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Newton’'s second law

 MD isjust solving aninitial value problem.
— Initial velocities are random.
— Scienceisin the dynamics, not the end point.

X=V
1y
m 0X
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Numerical integration

» Given x(0), v(0), find x(t), v(t).
» Many advanced general methods for solving
this type of differential equation problem:
— High order approximations
— Predictor corrector methods
— Adaptive timesteps
* None of these are used in practice (for MD).
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Biomolecular ssimulations

Large number of degrees of freedom.
Most oscillations on order of 10 fs.
Evaluating forcesis very expensive.

Exact solution is not meaningful.

Chaotic dependence on small perturbation.
L ong-time properties of great interest.

NIH Resource for Biomolecular Modeling and Bioinformatics Beckman Institute, UIUC
http://www.ks.uiuc.edu/

Hotorel Cemiee T
Recsnioh FRsoIca




Hamiltonian systems

» Certain properties are of great importance;
— Conservation of energy (the Hamiltonian).
— Conservation of volume in phase space.

* |deal integrator preserves these quantities.
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Timereversibility

Newtonian equations are reversible:
— Set v to -v and the system runs backwards.

Useful property in an integrator.
Eliminates adaptive timestepping.
Floating point arithmetic is not reversible,

so an implementation will only be
approximately reversible over a short time.
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Symplectic integrators

o A symplectic transformation:
— Determinant of Hessian isone.
— Conserves volume in phase space.
» A symplectic integrator:
— Uses symplectic transformation at each step.
— Exactly integrates a“nearby” Hamiltonian.

— Conserves energy over along period, provided
there are no resonances present.
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Verlet leapfrog integrator

» Elegant, efficient, symplectic.

» Singlefixed timestep h (usually 1 fs).
Vo =V +h [H:(Xo)/zm
X =% +hiy,
Vi = Vi, +h [H:(Xl)/zm

NIH Resource for Biomolecular Modeling and Bioinformatics Beckman Institute, UIUC
http://www.ks.uiuc.edu/

Hotorel Cemiee T
Recsnioh FRsoIca




Multiple timestepping

« Some parts of the forcefield are:
— Expensive to calculate,
— Slowly changing.

* |deally these terms can be calculated less
frequently than more rapid terms such as
bonds and angle vibrations.

* There are limits imposed by resonance.

@ NIH Resource for Biomolecular Modeling and Bioinformatics Beckman Intitute, UIUC
http://www.ks.uiuc.edu/

Neture) e For
Reashich FEsourcas

R-respaintegrator

Decompose F into fast and slow parts.
Apply fast forces every timestep.

Apply slow forces only every k steps, but
with k times the impul se.

Known as an impulse method or reference
system propagator algorithm.
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Rigid bonds

» Timestep can be increased to 2 fs by fixing
the fastest bonds - those involving H atoms.
« SHAKE/Rattle algorithm:
— Updates aong vector from previous step.
— Scale by 1/m to conserve momentum.
— Iterate until convergence.
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Estimating temperature

» Equipartition theorem gives kT/2 per DOF-.
» Kinetic energy estimates T = 2E/3NK.
* Need to subract DOF for:

— Fixed atoms

— Rigid bonds

— Zero linear momentum

— Zero angular momentum
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Controlling temperature

 NVE ensemble:
— Equilibrate at target temperature first.

* NVT ensemble:
— Couple to heat bath to maintain temperature.
— Ensure proper energy fluctuations.

* Minor difference in ssimulation results.

NIH Resource for Biomolecular Modeling and Bioinformatics Beckman Intitute, UIUC
http://www.ks.uiuc.edu/

Neture) e For
Reashich FEsourcas

Periodic rescaling

Calculate average temperature.
Rescale velocities to match target.
Minor change to dynamics, simple method.

However, if done too frequently:

— Drives kinetic energy to slowest DOF.
— Resultsin “flying ice cube” behavior.
May keep hot side hot, cold side cold.
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Periodic reassignment

Periodically reinitialize velocities.
Drastically discontinuities in dynamics.
Ensures entire system is equilibrated.
Samples from canonical ensemble.
Useful for ssmulated annealing.

Limits sampling if done too frequently.
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Nose-Hoover Thermostats

» Add variable “friction” to dynamics.
 Berendsen: friction proportional to T,-T.

» Nose-Hoover: control friction “velocity”
— Reversible system of equations.
— Extrastate variable to keep track of.
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L angevin dynamics

Constant friction with random noise.
Atomic rather than global control.
No extra state variables required.
Samples from canonical ensemble.

V= —ia—u —év +R(t)
m ox
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Estimating pressure

Think ideal gas plus continuum mechanics.

P=Z(mv2+lf[ﬂ)/3\/

Sum may be over atoms or molecules.
Atomic pressure fluctuates wildly.
Molecular pressure inefficient to calculate.
Compromise based on hydrogen groups.
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Controlling pressure

» Basic (and wrong) equation is PV=NKT.
 Control P by varying V:
— Rescale periodic cell.
— Rescale atomic coordinates for atomic virial.
— Rescale group coordinates for group virial.

 Pressure oscillates rapidly for small system,
macroscopic observableis the time average.

@ NIH Resource for Biomolecular Modeling and Bioinformatics Beckman Intitute, UIUC
http://www.ks.uiuc.edu/

Neture) e For
Reashich FEsourcas

Berendsen’' s method

Simple first-order method.
God is P=(P-PR)/1
At each step, rescale volume by

1+ B;h(P-R) /1
Requires knowledge of compressibility.
Controls pressure, not desired ensemble.
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Nose-Hoover barostats

* UselnV asadynamic variable.
» Couple acceleration of InV to pressure.
» Only parameter istimescale of fluctuation.

X=V+EX

10U v=3ve
VE-=——-¢v  E=(3V/W)(P-P
—— (3V IW)(P~R)
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L angevin piston method

» Nose-Hoover can exhibit ringing.
» Apply Langevin dynamicstolnV.
» Adds parameter for damping timescale.

£€=VIW)P-R) -y +R(t)
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