
and press the “Start Rendering” button. Because depth-of-field is on, the ini-
tial image will appear very blurry. Use zooming and translating (while having
VMD’s display window selected, type “t” on the keyboard, hold right-click down,
and drag your mouse to the right or left) to focus on the image appropriately.
Rotations can be made as well (go back to rotation mode by pressing “r” on
the keyboard).

After every change you make, the interactive window will display exactly
what your rendered image will look like. In this mode, you will see the shadow
the pointer casts on the stage drawn beneath it, for example. Note: after a
change, it may take a few seconds for the interactive window display to settle on
how the image will look. When you are happy with exactly how the image looks,
close the interative window, and the image file (pointer-stage-optic.ppm) will
be generated.

Lastly, you can edit the .ppm file in another software, if desired. This allows
you to change the saturation and exposure of the image. The final result of all
the steps detailed above is Fig. 3.

4 ANIMATION OF A STATIC STRUCTURE 13

4 Animation of a static structure

In Section 4, we will provide an example of how to generate an animation based
on a single structure, using the “View-Change-Render” GUI of VMD. You need
to cd into the 3.0-animation-from-static-structure subfolder of
(/home/ubuntu/Desktop/TCBGTutorials/dna-nanostructure-visualization),
First, load your desired structure into VMD, e.g. :

>> vmd bunny-3.psf bunny-3.pdb

Then, choose how to represent your structure. Note, with the method pre-
sented here, you cannot alternate between different representations through-
out the animation. For this example, we have chosen Drawing Material to be
“Quicksurf” (Radius Scale 5.5, Density Isovalue 1.0, Grid Spacing 4.0), Mate-
rial to be “AOChalky”, and Coloring Method “ColorID” (after redefining red:
color change rgb red 0.9 0.45 0.33).

watch
shortened

movie

move between
saved viewpoints

save & modify
viewpoints

set movie
time length

add viewpoints
to the movie

1.Choose a desired representation
2.Visually change the perspective
3.Then, save desired viewpoint

Figure 4: Computer screenshot highlighting VMD’s windows for display and
“View-Change-Render”. The annotated colored boxes explain different options.
Shown is the default initial view, achieved by pressing “=” on your keyboard
when VMD’s display window is highlighted.

Then open a “View-Change-Render” window (from VMD Main: Extensions →
Visualization → ViewChangeRender).

In Fig. 4 we highlight the different options for the “View-Change-Render”
window. Keeping the same representation, modify the perspective (as seen

4 ANIMATION OF A STATIC STRUCTURE 14

in the display window), then click on the “Save Viewpoint” button; they will
automatically be numbered in order of assignment (1,2,3,...). After several view-
points are saved, you can move to one from your current visualized state with
“Move To Viewpoint”.

1. 2. 3.

4. 5. 6.

7. 8. 9.

save viewpoints to
view-change-render

all viewpoints saved add all viewpoints
to movie

Movie Maker
“User Defined Procedure”

Translate into
the structure

90° rotation 90° rotation

zoom
in

same
as 4

Figure 5: Steps required to make the example animation. 1–7 display viewpoints
to save. Step 8 is adding those viewpoints to the movie. Step 9 is making the
movie itself.

In Fig. 5, we provide screenshots of viewpoints 1–7 saved in our example,
which can then be added to the movie (blue box in Fig. 5).

• Viewpoint 1 is the default view (which we can go to by pressing “=” on
the keyboard during a VMD session).

• Viewpoints 2 & 3 were generated by doing 90 degree rotations (from the
Tk console TK>> rotate x by -90, & TK>> rotate y by 90).

• Viewpoint 4 was achieved by zooming in.

• Viewpoint 5 by translating into the structure (Ctrl-t (to enter translate
mode), right-click with the mouse and drag to the right; alternatively,
from the Tk console: TK>> translate by 0 0 3).

• Viewpoint 6: select “Viewpoint #” 4, then press on “Move to Viewpoint”,
then click “Save Viewpoint”.

• Viewpoint 7 is achieved in a similar manner to Viewpoint 6, saving after
moving to 3.

4 ANIMATION OF A STATIC STRUCTURE 15

After saving all the desired viewpoints, in the desired order, click on “Add
All Viewpoints to Movie”. Note: the “MovieMaker Status” is disabled by de-
fault; after adding all your viewpoints, press on the “Enable” button under
that status “Preview Movie” will let you watch a short version of the anima-
tion you will generate. You can elongate the movie length by pressing “Set
Total Time” (for our demonstration, we set the total length to be 30 seconds).
Note, the viewpoints can be saved for use in the future using the “File” tab
of “View-Change-Render” (File → Save). After previewing the movie, and set-
ting the desired total time, you will use VMD’s movie maker (from VMD Main:
Extensions → Visualization → Movie Maker) to render frames and encode an
animation.

Snapshot,
TachyonL-OptiX,

Internal Tachyon, etc.

You have
just

defined a
procedure

render frames,
& encode movie

set image and movie format
e.g. MPEG-1 (ppmtompeg)

Images will be saved.
They can then be encoded into a

movie separately if desired.

Figure 6: Using VMD’s movie maker. Colored boxes annotate different options
and functionalities.

First, make a new folder, where you want the individual frames and the
entire movie to be made, and enter that location into “Set working directory”.
Then, choose a renderer. “Snapshot” can be chosen first, to make sure VMD’s
Movie Generator is generating the frames you expect it to.

Then we recommend switching to one of the tachyon options (e.g. “TachyonL-
OptiX”, “Internal Tachyon”) for a production-quality animation. Under “Movie
Settings”, click on “User Defined Procedure” to use the procedure you just de-
fined using “View-Change-Render”. Optionally, unclick “Delete image files”
(which is on by default) if you want to save all the images and have the option
of encoding the movie yourself later, as a separate step.

5 ANIMATION OF A TRAJECTORY 16

The Movie Maker’s “Format” tab allows you to control the file formats for
the images rendered and movie encoded (.ppm images and an .mpg movie by
default). Note: one way to check that the movie will follow your procedure is
to look at the “Movie duration (seconds): ” field. That amount of time (30.0
in Fig. 6) should match what you set in the “View-Change-Render” window.

After setting all options as desired, click on the “Make Movie” button, and
the rest is automated. By setting the Name of the movie to “bunny-animation”,
you will generate MPEG bunny-animation.mpg and images bunny-animation.XXXXX.ppm,
where “XXXXX” is replaced by numbers.

If you save the image files, you could perform your own encoding, e.g. from
commandline :

>> ffmpeg -i bunny-animation.%05d.tga -vcodec libx264 \

-crf 25 -pix_fmt yuv420p bunny-animation.mp4

That’s it. This process should work in general, for any set of defined view-
points.

5 Animation of a trajectory

In the final section, we will cover how to make an animation in VMD based on
a trajectory, a file containing many simulation snapshots of a single molecule.
The first subsection will provide a straightforward approach in which you will
load coarse-grained topology and trajectory files (as well as a DX file that repre-
sentations a nanopipette), and then use VMD’s built-in “Movie Maker” plugin
to make an MPEG movie file. In the final subsection of this tutorial, we will
walk you through making a movie with smooth transitions between different
representations, using VMD and TCL scripts to make the transitions and a
python script to encode the final animation.

5.1 Straightforward animation of a trajectory

This section will step you through loading a trajectory into VMD and using the
built-in movie maker plugin. You need to cd into the 4.0-fret-plate-movie

subfolder of
(/home/ubuntu/Desktop/TCBGTutorials/dna-nanostructure-visualization),
After initializing VMD, load a DX file (a text-based 3D potential file pot-600-cut-ds2.dx
that represents a nanopipette) by typing the following into the TKCon:

TK>> mol new pot-600-cut-ds2.dx

5 ANIMATION OF A TRAJECTORY 17

Then you can make a nice representation of this potential. In the Graphical

Representations window, select the DX molecule, for which the “Selection” field
will be disabled and displayed only as <volume>, set “Drawing Method” to
Isosurface, “Draw” to Solid Surface, “Show” to Isosurface, color the surface
silver (“Coloring Method” to ColorID 6), “Material” AOChalky, and set the
“Isovalue” field to 3.

At this point, you can also add all the display settings presets: a white
background (VMD Main → Graphics → Colors... → Display → Background
→ white); hide the axes (VMD Main → Display → Axes → Off); under VMD

Main, Display → Orthographic; under display settings (VMD Main → Display
→ Display Settings...) turn “Shadows” and “Amb. Occl.” on, “AO Ambient”
to 1.3 (from the TKcon TK>> display aoambient 1.3), “AO Direct to 0.0”.

Once the nanopipette potential has a nice representation, load the fret plate’s
topology file (plate-capture-1.psf) and trajectory file (plate-capture-1.dcd);
from the TKcon:

TK>> mol new plate-capture-1.psf

TK>> mol addfile plate-capture-1.dcd

After loading the trajectory, orient the perspective so you can see the downward
motion of the fret plate (TK>> rotate x by 90; TKcon>> rotate y by -90;
then enter translation mode by pressing “t” on the keyboard when VMD’s
display window is active). The inner channel of the nanopipette should be
visible from this perspective.

Figure 7: Individual frames of the fret plate movie you will generate using
VMD’s movie maker plugin.

5 ANIMATION OF A TRAJECTORY 18

Then make two different representations of the fret plate (in the Graphical

Representations window) with selections (1) “name DNA” and (2) “name NAS”.
They will select the double-stranded and single-stranded DNA separately. Dis-
play both with Material AOChalky and Drawing Method Quicksurf with “Density
Isovalue” 0.5 and “Grid Spacing” 1.0. Set the “Radius Scale” of (1) to 5.7, and
that of (2) to 7.5, and use the “ColorID” Coloring Method setting (1) to blue
and (2) to orange. As done previously throughout this tutorial, redefine VMD’s
“blue” (from the TKcon: TK>> color change rgb blue 0.27 0.52 0.9).

After an individual frame has the desired appearance, you will “smooth” the
trajectory. As you may not have noticed, the Graphical Representations window
actually has four tabs: “Draw Style”, “Selections”, “Trajectory”, and “Peri-
odic”. Only one of these tabs will be shown at any given time, and the default
one is “Draw Style”. Switch over to the “Trajectory” tab, and click on the
small right arrow next to the “0” under “Trajectory Smoothing Window Size”,
increasing the value to “3”. You can rewatch the trajectory now, if desired.
Note: smoothing needs to be done for the two representations separately (set
both to the same value).

You will now make a movie based on this trajectory using VMD’s “Movie
Maker” plugin (VMD Main → Extensions → Visualization → Movie Maker).
This will open a separate window. In another terminal, in your current work-
ing directory, make a new subfolder called “movie” (from the commandline
>> mkdir movie). Click on the “Set working directory:” button and type in
the location of this newly created “movie” subfolder. Change the name of the
movie to “fret-plate”, or another unique name if desired. For the sake of time,
when rendering your first movie, keep the “Renderer” as the default (“Snapshot
(Screen Capture)”), which could be changed to make a production-level movie
in the future (e.g. to “Tachyon Internal” or “TachyonL-OptiX”).

Then click on “Movie Settings”, and select “Trajectory”. Finally, press the
“Make Movie” button, which automates the process of rendering frames and
encoding the movie for you. You can track the progress by looking at the three
fields at the bottom: Status, Stage, and Progress. “Status” will provide the
name of the current “Stage” (there are 8 stages in total), and “Progress” will
display the number of frames rendered. Keeping the “Format” tab as default,
the entire process will result in making an MPG (fret-plate.mpg). We show
individual frames from such a movie in Fig. 7.

5.2 Advanced topic: movie with representation transi-

tions

In this section, you will make a sophisticated movie of the DNA origami pointer
structure. You need to cd into the 4.1-pointer-trajectory-movie subfolder
of

5 ANIMATION OF A TRAJECTORY 19

(/home/ubuntu/Desktop/TCBGTutorials/dna-nanostructure-visualization),
The final animation you generate will transition between several different rep-
resentations of the starting, idealized structure. And then, after highlighting a
specific structural feature, the trajectory will be played.

1 2 3

4 5

cylinder representation all Quicksurf multiple transparencies

highlight
3-junction stack play the trajectory

Figure 8: Process of making a more complex movie. Shown are the representa-
tions you will transition between to make a more complex movie.

You are provided with the DNA origami’s JSON file (pointer v1 12 from dietz.json),
PSF (pointer v1 12 from dietz-1.psf) that provides the topological informa-
tion, PDB (pointer v1 12 from dietz-1.pdb) that provides the initial ideal-
ized coarse-grained structural coordinates, and DCD (pointer v1 12 from dietz-1.dcd),
which is a trajectory file containing 1001 frames. Fig. 8 illustrates the stages
you will transition between.

Note: we have already provided .png files in the “frames” subfolder that
were generated from the procedure described below. To encode the file movie
without rendering the frames through VMD, skip ahead to the “Encoding
with python” section below.

To render the frames yourself in VMD, first, from the commandline, initialize
a VMD session while sourcing a saved visualization state (step1-cylinders.vmd):

>> vmd -e step1-cylinders.vmd

This will setup your display settings (white background, ambient occlusion, per-
spective, etc.), load the psf, pdb, and dcd files for the coarse-grained pointer,

5 ANIMATION OF A TRAJECTORY 20

and draw cylinders representing the pointer structure (which are graphics sep-
arate from the molecule itself).

After this is done, type the following into the TKCon:

TK>> source step1_make_transparent.tcl

This script transitions from cylinders to a Quicksurf representation (Fig. 8,
stages 1 to 2), saving individual frames of that transition to the subfolder
“frames”. Essentially, you are creating two custom materials, and, in a for loop
(text below), you are changing the opacity of the cylinders from fully opaque to
completely transparent, and doing the reverse for the Quicksurf representation.

for {set i 0 } {$i <= $num_frames_step1} {incr i } {

set m [expr (1.0/$num_frames_step1) * $i]

material change opacity Material29 $m #quicksurf appear

material change opacity Material30 [expr 1.0 - $m]

render TachyonLOptiXInternal frames/frame_${i}.tga

}

A similar approach will be taken to transition from stages 2–4 (i.e. 2 → 3 →
4). Run each of the following lines in the TKCon, one after the other:

TK>> source step2_showPlane.tcl

TK>> source step3_highlight_junction.tcl

step2 showPlane.tcl will do the transition (and save frames) from stages 2→
3; highlighting a specific plane of the pointer (i.e. selecting the atoms occupancy
40 to 49). step3 highlight junction.tcl renders frames for the transition
from stages 3 → 4, which higlights a specific structural motif of 3 vertically-
stacked junctions (in orange).

Finally, we convert the TARGA frames to PNG files to reduce size of the
output movie in the code block below. Note: the PNG frames are already
provided in the “frames” directory so this step can be skipped.

>> ./step4_convertTGAtoPNG.sh

Encoding the movie with python.
With the set of frames generated in the previous section (or with the .png

files provided in “frames” if you have skipped ahead), you will generate the final

5 ANIMATION OF A TRAJECTORY 21

movie that includes various overlaid images. This can be achieved by running
the 1 make movie.py python script from the commandline (the moviepy library
must be installed):

>> python 1_make_movie.py

Moviepy (https://github.com/Zulko/moviepy) is a versatile python library for
editing movies. As a short example of the overall work-flow using the moviepy
library, we take sets of frames a transition,

import numpy as np

from moviepy.editor import *

startFrame, endFrame = 0, 50

#make list of frames

frames = list(map(lambda x: ’frames/frame_{}.png’.\

format(int(x)),\

np.arange(startFrame,endFrame)))

#create first clip

clip1 = ImageSequenceClip(frames,fps=25)\

.resize(0.55).speedx(0.5)

and overlay images and textual elements found in the images folder,

#get an image to overlay

num1 = ImageClip(f’images/one.png’,duration=4)\

.resize(0.1)\

.set_pos((15,15))\

.set_start(0)

to encode a video clip,

REFERENCES 22

#put together image and clip

#set start times and sizes

Final_clip = CompositeVideoClip([

clip1.set_start(0),

num1.set_start(4)],

size=(cX,cY))

#encode clip using FFMPEG

Final_clip.write_videofile(f’Final_clip.mp4’,\

codec=’mpeg4’,threads=14,\

preset=’veryslow’,\

ffmpeg_params=[’-tune’,’film’,’-crf’, ’0’,’-b:v’,’6000k’])

For the full work-flow, refer to the 1 make movie.py script provided, and a
complete guide to the syntax and available methods can be found in the moviepy
documentation (http://zulko.github.io/moviepy/).

References

[1] W. Humphrey, A. Dalke, and K. Schulten. VMD: Visual molecular dynamics.
J. Mol. Graphics, 14(1):33–38, 1996.

	Introduction
	Representations specific to DNA nanostructures
	Chickenwire
	Nice quicksurf representation
	Cylinders a la cadnano

	Creating a fancy image
	Animation of a static structure
	Animation of a trajectory
	Straightforward animation of a trajectory
	Advanced topic: movie with representation transitions

