Molecular Dynamics Simulation of Membrane Channels

Part II. Structure-Function Relationship and Transport in Aquaporins

Summer School on Theoretical and Computational Biophysics June 2003, University of Illinois at Urbana-Champaign http://www.ks.uiuc.edu/training/SumSchool03/

Analysis of Molecular Dynamics Simulations of Biomolecules

- A very complicated arrangement of hundreds of groups interacting with each other
- · Where to start to look at?
- · What to analyze?
- · How much can we learn from simulations?

It is very important to get acquainted with your system

Aquaporins Membrane water channels

Lipid Bilayer Permeability

Water is an exception:

- ·Small size
- ·Lack of charge
- ·Its high concentration

Water Transport Across Cell Membrane

Always passive; bidirectional; osmosis-driven

- Diffusion through lipid bilayers slower, but enough for many purposes
- Channel-mediated

Large volumes of water needed to be transported (kidneys).

Fast adjustment of water concentration is necessary (RBC, brain, lung).

The Aquaporin Superfamily

Heymann and Engel News Physiol. Sci. 14, 187 (1999)

High Permeation to Water

Aquaporins of known structure:

GlpF - E. coli glycerol channel (aquaglycerolporin)
AQP1 - Mammalian aquaporin-1 (pure water channel)

Functionally Important Features

- · Tetrameric architecture
- · Amphipatic channel interior
- Water and glycerol transport
- Protons, and other ions are excluded
- Conserved asparagine-prolinealanine residues; NPA motif
- Characteristic half-membrane spanning structure

A Semi-hydrophobic channel

Molecular Dynamics Simulations

Protein: ~ 15,000 atoms Lipids (POPE): ~ 40,000 atoms Water: ~ 51,000 atoms Total: ~ 106,000 atoms

NAMD, CHARMM27, PME

NpT ensemble at 310 K

1ns equilibration, 4ns production

10 days /ns - 32-proc Linux cluster

3.5 days/ns - 128 O2000 CPUs

0.35 days/ns - 512 LeMieux CPUs

Protein Embedding in Membrane

Hydrophobic surface of the protein

Ring of aromatic side chains, specially tyrosines

Embedding GlpF in Membrane

A Recipe for Membrane Protein Simulations

- · Insert your protein into a hydrated lipid bilayer.
- Fix the protein; minimize the rest and run a short "constant-pressure" MD to bring lipids closer to the protein and fill the gap between the protein and lipids.
- Watch water molecules; if necessary apply constraints to prevent them from penetrating into the open gaps between lipids and the protein.
- Monitor the volume of your simulation box until it is almost constant. Do not run the system for too long during this phase.
- Now release the protein, minimize the whole system, and start an NpT simulation of the whole system.
- If desired, you may switch to an NVT simulation, when the system reaches a stable volume.

Lipid-Protein Packing During the Initial NpT Simulation

Adjustment of Membrane Thickness to the Protein Hydrophobic Surface

An extremely stable protein

Glycerol-Saturated GlpF

Description of full conduction pathway

Complete description of the conduction pathway

Details of Protein-Substrate Interaction Are Always Important

- Identify those groups of the protein that are directly involved in the main function of the protein.
- Look at the interaction of these primary residues with other groups in the protein.
- Look at buried charged residues inside the protein; they must have an important role.
- Backbone hydrogen bonds are mainly responsible for stabilization of secondary structure elements in the protein; side chain hydrogen bonds could be functionally important.

Channel Hydrogen Bonding Sites

```
{
set frame 0}{frame < 100}{incr frame}{
    animate goto $frame
    set donor [atomselect top
    "name O N and within 2 of
    (resname GCL and name HO)"]
    lappend [$donor get index] list1
    set acceptor [atomselect top
    "resname GCL and name O and
    within 2 of (protein and name HN HO)"]
    lappend [$acceptor get index] list2
}</pre>
```


13

Channel Hydrogen Bonding Sites

GLN	41	OE1 NE2	LEU	197	0	
TRP	48	O NE1	THR	198	0	
GLY	64	O	GLY	199	0	
ALA	65	O	PHE	200	0	
HIS	66	O ND1	ALA	201	O	
LEU	67	O	ASN	203	ND2	1101
ASN	68	ND2				Maria Maria
ASP	130	OD1	LYS	33	HZ1 HZ3	W. Tr. WIA
GLY	133	O	GLN	41	HE21	IN SOLVIN
SER	136	O	TRP	48	HE1	
TYR	138	O	HIS	66	HD1	
PRO	139	O N	ASN	68	HD22	NICALN
ASN	140	OD1 ND2	TYR	138	HN	
HIS	142	ND1	ASN	140	HN HD21 HD22	
THR	167	OG1	HIS	142	HD1	
GLY	195	O	GLY	199	HN	20 515
PRO	196	O	ASN	203	HN HD21HD22	
			ARG	206	HE HH21HH22	

Channel Hydrogen Bonding Sites

The Substrate Pathway

is formed by C=O groups

The Substrate Pathway

is formed by C=O groups

Conservation of Glutamate Residue in Human Aquaporins

Glycerol - water competition for hydrogen bonding sites

Revealing the Functional Role of Reentrant Loops

Single Glycerol per channel

Steered Molecular Dynamics

SMD Simulation of Glycerol Passage

Evidence for Stereoselectivity of Glycerol

Cannot be verified by experimental measurements

Free Energy Calculation in SMD

SMD simulation a non-equilibrium process

$$\Delta G \leq \langle W \rangle$$

One needs to discount irreversible work

$$e^{-\Delta G/k_BT} = \left\langle e^{-W/k_BT} \right\rangle$$

Jarzynski, *PRL* 1997 Hummer, *PNAS*, *JCP* 2001 Liphardt, et al., *Science* 2002

Constructing the Potential of Mean Force

Features of the Potential of Mean Force

- · Captures major features of the channel
- The largest barrier ≈ 7.3 kcal/mol; exp.: 9.6±1.5 kcal/mol

Assymetric structure; biological implication?

Asymmetric structure of maltoporin

Glycerol-Free GlpF

Water permeation

18 water conducted
In 4 monomers in 4 ns
1.125 water/monomer/ns

Exp. = $\sim 1-2 / ns$

5 nanosecond Simulation

7-8 water molecules in each channel

Download the movie from www.ks.uiuc.edu/Research/aquaporins

Correlated Motion of Water in the Channel

Correlated Motion of Water in the Channel

The single file of water molecules is maintained.

Diffusion of Water in the channel

One dimensional diffusion: $2Dt = \left\langle \left(z_t - z_0\right)^2 \right\rangle$

Experimental value for AQP1: 0.4-0.8 e-5

Diffusion of Water in the channel

Improvement of statistics

Density of O and H atoms along the GlpF channel

Water Distribution in Aquaporins

Water Bipolar Configuration in Aquaporins

Water Bipolar Configuration in Aquaporins

REMEMBER:

One of the most useful advantages of simulations over experiments is that you can modify the system as you wish: You can do modifications that are not even possible at all in reality!

This is a powerful technique to test hypotheses developed during your simulations. Use it!

Electrostatic Stabilization of Water Bipolar Arrangement

Proton transfer through water

Proton Blocking by a Global Orientation Mechanism

