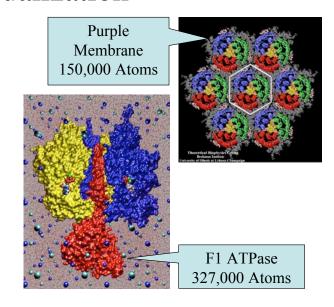
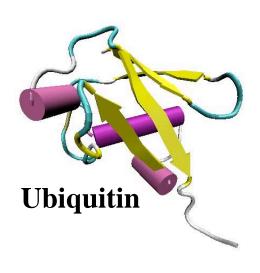
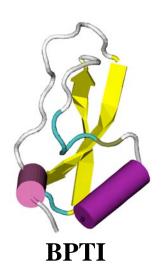

Molecular Graphics Perspective of Protein Structure and Function

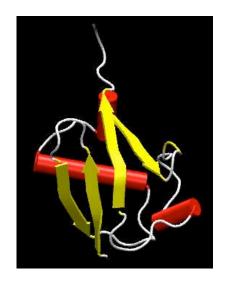

VMD Highlights

- > 40,000 registered users
- Platforms:
 - Unix (16 builds)
 - Windows
 - MacOS X
- Display of large biomolecules and simulation trajectories
- Sequence browsing and structure highlighting
- Multiple sequence structure analysis
- User-extensible scripting interfaces for analysis and customization




VMD Permits Large Scale Visualization

- Large structures: 300,000 atoms and up
- Complex representations
- Long trajectories: thousands of timesteps
- Volumetric data
- Multi-gigabyte data sets break 32-bit barriers
- Handles large data sets, e.g., GlpF: each 5 ns simulation of 100K atoms produces a 12GB trajectory


Focus on two proteins Ubiquitin Bovine Pancreatic Trypsin Inhibitor (BPTI)

Ubiquitin

- 76 amino acids
- highly conserved
- Covalently attaches to proteins and tags them for degradation

- Glycine at C-terminal attaches to the Lysine on the protein by an isopeptide bond.
- it can attach to other ubiquitin molecules and make a polyubiquitin chain.

There are 7 conserved lysine residues in ubiquitin.

Two ubiquitins attached together through LYS 48. LYS 63 and LYS 29 are also shown there.

Ubiquitination Pathway

"for the discovery of ubiquitin-mediated protein degradation"

Ciechanover

1/3 of the prize

Technion - Israel Institute of Technology Haifa, Israel

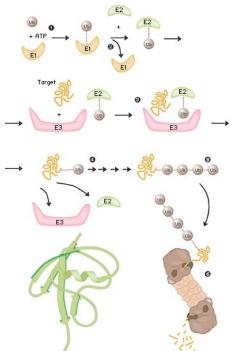
b. 1947

Avram Hershko

1/3 of the prize

Technion - Israel Institute of Technology Haifa, Israel

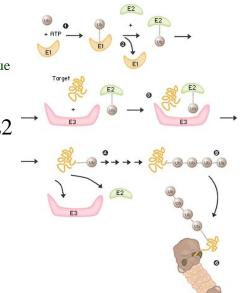
b. 1937 (In Karcag, Hungary)


Irwin Rose

1/3 of the prize

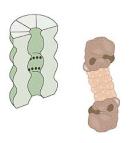
University of California Irvine, CA, USA

b. 1926


Ubiquitin-mediated protein degradation

Ubiquitination Pathway

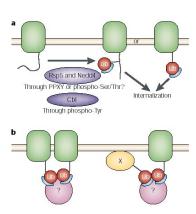
Activation by E1 (ATP dependent process) (thiol-ester linkage between a specific cysteine residue of E1 and Glycine on ubiquitin)


- Transfer to a cysteine residue on E2 (ubiquitin conjugation enzyme)
- Transfer of ubiquitin by E3 to the substrate lysine residue.
- E3 recognizes the ubiquitination signal of the protein.

Ubiquitin Functions

Tagging proteins to be degraded in the proteasome.

- degrading misfolded proteins
- regulates key cellular processes such as cell division, gene expression, ...

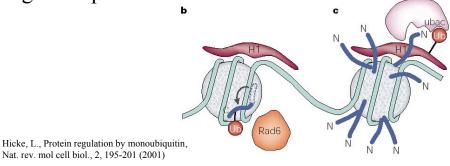


The cell's waste disposer, the proteasome. The black spots indicate active, protein-degrading surfaces.

A chain of at least four ubiquitins is needed to be recognized by the proteasome.

Ubiquitin acts independent of proteasome degradation

- Controlling the traffic in the cell
- Directing the traffic in the cell, i.e., determining where the newly synthesized proteins should go
- Tagging membrane proteins for internalization

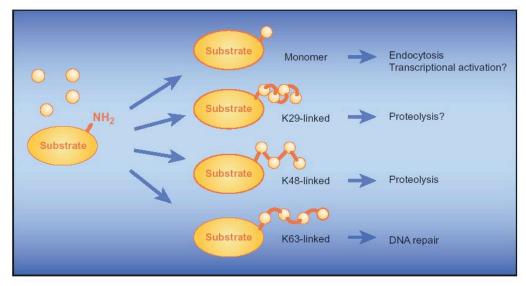


2. Regulating gene expression:

(indirectly, by destruction of some of the involved proteins)

Recruiting Transcription Factors (proteins needed for gene expression)

 Conformational changes in Histone, necessary before gene expression

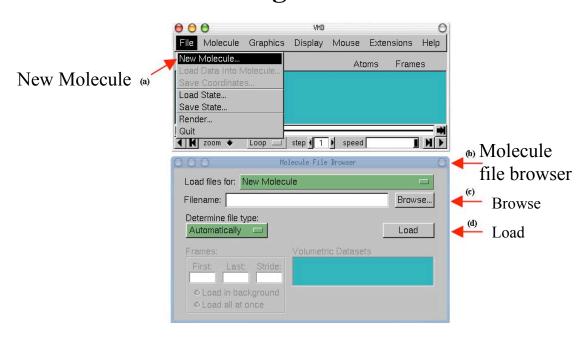

Different types of ubiquitin signals arise from

- Length of the ubiquitin chain
- How ubiquitins are attached together
- Where the signals are read

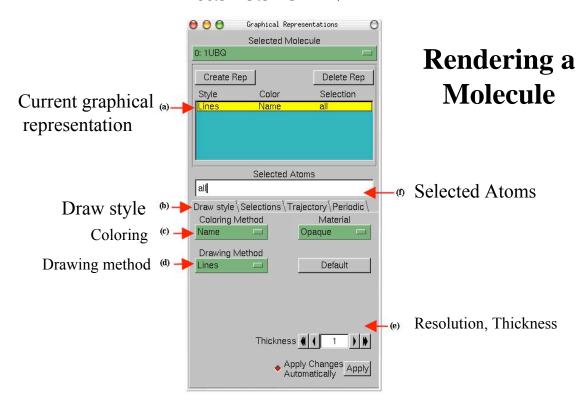
Examples:

- multi-ubiquitin chains, linked through Lysine 48, target protein for proteasome degradation
- K63 linkages direct DNA repair

Mono-ubiquitylation versus multi-ubiquitylation

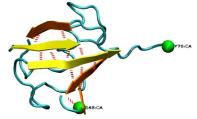


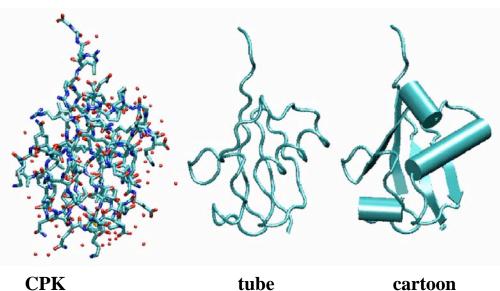
Multifaceted. Ubiquitin can attach to its various substrate proteins, either singly or in chains, and that in turn might determine what effect the ubiquitination has. (K29, K48, and K63 refer to the particular lysine amino acid used to link the ubiquitins to each other.)

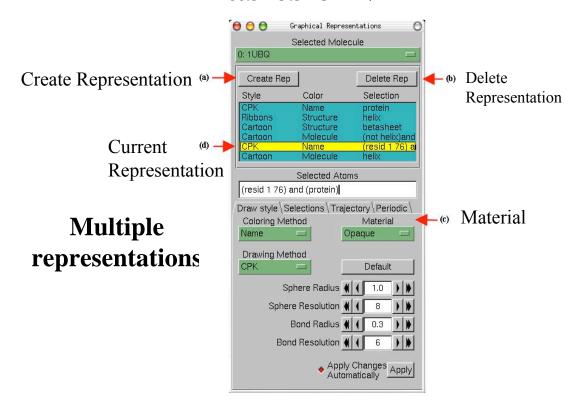

Marx, J., Ubiquitin lives up its name, Science 297, 1792-1794 (2002)

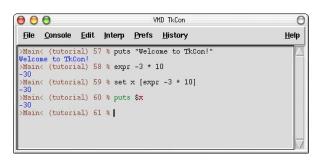
Basics of VMD

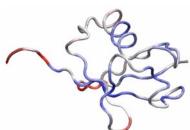
Loading a Molecule

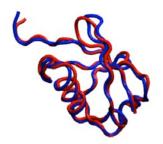


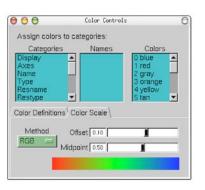

Basics of VMD


Basics of VMD


Change rendering style

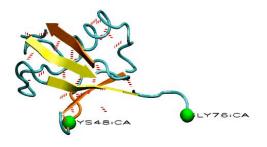



Basics of VMD



VMD Scripting

Left: Initial and final states of ubiquitin after spatial alignment Right (top): Color coding of deviation between initial and final



The Color Controls window showing the Color Scale tab.

VMD Sequence Window 000 <u>H</u>elp 23 ILE X 24 GLU X 25 ASN X 26 VAL X 27 LYS X 28 ALA X ⁶⁰ Beta Value Close Window List of (e) Structure the residues Molecule: 0 0.01 0.51 Zoom (1) 1.01 1.00 1.51 2.01 every residue T: Turn E: Extended conformation H: Helix B: Isolated Bridge G: 3-10 helix I: Phi helix

VMD Macros to Color Beta Strands

Use VMD scripting features to color beta strands separately; show hydrogen bonds to monitor the mechanical stability of ubiquitin

Discovering the Mechanical Properties of Ubiquitin

Ubiquitin stretched between the C and the N termini extends fully!

Discover BPTI on your own!

bovine pancreatic trypsin inhibitor

- Small (58 amino acids)
- rigid

- Binds as an inhibitor to Trypsin
 (a serine proteolytic enzyme, that appears in digestive system of mammalians.)
- Blocks its active site.

$$E+R_1-C-N-R_2 \underset{k_{-1}}{\overset{k_1}{\longmapsto}} E\cdot R_1-C-N-R_2 \\ H \\ (Michaelis complex) \\ (Acyl-enzyme with leaving peptide noncovalently bound) \\ O \\ E-C-R_1\cdot H_2N-R_2+H_2O \underset{k_{-3}}{\overset{k_2}{\longmapsto}} E+R_1-C-OH+H_2N-R_2 \\ (Free enzyme and products) \\ (Free enzyme and products)$$

Mechanism of cleavage of peptides with serine proteases. Radisky E. and Koshland D. Jr., Proc. Natl. Acad. Sci., USA, 99, 10316-10321

Trypsin: A proteolytic enzyme that hydrolyzes peptide bonds on the carboxyl side of Arg or Lys.

BPTI: A "standard mechanism" inhibitor

- Binds to Trypsin as a substrate.
 forms an acyl-enzyme intermediate rapidly.
- Very little structural changes in Trypsin or BPTI several H-bonds between backbone of the two proteins chan little reduction in conformational entropy → binds tightly
- Remains uncleaved.
 hydrolysis is 10¹¹ times slower than for other substrates

Structures of the protease binding region, in the proteins of all 18 families of standard mechanism inhibitors are similar.

Why does Trypsin cleave BPTI so slowly?

- Disruption of the non-covalent bonds in the tightly bonded enzyme-inhibitor complex, increases the energy of transition states for bond cleavage.
- Water molecules do not have access to the active site, because of the tight binding of Trypsin and BPTI.
- After the cleavage of the active-site peptide bond, the newly formed termini are held in close proximity, favoring reformation of the peptide bond.
- The rigidity of BPTI may also contribute by not allowing necessary atomic motions.

Dance of Ubiquitin