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Analysis of Molecular Dynamics
Simulations of Biomolecules

* A very complicated arrangement of hundreds of groups
interacting with each other

- Where to start to look at?
* What to analyze?

« How much can we learn from simulations?

It is very important fo get
acquainted with your system



Aquaporins
Membrane water channels
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Water is an exception:

-Small size
‘Lack of charge
*Its high concentration



Water Transport Across Cell
Membrane

Always passive; bidirectional; osmosis-driven

- Diffusion through lipid bilayers

slower, but enough for many purposes

* Channel-mediated
Large volumes of water needed to be transported
(kidneys).
Fast adjustment of water concentration is necessary
(RBC, brain, lung).

The Aquaporin Superfamily
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Aquaporins in
Human Bod
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Additional members are suspected to exist.

Aquaporins in
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High Permeation to Water
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>200 Liters
Water
Everyday!

Nephrogenic diabetes insipidus

Tetrameric pore

Monomeric pores Perhaps ions???

Water, glycerol, ...

Aquaporins of known structure:
GlpF - E. coli glycerol channel (aquaglycerolporin)
AQP1 - Mammalian aquaporin-1 (pure water channel)




Functionally Important
Features

Tetrameric architecture
Amphipatic channel inferior
Water and glycerol transport
Protons, and other ions are
excluded

Conserved asparagine-proline-
alanine residues; NPA motif
Characteristic half-membrane
spanning structure

~100% conserved -NPA- signature sequence

N——E WPA ]/\f_ C

A Semi-hydrophobic channel




Molecular Dynamics Simulations

Protein: ~ 15,000 atoms
Lipids (POPE): ~ 40,000 atoms
Water: ~ 51,000 atoms
Total: ~ 106,000 atoms

NAMD, CHARMM27, PME
NpT ensemble at 310 K
Ins equilibration, 4ns production

10 days /ns - 32-proc Linux cluster
3.5 days/ns - 128 02000 CPUs

0.35 days/ns - 512 LeMieux CPUs

Hydrophobic surface Ring of aromatic
of the protein side chains,
specially tyrosines



Embedding GIpF in Membrane
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112 A




A Recipe for Membrane Protein Simulations

Insert your protein into a hydrated lipid bilayer.

Fix the protein; minimize the rest and run a short
"constant-pressure” MD to bring lipids closer to the
protein and fill the gap between the protein and lipids.

Watch water molecules; if necessary apply constraints
to prevent them from penetrating into the open gaps
between lipids and the protein.

Monitor the volume of your simulation box until it is
almost constant. Do not run the system for too long
during this phase.

Now release the protein, minimize the whole system,
and start an NpT simulation of the whole system.

If desired, you may switch to an NVT simulation, when
the system reaches a stable volume.

Lipid-Protein Packing During the
Initial NpT Simulation
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Adjustment of Membrane Thickness to
the Protein Hydrophobic Surface

An extremely stable protein

Stability of NPA - NPA Interaction
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Glycerol-Saturated GlpF
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Description of full conduction pathway

Complete description of the conduction pathway

Selectivity
filter

Constriction region
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Details of Protein-Substrate
Interaction Are Always Important

+ Identify those groups of the protein that are
directly involved in the main function of the protein.

* Look at the interaction of these primary residues
with other groups in the protein.

* Look at buried charged residues inside the protein;
they must have an important role.

* Backbone hydrogen bonds are mainly responsible for
stabilization of secondary structure elements in the
protein; side chain hydrogen bonds could be
functionally important.

Channel Hydrogen Bonding Sites

{set frame O}{frame < 100}{incr frame}{

animate goto $frame

set donor [atomselect top

“name O N and within 2 of
(resname GCL and name HO0)"]
lappend [$donor get index] listl
set acceptor [atomselect top
“resname GCL and name O and
within 2 of (protein and name HN HO)’]
lappend [$acceptor get index] list2 '
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Channel Hydrogen Bonding Sites
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The Substrate Pathway
is formed by C=0O groups

The Substrate Pathway
is formed by C=0O groups

Non-helical motifs |
are stabilized by /)
two glutamate
residues.
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Conservation of Glutamate Residue in
Human Aquaporins

Glycerol - water competition for
hydrogen bonding sites

& 4
¥
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Revealing the Functional Role of
Reentrant Loops

Potassium channel

Single Glycerol per channel
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initial state &

& ~

Note that glycerols moved, but not'
as extensively as earlier! '

\!
= A/

We need to enforce
an entire
conduction event.

Steered Molecular Dynamics

constant force constant velocity
(250 pN) (30 A/ns)
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SMD Simulation of Glycerol Passage

Trajectory of glycerol pulled by constant force
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Cannot be verified by experimental measurements
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Free Energy Calculation in SMD

20 . : SMD simulation
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Features of the Potential of Mean Force
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* Captures major features of the channel
* The largest barrier ~ 7.3 kcal/mol; exp.: 9.6+1.5 kcal/mol

Asymmetry of the
Potential of Mean Force

Periplasm<_"

Asymmetric Profile in the Vestibules Ph°SPh°f‘Y|0'f§°n
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Assymetric structure;

OmpF Maltoporin

biological implication?

GIpF AQP1
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Glycerol-Free GlpF

5 nanosecond
Simulation

~_

18 water conducted
In 4 monomers in 4 ns
1.125 water/monomer/ns

Exp. = ~ 1-2 /ns

molecules in each
channel
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Download the movie from www.ks.uiuc.edu/Research/aquaporins

Correlated Motion of Water in the Channel
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Correlated Motion of Water in
the Channel
The single fi WL N Ty ORI
e single file of il VAT .

water molecules is
maintained.
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Diffusion of Water in the channel
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One dimensional diffusion: 2 Dt = <(Zt — ZO)2>
Experimental value for AQP1: 0.4-0.8 e-5
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Diffusion of Water in the channel
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Improvement of statistics

Density of O and H atoms along the GIpF channel
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relative atomic density (10-3)

Water Bipolar Configuration in Aquaporins

Water Distribution in Aquaporins
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relative atomic density (10-3)
L=

Water Bipolar' Configuration in Aquaporins
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order parameter

REMEMBER:

One of the most useful advantages of
simulations over experiments is that you
can modify the system as you wish: You
can do modifications that are not even
possible at all in reality!

This is a powerful technique to test
hypotheses developed during your
simulations. Use itl

Electrostatic Stabilization of
Water Bipolar Arrangement
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Aquaporins

Cl- ghannel

Proton transfer through water
K* channel
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Proton Blocking by a Global
Or'len‘rahon Mechamsm
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<= Paul Grayson
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