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Abstract

Since the introduction of standard techniques for isosur-
face extraction from volumetric datasets, one of the hardest
problems has been to reduce the number of triangles (or
polygons) generated.

This paper presents an algorithm that considerably reduces
the number of polygons generated by a Marching Cubes-like
scheme without excessively increasing the overall computa-
tional complexity. The algorithm assumes discretization of
the dataset space and replaces cell edge interpolation by
midpoint selection. Under these assumptions, the extracted
surfaces are composed of polygons lying within a finite num-
ber of incidences, thus allowing simple merging of the output
facets into large coplanar polygons.

An experimental evaluation of the proposed approach on
datasets related to biomedical imaging and chemical mod-
elling is reported.

1 Introduction

The use of the Marching Cubes (MC) technique, originally
proposed by W. Lorensen and H. Cline [7], is considered to
be a standard approach to the problem of extracting isosur-
faces from a volumetric dataset. Marching Cubes is a very
practical and simple algorithm and many implementations
are available both as part of commercial systems or as pub-
lic domain software.

Despite its extensive use in many applications, it does have
some particular shortcomings: topological inconsistency [1],
algorithm computational efficiency and excessive output data
fragmentation. Standard MC produces no consistent notion
of object connectivity; the local surface reconstruction crite-
rion used give rise to a number of topological ambiguities,
and therefore MC may output surfaces which are not neces-
sarily coherent. These shortcomings have been extensively
studied [11] and solutions have been proposed [12, 15, 8].
MC computational efficiency can be increased by exploit-
ing implicit parallelism (each cell can be independently pro-
cessed) [4] and by avoiding the visiting and testing of empty
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cells or regions of the volume [14].

Excessive fragmentation of the output data can prevent in-
teractive rendering when high resolution datasets are pro-
cessed. What has changed since the technique was intro-
duced seven years ago, has been the amount of data to be
processed while extracting such surfaces. Equipments that
can generate volumetric datasets as large as 512x512%[< 512]
are now generally available, and we are on the way to achiev-
ing machines capable of producing 1024 * 1024 x [< 1024]
datasets or, in other words, 1 Gigavoxel per dataset. Al-
though an isosurface does not usually cross all the voxels,
we can understand how easy it is to generate more than one
million triangles per surface. State-of-the-art hardware is
not yet fast enough to manipulate such masses of data in
real time.

These obstacles gave rise to substantial research aimed at
reducing the number of triangles generated by MC. The so-
lutions proposed can be classified into adaptive techniques,
where the cell size is locally adapted to the shape of the sur-
face [10] or the dataset is organized into high and low inter-
est areas and more primitives are produced in selected areas
only; and filtering techniques, where facet meshes returned
by a surface fitting algorithm are filtered in order to merge
or eliminate part of them.

Filtering-based approaches can be classified as:

a) coplanar facets merging, in which facets are filtered by
searching for and merging coplanar and adjacent facets [6];

b) elimination of tiny facets, where the irregularity of the
surface produced is reduced by eliminating the tiny trian-
gles produced when the iso-surface passes near a vertex or
an edge of a cubic cell; this is accomplished by bending the
mesh so that a number of selected mesh nodes will lie on the
iso-surface and the tiny triangles will degenerate into single
vertices. The solution is based on a modified iso-surface fit-
ting algorithm and a filtering phase; 40% reductions in the
number of triangles are reported [9];

c) approzimated surface fitting, based on trading off data
reduction for a reduction in the precision of the representa-
tion generated, using error criteria to measure the suitability
of the approximated surfaces.

Schroeder et al. [13] proposed an algorithm based on mul-
tiple filtering passes, that by analysing locally the geometry
and topology of a triangle mesh removes vertices that pass
a minimal distance or curvature angle criterion. The advan-
tage of this approach is that any level of reduction can be
obtained, on the condition that a sufficiently coarse approx-
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Figure 1: The set of different vertex locations produced by
DiscMC.

imation threshold is set; reductions up to 90% have been
obtained with an approximation error lower than the voxel
size.

In another approach, by Hoppe et al. [5], mesh optimiza-
tion is achieved by evaluating an energy function over the
mesh, and then minimizing this function by either remov-
ing/moving vertices or collapsing/swapping edges.

Both approaches require a topological representation of the
mesh to be decimated.

In this work we propose Discretized Marching Cubes
(DiscMC), an algorithm situated half-way between the cu-
berille method, which assumes constant value voxels and
directly returns the voxels faces (orthogonal to the volume
axes) (3], and the cell interpolation approach of MC. On the
basis of two simple considerations, which both relate to data
characteristics and visualization requirements, our solution
leads to interesting reductions in output fragmentation by
applying a very simple filtering approach. Moreover, the
use of an unambiguous triangulation scheme [8] allows iso-
surfaces without topological anomalies to be obtained.

2 The Discretized Marching Cubes Algorithm

Given a binary dataset, linear interpolation is not needed
to extract isosurfaces. When a cell edge in a binary dataset
has both on and off corners, the midpoint of the edge is the
intersection being looked for.

In a number of applications where approximated isosurfaces
might be acceptable, the former assumption can be reason-
ably extended to n-value high resolution datasets. The max-
imal approximation error involved by adopting midpoint in-
terpolation is 1/2 of the cell size, and in some applications
the resolution of the dataset justifies such a lack of preci-
sion. Considering a 512 % 512 % [< 512] resolution, rendering
the isosurface generated produces approximately the same
images whether linear interpolation or midpoint selection is
used.

Discretized Marching Cubes (DiscMC) is here proposed
as an evolution of MC based on midpoint selection. The
set of vertices that can be generated by DiscMC are shown
in Figure 1: there are only 13 different spatial locations on
which new vertices can be created (12 cell-edge midpoints
plus the cell centroid). Moreover, applying midpoint selec-
tion in MC allows for a finite set of planes where the gen-
erated facets lie. We have only 13 different plane incidences
onto which a facet can lie, and these are described by the
following equations:
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Figure 2: The facets returned by DiscMC for each different
plane incidence.
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Figure 3: The sets of facets returned by DiscMC for each
cell vertex configuration.
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As shown in Figure 2, for each incidence the algorithm gen-
erates a limited number of different facets.

The following considerations are the basis of our DiscMC
algorithm:

a) each facet can be simply classified in terms of its shape
and plane incidence;

b) the limited number of different plane incidences increases
the percentage of coplanar adjacent facets and therefore
drastically reduces the number of polygons returned while
preserving small, but possibly significant, roughnesses;

c) the algorithm does not require interpolation of the surface
intersections along the edges of the cells; this implies that it
works in integer arithmetic (except for the computation of
normals) at a higher speed than standard methods.

2.1 A new lookup table

For each on-off combination of the cell vertices (there are
256 different combinations), the standard MC lookup table
(lut) codes the number of triangles produced and the cell
edges on which these vertices lie.

DiscMC requires a simple reorganization of the standard MC
lut. Midpoint selection means that the number of different
facets returned by DiscMC is fixed, and we only have a con-
stant number of different output primitives for each plane
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Figure 4: Some cell configurations and related DiscMC
lookup table entries.

incidence: only right triangles are generated on planes ¢ = c,
y = cand z = ¢ (Figures 2.1, 2.2 and 2.3); only rectangles on
planes z + y = ¢,z + 2 = c and y + 2 = ¢ (Figures 2.4, 2.5,
2.6, 2.7, 2.8 and 2.9); only equilateral triangles on planes
z +y=+ z = c (Figures 2.10, 2.11, 2.12 and 2.13). Moreover,
using midpoint interpolation means that the geometrical lo-
cation of facet vertices depends solely on the vertices con-
figuration and the position of the cell in the dataset mesh.

Under these assumptions, the resulting facet set returned
by DiscMC for each of the canonical MC configurations is
reported in Figure 3. With respect to the original proposal
by Lorensen and Cline we omit configuration 14 (this can be
obtained by reflection from configuration 11, i.e. configura-
tion k in Figure 3.). Furthermore, three more configurations
have to be managed in order to prevent topological ambigu-
ity (configurations n, o and p in Figure 3 [8]).

Each facet is coded in the DiscMC lut by using a shape code,
which codifies the shape and position of the facet (1..4 for
right triangles, 1..2 for rectangles and 1..8 for equilateral tri-
angles), and an incidence code, i.e. the plane on which the
facet lies. Geometrical information on the facet vertices is
not explicitly stored in the DiscMC lut.

For each cell vertex configuration, DiscMC lut stores from
zero up to seven facets, each represented by a shape code
(1..8) and an incidence code (-13..13). We use signed inci-
dences to store separately facets which lie on the same plane
and have opposite normals direction (both in order to give
an implicit representation of facet orientation and to fast
facet search in the postprocessing merging phase).

Some cell configurations are graphically represented in Fig-
ure 4, together with the corresponding DiscMC lut entries.

2.2 lsosurface extraction

The isosurface reconstruction process returns intermediate
results using a set of indexed data structures. The volume
dataset is processed slice by slice. For each cell traversed
by an isosurface, the DiscMC produces a set of facets by




means of the DiscMC lut. Each facet is coded by its shape,
incidence and the index of the cell in which it lies (i.e. its
geometical position).

In order to optimize the merging phase the facets produced
are stored in a number of hash tables, one for each different
incidence of the facets. Thus, 26 hash tables are used, and
hash indexes are computed in terms of shape code and cell
index.

2.3 Post-processing merging phase

The merging phase begins when the isosurfaces have been
fitted. Each hash table is analyzed in order to search for
adjacent faces, which by construction of the hash tables will
also be iso-oriented and mergeable. Hash coding is chosen
to allow a rapid search for adjacent facets (a nearly constant
mean access time has been measured in a number of algo-
rithm runs).

The merging algorithm does not work with the vertex co-
ordinates of each merging polygon, but adopts Freeman’s
chains [2] as an intermediate representation scheme. In this
scheme, a polygonal line is represented by the coordinates
of the starting point of the chain and a set of directed links,
that is, a set of relative displacements. This solution allows
the unnecessary vertices to be rapidly eliminated.

The merging algorithm is simple and efficient. Due to
the limited number of facet shapes and orientations, for each
facet f and for each edge e of f the facet f’ which might be
adjacent on e to f is univocally determined. The algorithm
is outlined in Figure 5 (an example is shown in Figure 6).

PUSH" verifies, for each edge pushed onto the edgestack,
if an opposite edge exists on the stack, i.e. an edge with the
same geometrical position but moving in the opposite direc-
tion. If this edge exists, mark both the edges as connecting
edges. Marked edges will produce either connecting links
(i.e. links which connect the starting point of the chain to
the boundary of the region, or the boundary of the region
to the boundary of the holes; see links 2 and 7 in the 15th
tiles triple of Figure 6), or consecutive opposite links that
have to be eliminated due to the reconstruction algorithm
adopted.

The Merge algorithm main loop iterates until hash tables
are empty. For each iteration of the first while loop, Merge
produces the boundary of a region (anticlockwise in our im-
plementation) and the boundaries of the holes (clockwise),
if any. At the end of each iteration the boundaries of regions
and holes are reconstructed by eliminating the marked links
and, if necessary, by splitting the chain. Chains are then
converted in the usual vertex—based representation.

The Merge algorithm uses a set of simple lookup tables
which permit a general procedure to be designed irrespective
of the type of the facets and the plane they belong to. These
lookup tables store:

e the edges to be pushed onto the edgestack (depending
on the starting point chosen);

e the edges to be pushed onto the edgestack when an
adjacent facet has been found, or otherwise the link to
be added to the Freeman’s chain;

e the position (with respect to the current cell) of the
cells to be inspected for adjacent facets.

In addition, through lookup tables we convert the chain links
into relative displacements depending on the incidence plane
we are examining.
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Figure 7: The links of Freeman’s chains for (a) right trian-
gles belonging to plane 3, (b) rectangles of plane 9, and (c)
equilateral triangles of plane 12.

As previously introduced, with Freeman’s chain representa-
tion scheme (Figure 7 shows the links used for three types of
elementary primitives) unnecessary vertices can be removed
by simply converting equal consecutive links into a single
segment.

The worst case computational complexity of the merging
phase is linear to the number of facets returned by the iso-
surface reconstructor. For each edge, the merger computes
the potential adjacent facet and searches for such a facet in
the hash table (a nearly constant time operation). In the
worst case, when no mergeable facet pairs exist, the test is
repeated e times for each facet f, with e the number of edges
of facet f.

2.4 Vertex normals computation

Normals on the vertices of the isosurfaces extracted are
needed in order to compute Gouraud or Phong shading.
Normals can be computed during isosurface extraction (in
terms of gradients [16], as in standard MC) or after the
merging phase. In the current DiscMC implementation we
computed vertex normals at the end of the merging process
in order to avoid computing and storing a lot of unnecessary
vertex normals. However, further processing of the volume
data is thus needed.

3 Evaluation of results and conclusions

We tested DiscMC on a series of different datasets and com-
pared results with a classic MC implementation. Table 1 re-
ports the number of polygons generated and it refers to three
datasets: Sphere is a voxelized sphere, Buckyball is the
electron density around a molecule of Cso (courtesy of AVS
International Centre) and Head is a CAT scanned dataset
(courtesy of of Niguarda Hospital, Milan, Italy). The num-
bers of facets and vertices returned by Classic MC and Dis-
cMC are reported in Table 1. DiscMC returns triangular
(3 — facets), quadrilateral (4 — facets) or n-sided facets



Algorithm MERGE

input HTy, ..., HTy6:facet_hash_tables;
output F:facet_list;
begin

for each hash table HT; do
while HT; is not empty do

e extract a facet f from hash table HT};

® select one of the vertices of f as the starting point of the

current Freeman chain;

o push the edges of the facet onto the edgestack (LIFO);

{each edge is coded in the edgestack by the shape code of the current facet
and the shape code and the cell coordinates of the potential adjacent facet.
This notation will indicate, for each edge extracted from edgestack,

the source facet and the adjacent facet to be searched for.}

while edgestack is not empty do

er:=POP(edgestack); {er:edge record}

fadji=er.adjacent_facet;

if facet faq; is contained in HT;

then

e extract the facet foq;;
for each edge e; € foq; such that e; # er do
PUSH"(edgestack, e;); {PUSH": see text in Section 2.3}

else

¢ add a link to the chain which is directed according to the current edge er;
o if the edge is a connecting edge, add a marked link to the current chain
(e.g. the link with a white arrow head in the 16th tile triple in Figure 6);

e insert the current Freeman chain into F;

end algorithm.

Figure 5: Pseudocode of the Merge algorithm

(n — facets); the respective numbers are in the rightmost
three columns in Table 1.

Time comparison needs to be split into three steps: facet
extraction, merging and generation of normals. The per-
centage of time spent in each stage of the computation varies
from dataset to dataset; on average, it takes about 10% of
the total time to extract facets, 85% to merge polygons, and
about 5% to generate normals. The buckyball dataset and
the head dataset, which are comparable in terms of voxel
number, took around 2-3 minutes and 6-7 minutes, respec-
tively, on an IBM RISC6000/550 workstation.

It is difficult to make a time comparison with other fil-
tering approaches, because most of them do not report the
running times but only the simplification percentages ob-
tained. The mesh optimization approach by Hoppe et al.
[5] is the only alternative technique which reports running
times; the simplification of meshes (8000-18000 facets) with
this method, which produces very good results indeed, took
tens of minutes on a DEC Alpha workstation.

In the proposal by Schroeder et al. [13] running times are
not reported, but the decimation phase is a much more com-
plex task than the simple merging phase of DiscMC. In fact,
the simplification of the mesh is obtained by multiple passes
over the mesh. At each pass a vertex is selected for removal,
all triangles that are incident on that vertex are removed,
and the resulting hole is patched by computing a new local
triangulation.

On the other hand, in the worst case, DiscMC has a com-
plexity linear to the number of edges: for each edge of each
facet, it searches for the adjacent facet on a hash list (a
constant time and cheap operation), and makes an inser-
tion/removal onto/from the edge stack.

The reduction in time complexity is significant, because the

design goal of DiscMC was to give simplified meshes with
high efficiency, to be used, for example, while searching for
the correct threshold. Once this threshold has been selected,
a more sophisticated method such as [13] can be used to ob-
tain the best approximated mesh.

Another characteristic which differentiates DiscMC from
other simplification approaches is that it does not entail
managing a geo-topological representation of the triangle
mesh. The topological relations are implicitly stored in the
coding scheme used (facets shape and incidence) and this
simplifies the implementation at the cost of single constant—
time search into hash lists.

The results obtained and the good quality of the output
images (the colour plates in Figures 9 and 11 were obtained
with our algorithm, while the ones on Figures 8 and 10 were
obtained with classic MC without mesh simplification) sup-
port our claim that Discretized Marching Cubes represents
a valid tool for the rapid reconstruction and visualization of
isosurfaces from medium and high resolution 3D datasets.
One of the most salient characteristics of the algorithm is
that integer arithmetic is sufficient, and restricts the use of
floating point computations to normals only. This is an im-
portant factor which enhances the overall performance.
Discretized Marching Cubes is both a valid solution for ap-
plications where the precision of the result is not critical or
also as an intermediate solution to speed up the time needed
to tune parameters, relegating to the final stage alone the
use of techniques that are more precise in terms of visual
results or geometrical approximation, such as ray tracing or
standard MC.

(See color plates, page CP-32.)
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Figure 6: Steps required to merge a number of adjacent facets: for each iteration, the figure represents the facets remaining
in the facet list (left tile), the edges present on the edge stack (centre tile) and the current Freeman chain (right tile). In the
edge stack tiles, the label associated with the edges represents the order of insertion in the stack (1 is the top edge); edges
which have a circled label represent connecting edges. In the chain tiles, arrows with a white end represent connecting links.

| Classic MC || DiscMC J
# facets # vertices # facets # vertices | # 3-facet # 4-facet # n-facet
Sphere (100") 37,784 18,556 5,501 9,594 0 5,167 334
Buckyball (1283) 204,408 103,072 17,039 28,528 1,238 12,200 3,601
Head (256°x33) 428,181 216,431 57,413 77,712 13,005 34,856 9,552

Table 1: The number of facets returned by the Discretized Marching Cubes and classic Marching Cubes algorithms on three
different datasets.
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