NAMD User’s Guide

Version 2.14b1

R. Bernardi, M. Bhandarkar, A. Bhatele, E. Bohm, R. Brunner, F. Buelens,
H. Chen, C. Chipot, A. Dalke, S. Dixit, G. Fiorin, P. Freddolino, H. Fu,
P. Grayson, J. Gullingsrud, A. Gursoy, D. Hardy, C. Harrison, J. Hénin,
W. Humphrey, D. Hurwitz, A. Hynninen, N. Jain, W. Jiang, N. Krawetz,

S. Kumar, D. Kunzman, J. Lai, C. Lee, J. Maia, R. McGreevy, C. Mei,
M. Melo, M. Nelson, J. Phillips, B. Radak, J. Ribeiro, T. Rudack,
O. Sarood, A. Shinozaki, D. Tanner, P. Wang, D. Wells, G. Zheng, F. Zhu

May 5, 2020

Theoretical Biophysics Group
University of Illinois and Beckman Institute
405 N. Mathews
Urbana, IL 61801

Description

The NAMD User’s Guide describes how to run and use the various features of the molecular
dynamics program NAMD. This guide includes the capabilities of the program, how to use these
capabilities, the necessary input files and formats, and how to run the program both on uniprocessor
machines and in parallel.

NAMD development is supported by National Institutes of Health grant NIH P41-GM104601.

NAMD Version 2.14b1

Authors: R. Bernardi, M. Bhandarkar, A. Bhatele, E. Bohm, R. Brunner, F. Buelens,
H. Chen, C. Chipot, A. Dalke, S. Dixit, G. Fiorin, P. Freddolino, H. Fu, P. Grayson,
J. Gullingsrud, A. Gursoy, D. Hardy, C. Harrison, J. Hénin, W. Humphrey, D. Hurwitz,
A. Hynninen, N. Jain, W. Jiang, N. Krawetz, S. Kumar, D. Kunzman, J. Lai, C. Lee,
J. Maia, R. McGreevy, C. Mei, M. Melo, M. Nelson, J. Phillips, B. Radak, J. Ribeiro,
T. Rudack, O. Sarood, A. Shinozaki, D. Tanner, P. Wang, D. Wells, G. Zheng, F. Zhu

Theoretical and Computational Biophysics Group, Beckman Institute, University of Illinois.

(©1995-2018 The Board of Trustees of the University of Illinois. All Rights Reserved

NAMD Molecular Dynamics Software
Non-Exclusive, Non-Commercial Use License

Introduction

The University of Illinois at Urbana-Champaign has created its molecular dynamics software,
NAMD, developed by the Theoretical and Computational Biophysics Group (“TCBG”) at Illi-
nois’ Beckman Institute available free of charge for non-commercial use by individuals, academic
or research institutions and corporations for in-house business purposes only, upon completion and
submission of the online registration form presented when attempting to download NAMD at the
web site http://www.ks.uiuc.edu/Research/namd/.

Commercial use of the NAMD software, or derivative works based thereon, REQUIRES A
COMMERCIAL LICENSE. Commercial use includes: (1) integration of all or part of the Software
into a product for sale, lease or license by or on behalf of Licensee to third parties, or (2) distribution
of the Software to third parties that need it to commercialize product sold or licensed by or on
behalf of Licensee. The University of Illinois will negotiate commercial-use licenses for NAMD upon
request. These requests can be directed to namd@ks.uiuc.edu

Online Download Registration Requirements

In completing the online registration form presented before downloading individuals may register
in their own name or with their institutional or corporate affiliations. Registration information
must include name, title, and e-mail of a person with signature authority to authorize and commit
the individuals, academic or research institution, or corporation as necessary to the terms and
conditions of the license agreement.

All parts of the information must be understood and agreed to as part of completing the form.
Completion of the form is required before software access is granted. Pay particular attention to
the authorized requester requirements above, and be sure that the form submission is authorized
by the duly responsible person.

http://www.ks.uiuc.edu/Research/namd/

UNIVERSITY OF ILLINOIS
NAMD MOLECULAR DYNAMICS SOFTWARE LICENSE AGREEMENT

Upon execution of this Agreement by the party identified below (“Licensee”), The Board of Trustees
of the University of Illinois (“Illinois”), on behalf of The Theoretical and Computational Biophysics
Group (“TCBG”) in the Beckman Institute, will provide the molecular dynamics software NAMD
in Executable Code and/or Source Code form (“Software”) to Licensee, subject to the following
terms and conditions. For purposes of this Agreement, Executable Code is the compiled code,
which is ready to run on Licensee’s computer. Source code consists of a set of files which contain
the actual program commands that are compiled to form the Executable Code.

1. The Software is intellectual property owned by Illinois, and all right, title and interest, in-
cluding copyright, remain with Illinois. Illinois grants, and Licensee hereby accepts, a restricted,
non-exclusive, non-transferable license to use the Software for academic, research and internal busi-
ness purposes only e.g. not for commercial use (see Paragraph 7 below), without a fee. Licensee
agrees to reproduce the copyright notice and other proprietary markings on all copies of the Soft-
ware. Licensee has no right to transfer or sublicense the Software to any unauthorized person or
entity. However, Licensee does have the right to make complimentary works that interoperate with
NAMD, to freely distribute such complimentary works, and to direct others to the TCBG server
to obtain copies of NAMD itself.

2. Licensee may, at its own expense, modify the Software to make derivative works, for its own
academic, research, and internal business purposes. Licensee’s distribution of any derivative work
is also subject to the same restrictions on distribution and use limitations that are specified herein
for Illinois’ Software. Prior to any such distribution the Licensee shall require the recipient of the
Licensee’s derivative work to first execute a license for NAMD with Illinois in accordance with
the terms and conditions of this Agreement. Any derivative work should be clearly marked and
renamed to notify users that it is a modified version and not the original NAMD code distributed
by Illinois.

3. Except as expressly set forth in this Agreement, THIS SOFTWARE IS PROVIDED “AS
IS” AND ILLINOIS MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT, TRADE-
MARK, OR OTHER RIGHTS. LICENSEE ASSUMES THE ENTIRE RISK AS TO THE RE-
SULTS AND PERFORMANCE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.
LICENSEE AGREES THAT UNIVERSITY SHALL NOT BE HELD LIABLE FOR ANY DI-
RECT, INDIRECT, CONSEQUENTTAL, OR INCIDENTAL DAMAGES WITH RESPECT TO
ANY CLAIM BY LICENSEE OR ANY THIRD PARTY ON ACCOUNT OF OR ARISING FROM
THIS AGREEMENT OR USE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.

4. Licensee understands the Software is proprietary to Illinois. Licensee agrees to take all
reasonable steps to insure that the Software is protected and secured from unauthorized disclosure,
use, or release and will treat it with at least the same level of care as Licensee would use to protect
and secure its own proprietary computer programs and/or information, but using no less than a
reasonable standard of care. Licensee agrees to provide the Software only to any other person or
entity who has registered with Illinois. If licensee is not registering as an individual but as an
institution or corporation each member of the institution or corporation who has access to or uses
Software must understand and agree to the terms of this license. If Licensee becomes aware of any
unauthorized licensing, copying or use of the Software, Licensee shall promptly notify Illinois in

writing. Licensee expressly agrees to use the Software only in the manner and for the specific uses
authorized in this Agreement.

5. By using or copying this Software, Licensee agrees to abide by the copyright law and all
other applicable laws of the U.S. including, but not limited to, export control laws and the terms
of this license. Illinois shall have the right to terminate this license immediately by written notice
upon Licensee’s breach of, or non-compliance with, any of its terms. Licensee may be held legally
responsible for any copyright infringement that is caused or encouraged by its failure to abide by
the terms of this license. Upon termination, Licensee agrees to destroy all copies of the Software
in its possession and to verify such destruction in writing.

6. The user agrees that any reports or published results obtained with the Software will ac-
knowledge its use by the appropriate citation as follows:

NAMD was developed by the Theoretical and Computational Biophysics Group in the
Beckman Institute for Advanced Science and Technology at the University of Illinois at
Urbana-Champaign.

Any published work which utilizes NAMD shall include the following reference:

James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid,
Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kale, and Klaus Schul-
ten. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry,
26:1781-1802, 2005.

Electronic documents will include a direct link to the official NAMD page:
http://www.ks.uiuc.edu/Research/namd/

One copy of each publication or report will be supplied to Illinois at the addresses listed below
in Contact Information.

7. Should Licensee wish to make commercial use of the Software, Licensee will contact Illinois
(namd@ks.uiuc.edu) to negotiate an appropriate license for such use. Commercial use includes: (1)
integration of all or part of the Software into a product for sale, lease or license by or on behalf
of Licensee to third parties, or (2) distribution of the Software to third parties that need it to
commercialize product sold or licensed by or on behalf of Licensee.

8. Government Rights. Because substantial governmental funds have been used in the devel-
opment of NAMD, any possession, use or sublicense of the Software by or to the United States
government shall be subject to such required restrictions.

9. NAMD is being distributed as a research and teaching tool and as such, TCBG encourages
contributions from users of the code that might, at Illinois’ sole discretion, be used or incorporated to
make the basic operating framework of the Software a more stable, flexible, and/or useful product.
Licensees that wish to contribute their code to become an internal portion of the Software may be
required to sign an “Agreement Regarding Contributory Code for NAMD Software” before Illinois
can accept it (contact namd@ks.uiuc.edu for a copy).

http://www.ks.uiuc.edu/Research/namd/

Contact Information

The best contact path for licensing issues is by e-mail to namd@ks.uiuc.edu or send correspondence
to:

NAMD Team

Theoretical and Computational Biophysics Group
Beckman Institute

University of Illinois

405 North Mathews MC-251

Urbana, Illinois 61801 USA

Contents

1

Introduction

1.1 NAMD and molecular dynamics simulations

1.2 Acknowledgments e e

Getting Started

2.1 What isneeded L

2.2 NAMD configuration file Lo
2.2.1 Configuration parameter syntax L0000
2.2.2 Tcl scripting interface and features L oL oL
2.2.3 Multiple-copy /replica-exchange scripting interface
2.2.4 Python scripting interface and features. L.
2.2.5 Required NAMD configuration parameters

Input and Output Files

3.1 Fileformats e e
3.1.1 PDBfiles e
3.1.2 X-PLOR format PSF files
3.1.3 CHARMMI19, CHARMM?22, and CHARMMZ27 parameter files
3.1.4 DCD trajectory files L
3.1.5 NAMD binary files

3.2 NAMD configuration parameterso
321 Inputfiles
3.2.2 Output files e
3.2.3 Standard output e

3.3 AMBER file and force field support L

3.4 GROMACS file support

Creating PSF Structure Files

4.1 New commands and Functionalities o oL,

4.2 Ordinary Usage o o o i i e e e e e e
4.2.1 Preparing separate PDB files o o 0oL,
4.2.2 Deleting unwanted atoms L

4.3 BPTI Example o 0

4.4 Building solvent around a proteino

4.5 New Commands in the version 2.0 oo

4.6 List of Commands

4.7 Example of a Session Log

Force Field Parameters

5.1 Potential energy functions Lo oL
5.1.1 Bonded potential energy terms oL oo
5.1.2 Nonbonded potential energy terms oL oL

5.2 Non-bonded interactions L L L
5.2.1 Van der Waals interactions oo,
5.2.2 Electrostatic interactions Lo

14
14
16

17
17
17
18
18
21
23
24

25
25
25
25
25
25
26
26
26
27
29
31
33

35
35
37
37
38
38
42
44
44
50

5.2.3 Non-bonded force field parameters oL 54

5.24 PME parameters Lo 57
5.2.5 MSM parameters e e e e e e e e e e e e e 59
5.2.6 Full direct parameterso 62
5.2.7 Tabulated nonbonded interaction parameters 62
5.3 Water Models e e 64
5.4 Drude polarizable force field 64
5.4.1 Required input fileso 65
5.4.2 Standard output 65
5.4.3 Drude force field parameters L oo Lo 65
5.5 MARTINI Residue-Based Coarse-Grain Forcefield 67
5.6 Constraints and Restraints 67
5.6.1 Bond constraint parameterso oo 67
5.6.2 Position restraint parameters oL 68
5.6.3 Fixed atoms parameters e e 69
5.6.4 Extra bond, angle, and dihedral restraints 70
Generalized Born Implicit Solvent 72
6.1 Theoretical Background 72
6.1.1 Poisson Boltzmann Equation 72
6.1.2 Generalized Born 72
6.1.3 Generalized Born Equations o oo 72
6.2 3-Phase Calculation e 75
6.3 Configuration Parameters 76
Standard Minimization and Dynamics Parameters 78
7.1 Boundary Conditions e e 78
7.1.1 Periodic boundary conditions 78
7.1.2 Spherical harmonic boundary conditions 79
7.1.3 Cylindrical harmonic boundary conditions 80
7.2 Energy Minimization 82
7.2.1 Conjugate gradient parameters 82
7.2.2 Velocity quenching parameters o 0. 82
7.3 Dynamics L e e e e e e e e e 83
7.3.1 Timestep parameterso e e e e e e e e e 83
7.3.2 Imitialization 83
7.3.3 Conserving momentumo Lt e e e 84
7.3.4 Multiple timestep parameters e 84
7.4 Temperature Control and Equilibration 86
7.4.1 Langevin dynamics parameterso 86
7.4.2 Temperature coupling parameters L. 87
7.4.3 Stochastic velocity rescaling parameters 87
7.4.4 Temperature rescaling parameters L L 88
7.4.5 Temperature reassignment parameters 89
7.4.6 Lowe-Andersen dynamics parameters L. 90
7.5 Pressure Control e e 90
7.5.1 Berendsen pressure bath coupling 91

7.5.2 Nosé-Hoover Langevin piston pressure control 92

8 User Defined Forces 95
8.1 Constant Forces L 95
8.2 External Electric Field 95
8.3 Grid Forces e e e 96
8.4 Moving Constraints L 100
8.5 Rotating Constraints L e 101
8.6 Symmetry Restraintso L 102
8.7 Targeted Molecular Dynamics (TMD) 104
8.8 Steered Molecular Dynamics (SMD) 106
8.9 Interactive Molecular Dynamics (IMD) 108
8.10 Tel Forces and Analysis e 109
8.11 Tcl Boundary Forces o o e 112
8.12 External Program Forces. L 115

9 Collective Variable-based Calculations (Colvars) 117
9.1 Writing a Colvars configuration: a crash course 118
9.2 Enabling and controlling the Colvars module in NAMD 118

9.2.1 Units in the Colvars module 118
9.2.2 NAMD parameters o vt i e e e 119
9.2.3 Using the cv command to control the Colvars module 119
9.2.4 Configuration syntax used by the Colvars module 123
9.2.5 Global keywords 124
9.2.6 Inputstatefile 126
9.27 Output files 127
9.3 Defining collective variables oL 127
9.3.1 Choosing a functiono L 128
9.3.2 Distances e 130
9.3.3 Angles 133
9.3.4 Contacts e e e 135
9.3.5 Collective metrics Lo 138
9.3.6 Rotations 142
9.3.7 Protein structure descriptors Lo Lo 145
9.3.8 Raw data: building blocks for custom functions 147
9.3.9 Geometric path collective variables 148
9.3.10 Arithmetic path collective variables 152
9.3.11 Volumetric map-based variables 154
9.3.12 Shared keywords for all components L. 157
9.3.13 Periodic components e 157
9.3.14 Non-scalar components Lo o 158
9.3.15 Linear and polynomial combinations of components 159
9.3.16 Custom functionso 160
9.3.17 Scripted functions 161
9.3.18 Defining grid parameters L oo o e 162
9.3.19 Trajectory output e e 165
9.3.20 Extended Lagrangian L L L o 166

9.3.21 Multiple time-step variables L Lo o 168

9.3.22 Backward-compatibility o o o 168
9.3.23 Statistical analysis oL 168
9.4 Selecting atoms 170
9.4.1 Atom selection keywords L 170
9.4.2 Moving frame of reference.o oL o 173
9.4.3 Treatment of periodic boundary conditions. 176
9.4.4 Performance of a Colvars calculation based on group size. 176
9.5 Biasing and analysis methods L L o 177
9.5.1 Thermodynamic integration L L Lo 178
9.5.2 Adaptive Biasing Forceo 179
9.5.3 Extended-system Adaptive Biasing Force (eABF) 185
9.5.4 Metadynamics Lo 188
9.5.5 Harmonic restraints Lo 197
9.5.6 Computing the work of a changing restraint 201
9.5.7 Harmonic wall restraints oL L 201
9.5.8 Linear restraints e e 204
9.5.9 Adaptive Linear Bias/Experiment Directed Simulation 205
9.5.10 Multidimensional histograms Lo oo 206
9.5.11 Probability distribution-restraints00, 208
9.5.12 Defining scripted biases Lo 209
9.5.13 Performance of scripted biases, 210
9.6 Scripting interface (Tcl): list of commands 210
9.6.1 Commands to manage the Colvars module 210
9.6.2 Commands to manage individual collective variables 212
9.6.3 Commands to manage individual biases 214
9.7 Syntax changes from older versionso Lo 215
10 Alchemical Free Energy Methods 217
10.1 Theoretical Background o 217
10.1.1 The dual-topology paradigm 217
10.1.2 Free Energy Perturbation oL 219
10.1.3 Thermodynamic Integration L. 219
10.2 Implementation of the free energy methods in NAMD 220
10.3 Examples of input files for running alchemical free energy calculations 225
10.4 Description of a free energy calculation output 226
10.4.1 Free Energy Perturbation 226
10.4.2 Thermodynamic Integration 227

10.5 Hybrid single-dual topology approach for relative binding free energy calculation of
ligand to receptor 227
11 Accelerated Sampling Methods 230
11.1 Accelerated Molecular Dynamics 230
11.1.1 Theoretical background L oL 230
11.1.2 NAMD parameters oot v i s e 231
11.2 Gaussian Accelerated Molecular Dynamics 232
11.2.1 Theoretical background Lo 233

11.2.2 NAMD parameters v v i e e e e e
11.3 Solute Scaling and REST2 o
11.3.1 NAMD parameters o v i vt e e e e
11.4 Adaptive Tempering e e e
11.4.1 NAMD parameters v i i e e e e
11.5 Locally enhanced sampling
11.5.1 Structure generation
11.5.2 Simulation e
11.6 Replica exchange simulations oL
11.7 Random acceleration molecular dynamics simulations

12 Structure based simulations

12.1 Hybrid MD-Go Simulation
12.1.1 Hybrid MD-Go model
12.1.2 Hybrid MD-Go considerations oo
12.1.3 Configuration file modifications
12.1.4 GoParameter format oo oo

12.2 Running SMOG simulations L L
12.2.1 SMOG model considerations Lo
12.2.2 Configuration file modifications oL 0oL

13 Constant-pH Simulations

13.1 Overview and Theoretical Background
13.2 Implementation Details o
13.3 New Commands and Keywords
13.3.1 Required Keywords. e
13.3.2 Commonly Used Options
13.3.3 Specialized Options e
13.4 Minimal Examples

14 Hybrid QM /MM Simulations

14.1 Division of Labor e
14.2 Mechanical and Electrostatic Embedding
14.3 Covalent Bonds Divided by the QM/MM Barrier
14.3.1 Link Atoms L e
14.3.2 Point Charge Alterations
14.3.3 Link Atom Charge and Charge Groups
14.4 Custom Quantum Chemistry Software
14.5 Independent QM Regions L
14.6 Keywords o o o e e e e

15 Runtime Analysis

15.1 Pair interaction calculations e
15.2 Pressure profile calculations

10

246
246
246
246
246
247
248
248
248

250
250
252
255
255
255
257
258

260
260
262
262
265
265
265
266
266
269

16 Performance Tuning
16.1 NAMD performance tuning concepts oo
Measuring performance. e
NAMD configuration and I/O performance.
Computational (arithmetic) performance.
Networking performance. e
16.2 Non-bonded interaction distance-testing

17 Translation between NAMD and X-PLOR configuration parameters
18 Sample configuration files

19 Running NAMD

19.1 Individual Windows, Linux, Mac OS X, or Other Unix Workstations
19.2 Windows Clusters and Workstation Networks
19.3 Linux Clusters with InfiniBand or Other High-Performance Networks
19.4 Linux or Other Unix Workstation Networks
19.5 Shared-Memory and Network-Based Parallelism (SMP Builds)
19.6 Cray XE/XK/XC
19.7 Xeon Phi Processors (KNL) o
19.8 SGIL Altix UV . . . o . o e
19.9 IBM POWER Clusters e e e e e e e
19.10CPU Affinity e
19.11CUDA GPU Acceleration ittt

19111 Keywords L e e e e
19.12Xeon Phi Acceleration
19.13Memory Usage o v v v vt e e e e e e e
19.14Improving Parallel Scaling

20 NAMD Availability and Installation
20.1 How to obtain NAMD e
20.2 Platforms on which NAMD will currently run
20.3 Installing NAMD 0o 0
20.4 Compiling NAMD
20.5 Documentation e e e e e e e e e

References

Index

11

282
282
282
282
282
283
283

288

290

295
295
295
295
296
298
298
299
299
299
300
300
303
303
304
304

306
306
306
306
307
307

308

317

List of Figures

S U W N

10
11

12

13

14

15
16

Graph of van der Waals potential with and without switching 54
Graph of electrostatic potential with and without shifting function 55
Graph of electrostatic split between short and long range forces 55
Graph showing a slice of a ramp potential, showing the effect of mgridforcevoff . . 100
Graphical representation of a Colvars configuration. 125

Dual topology description for an alchemical simulation. Case example of the muta-
tion of alanine into serine. The lighter color denotes the non—interacting, alternate
state. .. e e e 218
Convergence of an FEP calculation. If the ensembles representative of states a and
b are too disparate, equation (79) will not converge (a). If, in sharp contrast, the
configurations of state b form a subset of the ensemble of configurations characteristic
of state a, the simulation is expected to converge (b). The difficulties reflected in
case (@) may be alleviated by the introduction of mutually overlapping intermediate
states that connect a to b (c). It should be mentioned that in practice, the kinetic

contribution, 7 (p,), is assumed to be identical for state a and state b. 219
Relationship of user-defined A to coupling of electrostatic or vdW interactions to a
simulation, given specific values of alchElecLambdaStart or alchVdwLambdaEnd. . . 223

Sample TT data (log(%—g» against A). The blue shaded area shows the integral with
fine sampling close to the end point. The red area shows the difference when A values
are more sparse. In this example, insufficient sampling before A ~0.1 can result in
a large overestimation of the integral. Beyond ~0.2, sparser sampling is justified as
dE/dA is not changing quickly. 228
Hybrid single—dual topology 228
Schematics of the aMD method. When the original potential (thick line) falls below
a threshold energy F (dashed line), a boost potential is added. The modified energy
profiles (thin lines) have smaller barriers separating adjacent energy basins. 231
Schematic illustration of GaMD. When the threshold energy E is set to the maxi-
mum potential (iF = 1 mode), the system’s potential energy surface is smoothened
by adding a harmonic boost potential that follows a Gaussian distribution. The
coefficient kg, which falls in the range of 0 — 1.0, determines the magnitude of the
applied boost potential.o 233
The core difference between conventional and constant-pH MD can be illustrated
by a simple enzyme E with four protonation states describing the occupancy of
two titratable residues, Ry and Rs. A conventional MD simulation handles the
states separately (left panel). The relative importance of the states must be known
beforehand or computed by other means. Conversely, a constant-pH MD simulation
handles the states collectively and actively simulates interconversion (right panel).
Determining the relative importance of the states is a direct result of the simulation. 250
The basic constant-pH MD scheme in NAMD is to alternate equilibrium sampling
in a fixed protonation state followed by a nonequilibrium MD Monte Carlo move
to sample other protonation states. The latter move can be accepted or rejected.
If accepted, the simulation continues in the new protonation state. If the move is

rejected, sampling continues as if the move were never attempted at all. 252
Hybrid QM/MM NAMD o 261
Diagram of classical point charge options. L. 263

12

17
18
19
20

Treatment of QM/MM bonds L 264

Charge Groups and QM/MM Bonds 267
Diagram of Multiple Grid Regions 268
Example of cutoff and pairlist distance uses, 284

13

1 Introduction

NAMD is a parallel molecular dynamics program for UNIX platforms designed for high-performance
simulations in structural biology. This document describes how to use NAMD, its features, and
the platforms on which it runs. The document is divided into several sections:

Section 1 gives an overview of NAMD.

Section 2 lists the basics for getting started.

Section 3 describes NAMD file formats.

Section 4 explains PSF file generation with psfgen.

Section 5 presents the potential functions, non-bonded interactions, and full electrostatics.
Section 6 explains Generalized Born implicit solvent simulations.
Section 7 lists standard minimization and dynamics parameters.
Section 16 lists performance tuning parameters.

Section 8 explains user defined forces. conformation change calculations.
Section 9 describes collective variable-based calculations.

Section 10 explains alchemical free energy calculations.

Section 11 presents accelerated sampling methods.

Section 15 lists runtime analysis options.

Section 17 provides hints for X-PLOR, users.

Section 18 provides sample configuration files.

Section 19 gives details on running NAMD.

Section 20 gives details on installing NAMD.

1.1 NAMD and molecular dynamics simulations

Molecular dynamics (MD) simulations compute atomic trajectories by solving equations of motion
numerically using empirical force fields, such as the CHARMM force field, that approximate the
actual atomic force in biopolymer systems. Detailed information about MD simulations can be
found in several books such as [1, 74]. In order to conduct MD simulations, various computer
programs have been developed including X-PLOR [14] and CHARMM [13]. These programs were
originally developed for serial machines. Simulation of large molecules, however, require enormous
computing power. One way to achieve such simulations is to utilize parallel computers. In recent
years, distributed memory parallel computers have been offering cost-effective computational power.
NAMD was designed to run efficiently on such parallel machines for simulating large molecules.
NAMD is particularly well suited to the increasingly popular Beowulf-class PC clusters, which are
quite similar to the workstation clusters for which is was originally designed. Future versions of
NAMD will also make efficient use of clusters of multi-processor workstations or PCs.

NAMD has several important features:

14

e Force Field Compatibility
The force field used by NAMD is the same as that used by the programs CHARMM [13]
and X-PLOR [14]. This force field includes local interaction terms consisting of bonded
interactions between 2, 3, and 4 atoms and pairwise interactions including electrostatic and
van der Waals forces. This commonality allows simulations to migrate between these three
programs.

e Efficient Full Electrostatics Algorithms
NAMD incorporates the Particle Mesh Ewald (PME) algorithm, which takes the full elec-
trostatic interactions into account. This algorithm reduces the computational complexity of
electrostatic force evaluation from O(N?) to O(N log N).

e Multiple Time Stepping

The velocity Verlet integration method [1] is used to advance the positions and velocities of
the atoms in time. To further reduce the cost of the evaluation of long-range electrostatic
forces, a multiple time step scheme is employed. The local interactions (bonded, van der
Waals and electrostatic interactions within a specified distance) are calculated at each time
step. The longer range interactions (electrostatic interactions beyond the specified distance)
are only computed less often. This amortizes the cost of computing the electrostatic forces
over several timesteps. A smooth splitting function is used to separate a quickly varying
short-range portion of the electrostatic interaction from a more slowly varying long-range
component. It is also possible to employ an intermediate timestep for the short-range non-
bonded interactions, performing only bonded interactions every timestep.

e Input and Output Compatibility
The input and output file formats used by NAMD are identical to those used by CHARMM
and X-PLOR. Input formats include coordinate files in PDB format [6], structure files in
X-PLOR PSF format, and energy parameter files in either CHARMM or X-PLOR formats.
Output formats include PDB coordinate files and binary DCD trajectory files. These similar-
ities assure that the molecular dynamics trajectories from NAMD can be read by CHARMM
or X-PLOR and that the user can exploit the many analysis algorithms of the latter packages.

e Dynamics Simulation Options
MD simulations may be carried out using several options, including

Constant energy dynamics,
— Constant temperature dynamics via

* Velocity rescaling,
* Velocity reassignment,

* Langevin dynamics,

Periodic boundary conditions,
— Constant pressure dynamics via

x Berendsen pressure coupling,

* Nosé-Hoover Langevin piston,

Energy minimization,

Fixed atoms,

15

Rigid waters,
— Rigid bonds to hydrogen,
— Harmonic restraints,

— Spherical or cylindrical boundary restraints.

e Easy to Modify and Extend
Another primary design objective for NAMD is extensibility and maintainability. In order to
achieve this, it is designed in an object-oriented style with C4++. Since molecular dynamics is a
new field, new algorithms and techniques are continually being developed. NAMD’s modular
design allows one to integrate and test new algorithms easily. If you are contemplating a
particular modification to NAMD you are encouraged to contact the developers for guidance.

e Interactive MD simulations
A system undergoing simulation in NAMD may be viewed and altered with VMD; for instance,
forces can be applied to a set of atoms to alter or rearrange part of the molecular structure.
For more information on VMD, see http://www.ks.uiuc.edu/Research/vmd/.

e Load Balancing

An important factor in parallel applications is the equal distribution of computational load
among the processors. In parallel molecular simulation, a spatial decomposition that evenly
distributes the computational load causes the region of space mapped to each processor to
become very irregular, hard to compute and difficult to generalize to the evaluation of many
different types of forces. NAMD addresses this problem by using a simple uniform spatial
decomposition where the entire model is split into uniform cubes of space called patches.
An initial load balancer assigns patches and the calculation of interactions among the atoms
within them to processors such that the computational load is balanced as much as possible.
During the simulation, an incremental load balancer monitors the load and performs necessary
adjustments.

1.2 Acknowledgments

NAMD development is supported by the National Institutes of Health (NIH P41-GM104601) and
relies on computational resources funded by the National Science Foundation and the Department
of Energy.

The authors would particularly like to thank the members of the Theoretical and Computational
Biophysics Group, past and present, who have helped tremendously in making suggestions, pushing
for new features, and testing bug-ridden code.

16

http://www.ks.uiuc.edu/Research/vmd/

2 Getting Started

2.1 What is needed

Before running NAMD, explained in section 19, the following are be needed:
e A CHARMM force field in either CHARMM or X-PLOR format.
e An X-PLOR format PSF file describing the molecular structure.
e The initial coordinates of the molecular system in the form of a PDB file.
e A NAMD configuration file.

NAMD provides the psfgen utility, documented in Section 4, which is capable of generating the
required PSF and PDB files by merging PDB files and guessing coordinates for missing atoms. If
psfgen is insufficient for your system, we recommend that you obtain access to either CHARMM
or X-PLOR, both of which are capable of generating the required files.

2.2 NAMD configuration file

Besides these input and output files, NAMD also uses a file referred to as the configuration file.
This file specifies what dynamics options and values that NAMD should use, such as the number
of timesteps to perform, initial temperature, etc. The options and values in this file control how
the system will be simulated. The NAMD configuration file is specified on the NAMD command
line, either before or after the various parallel execution options described in section 19.

A NAMD configuration file contains a set of options and values. The options and values
specified determine the exact behavior of NAMD, what features are active or inactive, how long the
simulation should continue, etc. Section 2.2.1 describes how options are specified within a NAMD
configuration file. Section 2.2.5 lists the parameters which are required to run a basic simulation.
Section 17 describes the relation between specific NAMD and X-PLOR dynamics options. Several
sample NAMD configuration files are shown in section 18.

During execution NAMD will change to the directory containing the configuration file so that
all file paths in the configuration file are relative to the configuration file directory. Multiple
configuration files may be specified on the command line and the will be read in order, but all file
paths will be relative to the first configuration file to call a “run” (or “minimize” or “startup”)
command, or to the last configuration file if “run” is not called.

Commands or parameters may also be specified directly on the command line
via --keyword value argument pairs, for example --outputenergies 100 --run 100
—-- checkpoint. This may be used to include multiple configuration files without altering the
working directory via —-source /path/to/second.conf. Note that escaping or quoting of com-
mand line parameter values containing spaces may be difficult or impossible on some systems due to
multiple levels of scripts called during the NAMD parallel launch process and because the keyword
and value are simply merged into a single string that is passed to the Tcl interpreter.

If the argument --tclmain is present, all following arguments will be passed to the Tcl inter-
preter as a script file and arguments accessible via the standard argc and argv variables. Note
that Charm++ arguments such as +pemap are processed during Charm++ startup and will not be
passed to Tcl.

17

If the first argument is +tclsh, Charm++ argument parsing and startup are not performed,
the Tcl interpreter is initialized without NAMD scripting features, and all following arguments are
passed to Tcl. Statically linked packages such as psfgen are available via “package require ...”.

2.2.1 Configuration parameter syntax

Each line in the configuration files consists of a keyword identifying the option being specified, and
a value which is a parameter to be used for this option. The keyword and value can be separated
by only white space:

keyword value
or the keyword and value can be separated by an equal sign and white space:
keyword = value

Blank lines in the configuration file are ignored. Comments are prefaced by a # and may appear
on the end of a line with actual values:

keyword value # This is a comment
or may be at the beginning of a line:
This entire line is a comment

Some keywords require several lines of data. These are generally implemented to either allow the
data to be read from a file:

keyword filename
or to be included inline using Tcl-style braces:

keyword {
lots of data
}

The specification of the keywords is case insensitive so that any combination of upper and
lower case letters will have the same meaning. Hence, DCDfile and dcdfile are equivalent. The
capitalization in the values, however, may be important. Some values indicate file names, in which
capitalization is critical. Other values such as on or off are case insensitive.

2.2.2 Tcl scripting interface and features

When compiled with Tecl (all released binaries) the config file is parsed by Tcl in a fully backwards
compatible manner with the added bonus that any Tcl command may also be used. This alone
allows:

e the “source” command to include other files (works w/o Tcl too!),
e the “print” command to display messages (“puts” to stdout fails on some platforms),

e cnvironment variables through the env array (“$env(USER)”), and

18

user-defined variables (“set base sim23”, “dcdfile $base.dcd”).

Additional features include:

The “callback” command takes a 2-parameter Tcl procedure which is then called with a list
of labels and a list of values during every timestep, allowing analysis, formatting, whatever.

The “run” command takes a number of steps to run (overriding the now optional numsteps
parameter, which defaults to 0) and can be called repeatedly. You can “run 0” just to get
energies. Normally the preceeding timestep is repeated to account for any modifications to
the energy function; this can be avoided with “run norepeat”.

The “minimize” command is similar to “run” and performs minimization for the specified
number of force evaluations.

The “startup” command will trigger simulation startup as would the first “run” or “minimize”
command, but without any force/energy evaluation.

Configuration file parameter introspection is supported by invoking a (case-insensitive) pa-
rameter keyword with no argument (e.g., “numsteps”) and by the helper commands “isset”
and “istrue”. Note that keywords are not parsed until the first “run” command, and before
this values are treated as unformatted strings, so for example “eFieldOn” and “eField” may
return “yes” and “1 2 3” before the first “run” command, but “1” and “1.0 2.0 3.0” after
parsing (“istrue eFieldOn” would return “1” in both cases). Similarly, “isset badparam” will
return “0” before parsing but raise an “unknown parameter” error after.

Between “run” commands the reassignTemp, rescaleTemp, and langevinTemp parame-
ters can be changed to allow simulated annealing protocols within a single config file.
The useGroupPressure, useFlexibleCell, useConstantArea, useConstantRatio, LangevinPis-
ton, LangevinPistonTarget, LangevinPistonPeriod, LangevinPistonDecay, LangevinPiston-
Temp, SurfaceTensionTarget, BerendsenPressure, BerendsenPressureTarget, BerendsenPres-
sureCompressibility, and BerendsenPressureRelaxationTime parameters may be changed to
allow pressure equilibration. The fixedAtoms, constraintScaling, and nonbondedScaling pa-
rameters may be changed to preserve macromolecular conformation during minimization and
equilibration (fixedAtoms may only be disabled, and requires that fixedAtomsForces is en-
abled to do this). The consForceScaling parameter may be changed to vary steering forces or
to implement a time-varying electric field that affects specific atoms. The eField, eFieldFreq,
and eFieldPhase parameters may be changed to implement at time-varying electric field that
affects all atoms. The updateGridforceScale parameter may be called to change the scaling
factor applied to gridforces potentials. The alchLambda and alchLambda2 parameters may
be changed during alchemical free energy runs. The DCDfile may be changed to write binary
coordinate trajectory output to separate files. The restartname may be changed to write
restart output to separate files.

The “checkpoint” and “revert” commands (no arguments) allow a scripted simulation to save
and restore (in memory) to a single prior state. The “output” and “reinitatoms” commands
support multiple saved states using files. Multiple saved states in memory are supported by
the commands “checkpointStore”, “checkpointLoad”, “checkpointSwap”, and “checkpoint-
Free”, all of which take a string key as an argument, plus an optional second argument that

19

is either replica index (the checkpoint is stored asynchronously on the target replica) or the
keyword “global” (the target replica is computed as a hash of the key).

The “output” command takes an output file basename and causes .coor, .vel, and .xsc files to
be written with that name. Alternatively, “output withforces” and “output onlyforces” will
write a .force file either in addition to or instead of the regular files.

The “reinitatoms” command reinitializes coordinates, velocities, and periodic cell dimensions
to those initially read in (random velocities are generated if they were not read from a file).
An optional file basename argument (matching that passed to the output command) causes
.coor, .vel, and .xsc files to be read, assuming the format indicated by the binaryoutput
parameter.

The “move” command repositions individual atoms, including fixed atoms. Arguments are a
1-based atom ID, “to” or “by”, and a list of three numbers, e.g., “move 1 by {0.4 0.2 -0.1}".
Atoms may not be moved by more than a single patch between “run” commands.

The “exit” command writes output files and exits cleanly.

The “abort” command concatenates its arguments into an error message and exits immedi-
ately without writing output files.

The “numPes”, “numNodes”, and “numPhysicalNodes” commands allow performance-tuning
parameters to be set based on the parallel execution environment.

The “reinitvels” command reinitializes velocities to a random distribution based on the given
temperature.

The “rescalevels” command rescales velocities by the given factor.

The “reloadCharges” command reads new atomic charges from the given file, which should
contain one number for each atom, separated by spaces and/or line breaks.

The “consForceConfig” command takes a list of 0-based atom indices and a list of forces
which replace the existing set of constant forces (constantForce must be on).

The “measure” command allows user-programmed calculations to be executed in order to
facilitate automated methods. (For example, to revert or change a parameter.) A number
of measure commands are included in the NAMD binary; the module has been designed to
make it easy for users to add additional measure commands.

The “coorfile” command allows NAMD to perform force and energy analysis on trajectory
files. “coorfile open dcd filename” opens the specified DCD file for reading. “coorfile read”
reads the next frame in the opened DCD file, replacing NAMD’s atom coordinates with
the coordinates in the frame, and returns 0 if successful or -1 if end-of-file was reached.
“coorfile skip” skips past one frame in the DCD file; this is significantly faster than reading
coordinates and throwing them away. “coorfile close” closes the file. The “coorfile” command
is not available on the Cray T3E.

Force and energy analysis are especially useful in the context of pair interaction calculations;
see Sec. 15.1 for details, as well as the example scripts in Sec. 18.

20

Please note that while NAMD has traditionally allowed comments to be started by a # appear-
ing anywhere on a line, Tcl only allows comments to appear where a new statement could begin.
With Tel config file parsing enabled (all shipped binaries) both NAMD and Tcl comments are
allowed before the first “run” command. At this point only pure Tcl syntax is allowed. In addition,
the “#” idiom for Tcl comments will only work with Tcl enabled. NAMD has also traditionally
allowed parameters to be specified as “param=value”. This is supported, but only before the first
“run” command. Some examples:

this is my config file <- 0K
reassignFreq 100 ; # how often to reset velocities <- only w/ Tcl
reassignTemp 20 # temp to reset velocities to <- OK before "run"
run 1000 <- now Tcl only
reassignTemp 40 ; # temp to reset velocities to <- ";" is required

NAMD has also traditionally allowed parameters to be specified as “param=value” as well as
“param value”. This is supported, but only before the first “run” command. For an easy life, use
“param value”.

2.2.3 Multiple-copy /replica-exchange scripting interface

Multiple-copy (or replica-based) algorithms are supported by the following commands, which utilize
two-sided semantics modeled on MPI:

e myReplica

e numReplicas

e replicaBarrier

e replicaSend data dest

e replicaRecv source

e replicaSendrecv data dest source
e replicaAtomSend dest

e replicaAtomRecv source

replicaAtomSendrecv dest source

The replicaSend/Sendrecv data argument may be any string, and hence any Tcl object (e.g.,
a list) that can be represented as a string. Data received from the source replica is returned by
replicaRecv/Sendrecv. In order to ensure message ordering, replicaSend/Sendrecv will block until
the corresponding remote receive call (except when replicaSend is called from inside replicaEval,
as discussed below).

The parameter replicaUniformPatchGrids must be true for atom exchange (replicaAtom...) or
remote checkpointing (checkpoint... with a second argument, see below).

The following additional commands utilize one-sided semantics, and should provide a complete
feature set for running a simulation with fewer NAMD replica partitions than logical replicas:

21

e checkpointStore key Treplica or global?
e checkpointLoad key ?replica or global?
e checkpointSwap key ?replica or global?
e checkpointFree key Treplica or global?

e replicaEval replica script

e replicaYield 7seconds?

replicaDcdFile index—off ?filename?

The key can be any string. By default the checkpoint is stored in the memory of the replica
the command is called on. If you specify a replica index the checkpoint is stored asynchronously
in that replica’s memory. If you specify “global” a hash is computed based on the key to select the
replica on which to store the checkpoint. You can have checkpoints with the same key stored on
multiple replicas at once if you really want to. The checkpoint... commands will not return until
the checkpoint operation has completed.

Storing checkpoints is not atomic. If two replicas try to store a checkpoint with the same
key on the same replica at the same time you may end up with a mix of the two (and probably
duplicate/missing atoms). If one replica tries to load a checkpoint while another replica is storing
it the same may happen. You cannot store a checkpoint on a replica until that replica has created
its own patch data structures. This can be guaranteed by calling “startup” and “replicaBarrier”
before any remote checkpoint calls.

The replicaEval command asynchronously executes its script in the top-level context of the
target replica’s Tcl interpreter and returns the result or error. This should be general enough to
build any kind of work scheduler or shared data structure you need. If you want to call replicak-
val repeatedly, e.g., to check if some value has been set, you should call “replicaYield seconds” in
between, as this will introduce a delay but still enable processing of asynchronous calls from other
replicas. Potentially blocking functions such as replicaRecv should not be called from within repli-
caEval, nor should functions such as run, checkpointLoad/Store, and replicaAtomSend/Recv that
would require the simulation of the remote replica to be halted. It is allowed to call replicaSend
(but not replicaSendrecv) from within replicaEval, since replicaSend is non-blocking and one-sided
(but potentially overtaking) in this context. Rather than polling a remote replica (e.g., for work)
via replicakval, it is more efficient to register a request via replicaEval and then call replicaRecv
to wait for notification.

The replicaDcdFile command is similar to the dedFile command in that it changes the trajectory
output file, but the file is actually opened by a different replica partition and may be written to
by any other partition that calls replicaDcdFile with the same index but no filename argument. If
a filename argument is given, any file currently associated with the index is closed and a new file
created, even if the new and old filenames are the same. The new file is created only when the next
trajectory frame is written, not during the replicaDcdFile command itself. The caller must ensure
that an index is not used before it is associated with a filename, and that each index is in use by
only one replica at a time. The keyword “off” will return to writing the local trajectory file set by
the dcdFile command.

22

2.2.4 Python scripting interface and features

NAMD may be compiled with an embedded Python interpreter via the config script option
--with-python. Both Python 2.x and 3.x versions are supported, with 3.x the default if found.
The config script option —-python-prefix can be used to specify the path to the python installation
to be used. The default embedded Tcl interpreter is also required to enable Python scripting.
Released NAMD binaries do not support Python scripting at this time due to portability issues
with the extensive Python library.

Python scripting is accessed via the Tcl “python” command, which functions in either expression
mode or script mode. When passed a single-line string, the Python interpreter will evaluate the
expression in the string and return the result. Python containers (tuples, lists, etc.) are converted
to Tcl lists and all other values are converted to their string representation, which is typically
compatible with Tcl. For example, “[python (1 4+ 1, ’abc’ 4+ ’123’)]” evaluates to the Tecl list “2
abcl123”.

When the python command is passed a single multi-line string (typically enclosed in braces),
the Python interpreter will execute the code in the string and return nothing. Because of Python’s
indentation-sensitive syntax the enclosed code can not be indented.

Calls to Tcl from Python code are supported by the tcl module functions tcl.call(), which takes
the Tcl command name and its arguments as separate arguments and performs limited container
and string conversions as described above, and tcl.eval(), which passes a single string unmodified
to the Tcl interpreter. Both functions return the result as a string, so numerical results must be
explicitly cast to float or int as appropriate.

NAMD simulation parameters and commands are wrapped for convenience by the “namd’
object. Any NAMD simulation parameter may be set by assigning to the corresponding case-
insensitive attribute of the namd object, e.g., “namd.timestep = 1.0”, and similarly read (as a
string) by access, e.g., “ts = float(namd.TimeStep)”. Assignment corresponds exactly to nor-
mal config file parsing, i.e., “timestep 1.0”, and hence multiple assignment will generate an error
just as would repeated parameters. For convenience, multiple parameters may be set at once by
passing them as keyword arguments, e.g., “namd(langevin=True, langevinDamping=>5., langevin-
Temp=100.)". NAMD (and other) commands in the Tcl interpreter may be called as a method of
the namd object, e.g., “namd.run(1000)” and “namd.output('myfile’)”.

The NAMD 1-4scaling parameter is incompatible with Python syntax, but may be accessed
several other ways, e.g., “namd.param(’1-4scaling’,1.0)”, “tcl.call(’1-4scaling’,1.0)”, or “tcl.eval(’1-
4scaling 1.07)”.

The namd object is available as the namd module, which can be accessed from user-written
Python modules by the standard import statement (i.e, “import namd”).

The following example illustrates various aspects of the Python scripting interface:

set a 1

cutoff 12.0

python {

do not indent

namd.pairlistDist = float(namd.Cutoff) + float(tcl.eval("set a")) # cast strings to float
b =2

namd (switching=True, switchdist = float(namd.cutoff) - b) # case insensitive

}

set c [python $a + b]

23

2.2.5 Required NAMD configuration parameters
The following parameters are required for every NAMD simulation:
e numsteps (page 83),
e coordinates (page 26),
e structure (page 26),
e parameters (page 206),
e exclude (page 56),
e outputname (page 27),
e one of the following three:

— temperature (page 83),
— velocities (page 27),
— binvelocities (page 27).

These required parameters specify the most basic properties of the simulation. In addition, it is
highly recommended that pairlistdist be specified with a value at least one greater than cutoff.

24

3 Input and Output Files

NAMD was developed to be compatible with existing molecular dynamics packages, especially the
packages X-PLOR [14] and CHARMM [13]. To achieve this compatibility, the set of input files
which NAMD uses to define a molecular system are identical to the input files used by X-PLOR
and CHARMM. Thus it is trivial to move an existing simulation from X-PLOR or CHARMM to
NAMD. A description of these molecular system definition files is given in Section 3.1.

In addition, the output file formats used by NAMD were chosen to be compatible with X-
PLOR and CHARMM. In this way the output from NAMD can be analyzed using X-PLOR,
CHARMM, or a variety of the other tools that have been developed for the existing output file
formats. Descriptions of the output files formats are also given in Section 3.1.

3.1 File formats
3.1.1 PDB files

The PDB (Protein Data Bank) format is used for coordinate, velocity, force, or other data being
read or written by NAMD. This is the standard format for coordinate data for most other molecular
dynamics programs as well, including X-PLOR and CHARMM. A full description of this file format
can be obtained from the PDB web site at http://www.rcsb.org/pdb/. Positions in PDB files
are stored in A. Velocities in PDB files are stored in A /ps and may be divided by PDBVELFAC-
TOR=20.45482706 to convert to the NAMD internal units used in DCD and NAMD binary files.
Forces in PDB files are stored in kcal/mol/A. NAMD binary files (below) should be preferred to
PDB files in most cases due to their higher precision.

3.1.2 X-PLOR format PSF files

NAMD uses the same protein structure files that X-PLOR does. These files may be generated with
psfgen, VMD, X-PLOR, or CHARMM. CHARMM can generate an X-PLOR format PSF file with

the command “write psf card xplor”.

3.1.3 CHARMM19, CHARMMZ22, and CHARMM27 parameter files

NAMD supports CHARMM19, CHARMM?22, and CHARMMZ27 parameter files in both X-PLOR
and CHARMM formats. (X-PLOR format is the default, CHARMM format parameter files may be
used given the parameter “paraTypeCharmm on”.) For a full description of the format of commands
used in these files, see the X-PLOR and CHARMM User’s Manual [14].

3.1.4 DCD trajectory files

NAMD produces DCD trajectory files in the same format as X-PLOR and CHARMM. The DCD
files are single precision binary FORTRAN files, so are transportable between computer architec-
tures. The file readers in NAMD and VMD can detect and adapt to the endianness of the machine
on which the DCD file was written, and the utility program flipdcd is also provided to reformat
these files if needed. The exact format of these files is very ugly but supported by a wide range
of analysis and display programs. The timestep is stored in the DCD file in NAMD internal units
and must be multiplied by TIMEFACTOR=48.88821 to convert to fs. Positions in DCD files are
stored in A. Velocities in DCD files are stored in NAMD internal units and must be multiplied by
PDBVELFACTOR=20.45482706 to convert to A /ps. Forces in DCD files are stored in kcal/mol/A.

25

http://www.rcsb.org/pdb/

3.1.5 NAMD binary files

NAMD uses a trivial double-precision binary file format for coordinates, velocities, and forces.
Due to its high precision this is the default output and restart format. VMD refers to these files
as the “namdbin” format. The file consists of the atom count as a 32-bit integer followed by all
three position or velocity components for each atom as 64-bit double-precision floating point, i.e.,
NXYZXYZXYZXYZ... where N is a 4-byte int and X, Y, and Z are 8-byte doubles. If the number
of atoms the file contains is known then the atom count can be used to determine endianness. The
file readers in NAMD and VMD can detect and adapt to the endianness of the machine on which
the binary file was written, and the utility program f1lipbinpdb is also provided to reformat these
files if needed. Positions in NAMD binary files are stored in A. Velocities in NAMD binary files
are stored in NAMD internal units and must be multiplied by PDBVELFACTOR=20.45482706 to
convert to A /ps. Forces in NAMD binary files are stored in kcal/mol/A.

3.2 NAMD configuration parameters
3.2.1 Input files

e coordinates < coordinate PDB file >
Acceptable Values: UNIX filename
Description: The PDB file containing initial position coordinate data. Note that path
names can be either absolute or relative. Only one value may be specified.

e structure < PSF file >
Acceptable Values: UNIX filename
Description: The X-PLOR format PSF file describing the molecular system to be simu-
lated. Only one value may be specified.

e parameters < parameter file >

Acceptable Values: UNIX filename

Description: A CHARMMI19, CHARMMZ22, or CHARMMZ27 parameter file that defines
all or part of the parameters necessary for the molecular system to be simulated. At least one
parameter file must be specified for each simulation. Multiple definitions (but only one file
per definition) are allowed for systems that require more than one parameter file. The files
will be read in the order that they appear in the configuration file. If duplicate parameters
are read, a warning message is printed and the last parameter value read is used. Thus, the
order that files are read can be important in cases where duplicate values appear in separate
files.

e paraTypeXplor < Is the parameter file in X-PLOR format? >
Acceptable Values: on or off
Default Value: on
Description: Specifies whether or not the parameter file(s) are in X-PLOR format. X-
PLOR format is the default for parameter files! Caveat: The PSF file should be also con-
structed with X-PLOR in case of an X-PLOR parameter file because X-PLOR stores in-
formation about the multiplicity of dihedrals in the PSF file. See the X-PLOR manual for
details.

e paraTypeCharmm < Is the parameter file in CHARMM format? >
Acceptable Values: on or off

26

Default Value: off

Description: Specifies whether or not the parameter file(s) are in CHARMM format. X-
PLOR format is the default for parameter files! Caveat: The information about multiplicity
of dihedrals will be obtained directly from the parameter file, and the full multiplicity will be
used (same behavior as in CHARMM). If the PSF file originates from X-PLOR, consecutive
multiple entries for the same dihedral (indicating the dihedral multiplicity for X-PLOR) will
be ignored.

e velocities < velocity PDB file >
Acceptable Values: UNIX filename
Description: The PDB file containing the initial velocities for all atoms in the simulation.
This is typically a restart file or final velocity file written by NAMD during a previous simu-
lation. Either the temperature or the velocities/binvelocities option must be defined
to determine an initial set of velocities. Both options cannot be used together.

e binvelocities < binary velocity file >
Acceptable Values: UNIX filename
Description: The binary file containing initial velocities for all atoms in the simulation.
A binary velocity file is created as output from NAMD by activating the binaryrestart
or binaryoutput options. The binvelocities option should be used as an alternative to
velocities. Either the temperature or the velocities/binvelocities option must be
defined to determine an initial set of velocities. Both options cannot be used together.

e bincoordinates < binary coordinate restart file >
Acceptable Values: UNIX filename
Description: The binary restart file containing initial position coordinate data.
A binary coordinate restart file is created as output from NAMD by activating the
binaryrestart or binaryoutput options. Note that, in the current implementation at least,
the bincoordinates option must be used in addition to the coordinates option, but the
positions specified by coordinates will then be ignored.

e cud < default directory >

Acceptable Values: UNIX directory name

Description: The default directory for input and output files. If a value is given, all
filenames that do not begin with a / are assumed to be in this directory. For example, if
cwd is set to /scr, then a filename of outfile would be modified to /scr/outfile while a
filename of /tmp/outfile would remain unchanged. If no value for cwd is specified, than all
filenames are left unchanged but are assumed to be relative to the directory which contains
the configuration file given on the command line.

3.2.2 OQOutput files

e outputname < output file prefix >
Acceptable Values: UNIX filename prefix
Description: At the end of every simulation, NAMD writes two files, one containing the
final coordinates and another containing the final velocities of all atoms in the simulation. This
option specifies the file prefix for these two files as well as the default prefix for trajectory and
restart files. The position coordinates will be saved to a file named as this prefix with .coor

27

appended. The velocities will be saved to a file named as this prefix with .vel appended. For
example, if the prefix specified using this option was /tmp/output, then the two files would
be /tmp/output.coor and /tmp/output.vel.

binaryoutput < use binary output files? >

Acceptable Values: yes or no

Default Value: yes

Description: Enables the use of binary output files. If this option is not set to no, then
the final output files will be written in binary rather than PDB format. Binary files preserve
more accuracy between NAMD restarts than ASCII PDB files, but the binary files are not
guaranteed to be transportable between computer architectures. (The atom count record is
used to detect wrong-endian files, which works for most atom counts. The utility program
flipbinpdb is provided to reformat these files if necessary.)

restartname < restart files prefix >

Acceptable Values: UNIX filename prefix

Default Value: outputname.restart

Description: The prefix to use for restart filenames. NAMD produces restart files that
store the current positions and velocities of all atoms at some step of the simulation. This
option specifies the prefix to use for restart files in the same way that outputname specifies
a filename prefix for the final positions and velocities. If restartname is defined then the
parameter restartfreq must also be defined.

restartfreq < frequency of restart file generation >
Acceptable Values: positive integer
Description: The number of timesteps between the generation of restart files.

restartsave < use timestep in restart filenames? >

Acceptable Values: yes or no

Default Value: no

Description: Appends the current timestep to the restart filename prefix, producing a
sequence of restart files rather than only the last version written.

binaryrestart < use binary restart files? >

Acceptable Values: yes or no

Default Value: yes

Description: Enables the use of binary restart files. If this option is not set to no,
then the restart files will be written in binary rather than PDB format. Binary files preserve
more accuracy between NAMD restarts than ASCII PDB files, but the binary files are not
guaranteed to be transportable between computer architectures. (The atom count record is
used to detect wrong-endian files, which works for most atom counts. The utility program
flipbinpdb is provided to reformat these files if necessary.)

DCDfile < coordinate trajectory output file >

Acceptable Values: UNIX filename

Default Value: outputname.dcd

Description: The binary DCD position coordinate trajectory filename. This file stores the
trajectory of all atom position coordinates using the same format (binary DCD) as X-PLOR.
If DCDfile is defined, then DCDfreq must also be defined.

28

DCDfreq < timesteps between writing coordinates to trajectory file >

Acceptable Values: positive integer

Description: The number of timesteps between the writing of position coordinates to the
trajectory file. The initial positions will not be included in the trajectory file. Positions in
DCD files are stored in A.

DCDUnitCell < write unit cell data to dcd file? >

Acceptable Values: yes or no

Default Value: yes if periodic cell

Description: If this option is set to yes, then DCD files will contain unit cell information
in the style of Charmm DCD files. By default this option is enabled if the simulation cell is
periodic in all three dimensions and disabled otherwise.

velDCDfile < velocity trajectory output file >

Acceptable Values: UNIX filename

Default Value: outputname.veldcd

Description: The binary DCD velocity trajectory filename. This file stores the trajectory
of all atom velocities using the same format (binary DCD) as X-PLOR. If velDCDfile is
defined, then velDCDfreq must also be defined.

velDCDfreq < timesteps between writing velocities to trajectory file >

Acceptable Values: positive integer

Description: The number of timesteps between the writing of velocities to the trajectory
file. The initial velocities will not be included in the trajectory file. Velocities in DCD files are
stored in NAMD internal units and must be multiplied by PDBVELFACTOR=20.45482706
to convert to A /ps.

forceDCDfile < force trajectory output file >

Acceptable Values: UNIX filename

Default Value: outputname.forcedcd

Description: The binary DCD force trajectory filename. This file stores the trajectory of
all atom forces using the same format (binary DCD) as X-PLOR. If forceDCDfile is defined,
then forceDCDfreq must also be defined.

forceDCDfreq < timesteps between writing force to trajectory file >

Acceptable Values: positive integer

Description: The number of timesteps between the writing of forces to the trajectory file.
The initial forces will not be included in the trajectory file. Forces in DCD files are stored
in kcal/mOI/A. In the current implementation only those forces that are evaluated during
the timestep that a frame is written are included in that frame. This is different from the
behavior of TclForces and is likely to change based on user feedback. For this reason it is
strongly recommended that forceDCDfreq be a multiple of fullElectFrequency.

3.2.3 Standard output

NAMD logs a variety of summary information to standard output. The standard units used by
NAMD are Angstroms for length, kcal/mol for energy, Kelvin for temperature, and bar for pressure.
Wallclock or CPU times are given in seconds unless otherwise noted.

29

BOUNDARY energy is from spherical boundary conditions and harmonic restraints, while MISC
energy is from external electric fields and various steering forces. TOTAL is the sum of the various
potential energies, and the KINETIC energy. TOTAL2 uses a slightly different kinetic energy
that is better conserved during equilibration in a constant energy ensemble. TOTAL3 is another
variation with much smaller short-time fluctuations that is also adjusted to have the same running
average as TOTAL2. Defects in constant energy simulations are much easier to spot in TOTAL3
than in TOTAL or TOTAL2.

PRESSURE is the pressure calculated based on individual atoms, while GPRESSURE incor-
porates hydrogen atoms into the heavier atoms to which they are bonded, producing smaller fluc-
tuations. The TEMPAVG, PRESSAVG, and GPRESSAVG are the average of temperature and
pressure values since the previous ENERGY output; for the first step in the simulation they will
be identical to TEMP, PRESSURE, and GPRESSURE.

e outputEnergies < timesteps between energy output >
Acceptable Values: positive integer
Default Value: 1
Description: The number of timesteps between each energy output of NAMD. This
value specifies how often NAMD should output the current energy values to stdout (which
can be redirected to a file). By default, this is done every step. For long simulations, the
amount of output generated by NAMD can be greatly reduced by outputting the energies
only occasionally.

e mergeCrossterms < add crossterm energy to dihedral? >
Acceptable Values: yes or no
Default Value: yes
Description: If crossterm (or CMAP) terms are present in the potential, the energy is
added to the dihedral energy to avoid altering the energy output format. Disable this feature
to add a separate “CROSS” field to the output.

e outputMomenta < timesteps between momentum output >
Acceptable Values: nonnegative integer
Default Value: 0
Description: The number of timesteps between each momentum output of NAMD. If
specified and nonzero, linear and angular momenta will be output to stdout.

e outputPressure < timesteps between pressure output >
Acceptable Values: nonnegative integer
Default Value: 0
Description: The number of timesteps between each pressure output of NAMD. If specified
and nonzero, atomic and group pressure tensors will be output to stdout.

e outputTiming < timesteps between timing output >
Acceptable Values: nonnegative integer
Default Value: the greater of firstLdbStep or 10x outputEnergies
Description: The number of timesteps between each timing output of NAMD. If nonzero,
CPU and wallclock times and memory usage will be output to stdout. These data are from
node 0 only; CPU times and memory usage for other nodes may vary.

30

3.3 AMBER file and force field support

AMBER format PARM file and coordinate file can be read by NAMD, which allows one to use
AMBER force field to carry out all types of simulations that NAMD has supported. NAMD can
read PARM files in either the format used in AMBER 6 or the new format defined in AMBER 7.
The output of the simulation (restart file, DCD file, etc.) will still be in traditional format that
has been used in NAMD.

e amber < use AMBER format force field? >
Acceptable Values: yes or no
Default Value: no
Description: If amber is set to on, then parmfile must be defined, and structure and
parameters should not be defined.

e parmfile < AMBER format PARM file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
System.

e ambercoor < AMBER format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates
can also be used for PDB format coordinate file. When amber is set to on, either ambercoor
or coordinates must be defined, but not both.

e readexclusions < Read exclusions from PARM file? >
Acceptable Values: yes or no
Default Value: yes
Description: PARM file explicitly gives complete exclusion (including 1-4 exclusions)
information. When readexclusions is set to on, NAMD will read all exclusions from PARM
file and will not add any more; alternatively, if readexclusions is set to off, NAMD will
ignore the exclusions in PARM file and will automatically generate them according to the
exclusion policy specified by exclude.

e scnb < VDW 1-4 scaling factor >
Acceptable Values: decimal > 1.0
Default Value: 2.0
Description: Same meaning as SCNB in AMBER. Note that in NAMD, 1-4 vdw inter-
actions are DIVIDED by scnb, whereas 1-4 electrostatic interactions are MULTIPLIED by
1-4scaling. So 1-4scaling should be set to the inverse of SCEE value used in AMBER.

Caveat:

1. Polarizable parameters in AMBER are not supported.

2. NAMD does not support the 10-12 potential terms in some old AMBER versions. When non-zero
10-12 parameter is encountered in PARM file, NAMD will terminate.

3. NAMD has several exclusion policy options, defined by exclude. The way AMBER dealing with
exclusions corresponds to the “scaled1-4” in NAMD. So for simulations using AMBER force field,
one would specify “exclude scaled1-4” in the configuration file, and set 1-4scaling to the inverse
value of SCEE as would be used in AMBER.

31

4. NAMD does not read periodic box lengths in PARM or coordinate file. They must be explicitly
specified in NAMD configuration file.

5. By default, NAMD applies switching functions to the non-bond interactions within the cut-
off distance, which helps to improve energy conservation, while AMBER does not use switching
functions so it simply truncates the interactions at cutoff. However, if “authentic” AMBER. cutoff
simulations are desired, the switching functions could be turned off by specifying “switching off”
in NAMD configuration file.

6. NAMD and AMBER may have different default values for some parameters (e.g., the tolerance
of SHAKE). One should check other sections of this manual for accurate descriptions of the NAMD
options.

Following are two examples of the NAMD configuration file to read AMBER force field and
carry out simulation. They may help users to select proper NAMD options for AMBER force field.
For the convenience of AMBER users, the AMBER 6 sander input files are given in the left for
comparison, which would accomplish similar tasks in AMBER.

Example 1: Non-periodic boundary system, cutoff simulation

—--—-AMBER-——-- ---NAMD---
TITLE
&cntrl
ntb=0, igb=2, # non-periodic, use cutoff for non-bond
nstlim=1000, numsteps 1000 # Num of total steps
ntpr=50, outputEnergies 50 # Energy output frequency
ntwr=50, restartfreq 50 # Restart file frequency
ntwx=100, DCDfreq 100 # Trajectory file frequency
dt=0.001, timestep 1 # in unit of fs (This is default)
tempi=0., temperature O # Initial temp for velocity assignment
cut=10., cutoff 10
switching off # Turn off the switching functions
scee=1.2, exclude scaledl-4
1-4scaling 0.833333 # =1/1.2, default is 1.0
scnb=2.0 scnb 2 # This is default
&end
amber on # Specify this is AMBER force field
parmfile prmtop # Input PARM file
ambercoor inpcrd # Input coordinate file
outputname md # Prefix of output files

Example 2: Periodic boundary system, PME, NVE ensemble, using SHAKE algorithm

~--AMBER---- ---NAMD---
TITLE

&cntrl
ntc=2, ntf=2, # SHAKE to the bond between each hydrogen and it mother atom

32

rigidBonds all

t01=0.0005, rigidTolerance 0.0005 # Default is 0.00001
nstlim=500, numsteps 500 # Num of total steps
ntpr=50, outputEnergies 50 # Energy output frequency
ntwr=100, restartfreq 100 # Restart file frequency
ntwx=100, DCDfreq 100 # Trajectory file frequency
dt=0.001, timestep 1 # in unit of fs (This is default)
tempi=300., temperature 300 # Initial temp for velocity assignment
cut=9., cutoff 9
switching off # Turn off the switching functions
&end
&ewald PME on # Use PME for electrostatic calculation
Orthogonal periodic box size
a=62.23, cellBasisVectoril 62.23 0 O
b=62.23, cellBasisVector2 0 62.23 0
c=62.23, cellBasisVector3 0 0 62.23
nfft1=64, PMEGridSizeX 64
nfft2=64, PMEGridSizeY 64
nfft3=64, PMEGridSizeZ 64
ischrgd=1, # NAMD doesn’t force neutralization of charge
&end
amber on # Specify this is AMBER force field
parmfile FILENAME # Input PARM file
ambercoor FILENAME # Input coordinate file
outputname PREFIX # Prefix of output files
exclude scaledl-4
1-4scaling 0.833333 # =1/1.2, default is 1.0

3.4 GROMACS file support

NAMD has the ability to load GROMACS ASCII topology (.top) and coordinate (.gro) files, which
allows you to run most GROMACS simulations in NAMD. All simulation output will still be in
the traditional NAMD formats.

e gromacs < use GROMACS format force field? >
Acceptable Values: on or off
Default Value: off
Description: If gromacs is set to on, then grotopfile must be defined, and structure
and parameters should not be defined.

e grotopfile < GROMACS format topology/parameter file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
system.

e grocoorfile < GROMACS format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates

33

can also be used for PDB format coordinate file. When gromacs is set to on, either
grocoorfile or coordinates must be defined, but not both.

However, NAMD does not have support for many GROMACS-specific options:

e Dummies (fake atoms with positions generated from the positions of real atoms) are not
supported.

e The GROMACS pairs section, where explicit 1-4 parameters are given between pairs of
atoms, is not supported, since NAMD calculates its 1-4 interactions exclusively by type.

e Similarly, exclusions are not supported. The biggest problem here is that GROMACS RB
dihedrals are supposed to imply exclusions, but NAMD does not support this.

e Constraints, restraints, and settles are not implemented in NAMD.

e In some cases, it may not work to override some but not all of the parameters for a bond,
atom, etc. In this case, NAMD will generate an error and stop. The parser will sometimes
not tolerate correct GROMACS files or fail to detect errors in badly formatted files.

e NAMD does not support all the types of bond potentials that exist in GROMACS, but
approximates them with harmonic or sinusoidal potentials.

e NAMD does not read periodic box lengths in the coordinate file. They must be explicitly
specified in the NAMD configuration file.

34

4 Creating PSF Structure Files

The psfgen structure building tool consists of a portable library of structure and file manipulation
routines with a Tcl interface. Current capabilities include

e reading CHARMM topology files

e reading psf files in X-PLOR/NAMD format

e extracting sequence data from single segment PDB files

e generating a full molecular structure from sequence data

e applying patches to modify or link different segments

e writing NAMD and VMD compatible PSF structure files

e extracting coordinate data from PDB files

e constructing (guessing) missing atomic coordinates

e deleting selected atoms from the structure

e writing NAMD and VMD compatible PDB coordinate files

We are currently refining the interface of psfgen and adding features to create a complete
molecular building solution. We welcome your feedback on this new tool.

4.1 New commands and Functionalities

The version 2.0 of psfgen was extensively modified and improved to meet the current standards in
the size of the structures, and the modern versions of additive CHARMM force field, and polarizable
DRUDE force field (http://mackerell.umaryland.edu/charmm_£f.shtml).

New functionalities include:
e hydrogen mass repartition
e structure preparation for Drude force field

e structure preparation containing colinear lone pairs (halogen atoms in the latest additive
CHARMM force field version)

e psfgen log file to store all the information printed to the console

To use the Drude force field, one only needs to load the Drude topology files and prepare the
structures as per usual. Most commands are available for both lone pairs in the additive and
polarizable force fields, although some operations are not yet available for Drude particles. Atom
modification operations, e.g., psfset, and queries with the segment command on the drude particles,
are not implemented. We advise the user to use VMD to assign beta and occupancy values during
the structure preparation. writemol and readmol commands are not compatible with structure
preparation for Drude Force field.

35

http://mackerell.umaryland.edu/charmm_ff.shtml

The new psfgen log file allows the user to save all the information regularly printed out during
a psfgen execution script to a file. It is possible to open and close multiple log files in a psfgen
script, but only one file is active at any given moment. An example of an application of multiple
log files is to save the information of the loading process of the topology files to one log file and the
rest of information of structure preparation to another file, as demonstrated below:

psfgen_logfile "load_topoplogy.log"

topology top_all22_prot.rtf
topology top_all36_carb.rtf
topology top_all36_lipid.rtf
topology top_all36_prot.rtf
topology top_all36_cgenff.rtf
topology toppar_water_ions.str

psfgen_logfile close
psfgen_logfile "structure_preparation.log"

segment BPTI {
pdb output/6PTI_protein.pdb
}

patch DISU BPTI:5 BPTI:55
patch DISU BPTI:14 BPTI:38
patch DISU BPTI:30 BPTI:51

pdbalias atom ILE CD1 CD
coordpdb output/6PTI_protein.pdb BPTI

pdbalias residue HOH TIP3
segment SOLV {

auto none

pdb output/6PTI_water.pdb
+

pdbalias atom HOH O 0OH2
coordpdb output/6PTI_water.pdb SOLV

guesscoord

writepsf output/bpti.psf
writepdb output/bpti.pdb

psfgen_logfile close

36

4.2 Ordinary Usage

psfgen is currently distributed in two forms. One form is as a standalone program implemented as
a Tcl interpreter which reads commands from standard output. You may use loops, variables, etc.
as you would in a VMD or NAMD script. You may use psfgen interactively, but we expect it to be
run most often with a script file redirected to standard input. The second form is as a Tcl package
which can be imported into any Tcl application, including VMD. All the commands available to
the standalone version of psfgen are available to the Tcl package; using psfgen within VMD lets
you harness VMD’s powerful atom selection capability, as well as instantly view the result of your
structure building scripts. Examples of using psfgen both with and without VMD are provided in
this document.

Generating PSF and PDB files for use with NAMD will typically consist of the following steps:

1. Preparing separate PDB files containing individual segments of protein, solvent, etc. before
running psfgen.

2. Reading in the appropriate topology definition files and aliasing residue and atom names found
in the PDB file to those found in the topology files. This will generally include selecting a
default protonation state for histidine residues.

3. Generating the default structure using segment and pdb commands.
4. Applying additional patches to the structure.

5. Reading coordinates from the PDB files.

6. Deleting unwanted atoms, such as overlapping water molecules.

7. Guessing missing coordinates of hydrogens and other atoms.

8. Writing PSF and PDB files for use in NAMD.

4.2.1 Preparing separate PDB files

Many PDB files in the PDB databank contain multiple chains, corresponding to protein subunits,
water, and other miscellaneous groups. Protein subunits are often identified by their chain ID in
the PDB file. In psfgen, each of these groups must be assigned to their own segment. This applies
most strictly in the case of protein chains, each of which must be assigned to its own segment so
that N-terminal and C-terminal patches can be applied. You are free to group water molecules into
whatever segments you choose.

Chains can be split up into their own PDB files using your favorite text editor and/or Unix
shell commands, as illustrated in the BPTI example below. If you are using VMD you can also use
atom selections to write pieces of the structure to separate files:

Split a file containing protein and water into separate segments.

Creates files named myfile_water.pdb, myfile_fragO.pdb, myfile_fragl.pdb,...
Requires VMD.

mol load pdb myfile.pdb

set water [atomselect top water]

$water writepdb myfile_water.pdb

37

set protein [atomselect top protein]
set chains [lsort -unique [$protein get pfragl]
foreach chain $chains {
set sel [atomselect top "pfrag $chain"]
$sel writepdb myfile_frag${chain}.pdb
}

4.2.2 Deleting unwanted atoms

The delatom command described below allows you to delete selected atoms from the structure.
It’s fine to remove atoms from your structure before building the PSF and PDB files, but you
should never edit the PSF and PDB files created by psfgen by hand as it will probably mess up
the internal numbering in the PSF file.

Very often the atoms you want to delete are water molecules that are either too far from the
solute, or else outside of the periodic box you are trying to prepare. In either case VMD atom
selections can be used to select the waters you want to delete. For example:

Load a pdb and psf file into both psfgen and VMD.

resetpsf

readpsf myfile.psf

coordpdb myfile.pdb

mol load psf myfile.psf pdb myfile.pdb

Select waters that are more than 10 Angstroms from the protein.

set badwaterl [atomselect top "name OH2 and not within 10 of protein"]

Alternatively, select waters that are outside our periodic cell.

set badwater2 [atomselect top "name OH2 and (x<-30 or x>30 or y<-30 or>30
or z<-30 or z>30)"]

Delete the residues corresponding to the atoms we selected.

foreach segid [$badwaterl get segid] resid [$badwaterl get resid] {

delatom $segid $resid

3

Have psfgen write out the new psf and pdb file (VMD’s structure and

coordinates are unmodified!).

writepsf myfile_chopwater.psf

writepdb myfile_chopwater.pdb

4.3 BPTI Example

To actually run this demo requires
e the program psfgen from any NAMD distribution,

e the CHARMM topology and parameter files top_all22_prot.inp and par_all22_prot.inp
from http://mackerell.umaryland.edu/charmm_£f.shtml, and

e the BPTI PDB file 6PTI.pdb available from the Protein Data Bank at http://www.pdb.org/
by searching for 6PTI and downloading the complete structure file in PDB format.

38

http://mackerell.umaryland.edu/charmm_ff.shtml
http://www.pdb.org/

Building the BPTI structure

In this demo, we create the files bpti.psf and bpti.pdb in the output directory which can then
be used for a simple NAMD simulation.

File: bpti_example.tcl
Requirements: topology file top_all22_prot.inp in directory toppar
PDB file 6PTI.pdb in current directory

Create working directory; remove old output files
mkdir -p output
rm -f output/6PTI_protein.pdb output/6PTI_water.pdb

(1) Split input PDB file into segments}
grep -v ’"HETATM’ 6PTI.pdb > output/6PTI_protein.pdb
grep ’HOH’ 6PTI.pdb > output/6PTI_water.pdb

(2) Embed the psfgen commands in this script
psfgen << ENDMOL

(3) Read topology file
topology toppar/top_all22_prot.inp

(4) Build protein segment
segment BPTI {

pdb output/6PTI_protein.pdb
}

(5) Patch protein segment
patch DISU BPTI:5 BPTI:55

patch DISU BPTI:14 BPTI:38
patch DISU BPTI:30 BPTI:51

(6) Read protein coordinates from PDB file
pdbalias atom ILE CD1 CD ; # formerly "alias atom ..."
coordpdb output/6PTI_protein.pdb BPTI

(7) Build water segment
pdbalias residue HOH TIP3 ; # formerly "alias residue ..."
segment SOLV {

auto none

pdb output/6PTI_water.pdb

}

(8) Read water coordinaes from PDB file
pdbalias atom HOH O OH2 ; # formerly "alias atom ..."
coordpdb output/6PTI_water.pdb SOLV

39

(9) Guess missing coordinates
guesscoord

(10) Write structure and coordinate files
writepsf output/bpti.psf
writepdb output/bpti.pdb

End of psfgen commands
ENDMOL

Step-by-step explanation of the script:

(1) Split input PDB file into segments. 6PTIL.pdb is the original file from the Protein Data
Bank. It contains a single chain of protein and some PO4 and H20 HETATM records. Since each
segment must have a separate input file, we remove all non-protein atom records using grep. If
there were multiple chains we would have to split the file by hand. Create a second file containing
only waters.

(2) Embed the psfgen commands in this script. Run the psfgen program, taking everything
until “ENDMOL” as input. You may run psfgen interactively as well. Since psfgen is built on a
Tecl interpreter, you may use loops, variables, etc., but you must use $$ for variables when inside a
shell script. If you want, run psfgen and enter the following commands manually.

(3) Read topology file. Read in the topology definitions for the residues we will create. This
must match the parameter file used for the simulation as well. Multiple topology files may be read
in since psfgen and NAMD use atom type names rather than numbers in psf files.

(4) Build protein segment. Actually build a segment, calling it BPTT and reading the sequence
of residues from the stripped pdb file created above. In addition to the pdb command, we could
specify residues explicitly. Both angles and dihedrals are generated automatically unless “auto
none” is added (which is required to build residues of water). The commands “first” and “last”
may be used to change the default patches for the ends of the chain. The structure is built when
the closing } is encountered, and some errors regarding the first and last residue are normal.

(5) Patch protein segment. Some patch residues (those not used to begin or end a chain) are
applied after the segment is built. These contain all angle and dihedral terms explicitly since they
were already generated. In this case we apply the patch for a disulfide link three separate times.

(6) Read protein coordinates from PDB file. The same file used to generate the sequence
is now read to extract coordinates. In the residue ILE, the atom CD is called CD1 in the pdb file,
so we use “pdbalias atom” to define the correct name. If the segment names in the pdb file match
the name we gave in the segment statement, then we don’t need to specify it again; in this case we
do specify the segment, so that all atoms in the pdb file must belong to the segment.

40

(7) Build water segment. Build a segment for the crystal waters. The residue type for water
depends on the model, so here we alias HOH to TIP3. Because CHARMM uses an additional H-H
bond we must disable generation of angles and dihedrals for segments containing water. Then read
the pdb file.

(8) Read water coordinates from PDB file. Alias the atom type for water oxygen as well
and read coordinates from the file to the segment SOLV. Hydrogen doesn’t show up in crystal
structures so it is missing from this pdb file.

(9) Guessing missing coordinates. The tolopogy file contains default internal coordinates
which can be used to guess the locations of many atoms, hydrogens in particular. In the output
pdb file, the occupancy field of guessed atoms will be set to 0, atoms which are known are set
to 1, and atoms which could not be guessed are set to -1. Some atoms are “poorly guessed” if
needed bond lengths and angles were missing from the topology file. Similarly, waters with missing
hydrogen coordinates are given a default orientation.

Write structure and coordinate files. Now that all of the atoms and bonds have been created,
we can write out the psf structure file for the system. We also create the matching coordinate pdb
file. The psf and pdb files are a matched set with identical atom ordering as needed by NAMD.

Using generated files in NAMD.

The files bpti.pdb and bpti.psf can now be used with NAMD, but the initial coordinates require
minimization first. The following is an example NAMD configuration file for the BPTI example.

NAMD configuration file for BPTI

molecular system
structure output/bpti.psf

force field

paratypecharmm on

parameters toppar/par_all22_prot.inp
exclude scaledl-4

1-4scaling 1.0

approximations
switching on
switchdist 8
cutoff 12
pairlistdist 13.5
margin O
stepspercycle 20

#integrator
timestep 1.0

41

#output
outputenergies 10
outputtiming 100
binaryoutput no

molecular system
coordinates output/bpti.pdb

#output
outputname output/bpti
dcdfreq 1000

#protocol
temperature 0
reassignFreq 1000
reassignTemp 25
reassignIncr 25
reassignHold 300

#script
minimize 1000

run 20000

4.4 Building solvent around a protein

The following script illustrates how psfgen and VMD can be used together to add water around a
protein structure. It assumes you already have a psf and pdb file for your protein, as well as a box
of water which is large enough to contain the protein. For more information on how atomselections
can be used within VMD scripts, see the VMD User’s Guide.

proc addwater { psffile pdbfile watpsf watpdb } {

Create psf/pdb files that contain both our protein as well as

a box of equilibrated water. The water box should be large enough
to easily contain our protein.

resetpst

readpsf $psffile pdb $pdbfile

readpsf $watpsf pdb $watpdb

Load the combined structure into VMD
writepsf combine.psf

writepdb combine.pdb

mol load psf combine.psf pdb combine.pdb

Assume that the segid of the water in watpsf is QQQ
We want to delete waters outside of a box ten Angstroms

42

bigger than the extent of the protein.
set protein [atomselect top "not segid QQQ"]
set minmax [measure minmax $protein]
foreach {min max} $minmax { break }
foreach {xmin ymin zmin} $min { break }
foreach {xmax ymax zmax} $max { break }
set xmin [expr $xmin - 10]
set ymin [expr $ymin - 10]
set zmin [expr $zmin - 10]
set xmax [expr $xmax + 10]
set ymax [expr $ymax + 10]
set zmax [expr $zmax + 10]

Center the water on the protein. Also update the coordinates held
by psfgen.

set wat [atomselect top "segid QQQ"]

$wat moveby [vecsub [measure center $protein] [measure center $wat]]
foreach atom [$wat get {segid resid name x y z}] {

foreach {segid resid name x y z} $atom { break }

coord $segid $resid $name [list $x $y $z]

}

Select waters that we don’t want in the final structure.
set outsidebox [atomselect top "segid QQQ and (x <= $xmin or y <= $ymin \
or z <= $zmin or x >= $xmax or y >= $ymax or z >= $xmax)"]
set overlap [atomselect top "segid QQQ and within 2.4 of (not segid QQQ)"]

Get a list of all the residues that are in the two selections, and delete
those residues from the structure.

set reslist [concat [$outsidebox get resid] [$overlap get resid]]

set reslist [lsort -unique -integer $reslist]

foreach resid $reslist {
delatom QQQ $resid
}

That should do it - write out the new psf and pdb file.
writepsf solvate.psf
writepdb solvate.pdb

Delete the combined water/protein molecule and load the system that
has excess water removed.

mol delete top

mol load psf solvate.psf pdb solvate.pdb

Return the size of the water box

43

return [list [list $xmin $ymin $zmin] [list $xmax $ymax $zmax]]

}

4.5

4.6

New Commands in the version 2.0

e psfgen logfile <file name> [close]

Purpose: Open or close a log file to store all information printed to the console.
Arguments: <file name>: Valid file name in the current directory.

close: Close the active log file. The file name should not be included in the closing command.
Example above.

Context: Any part of the script, context independent. May call multiple times.

hmassrepart [dowater <10>] [mass <target hydrogen mass>]

Purpose: Partition the mass of heavy atoms into the bonded hydrogen atoms.
Arguments: dowater: 1 for true, 0 for false. Partition the water molecules. Default value
0.

mass: Target for the hydrogen atoms’ mass. Default value 3.024 amu.

Context: After loading or preparing the structure.

vpbonds [1 0]

Purpose: Print the bonds between the virtual particles (drude particles and lone pairs) and
their hosts.

Arguments: 1 for true, 0 for false. Default value 1.

Context: Before writing the psf file. May call multiple times. WARNING: To run simula-
tions containing lone pairs or Drude particles on NAMD 2.13, set vpbonds to 0.

List of Commands

topology [list] <file name>

Purpose: Read in molecular topology definitions from file.
Arguments: <file name>: CHARMM format topology file.

list: Lists all currently specified topology files.

residues: Return a list of the known residue topologies.

patches: Return a list of the known residue patches.

Context: Beginning of script, before segment. May call multiple times.

topology alias <alternate residue name> <existing residue name>

Purpose: Provide alternate names for residues found in topology file. An alternate name
used to generate a residue will be used on output. Compare to “pdbalias residue” below, in
which the real name is used on output.

Arguments: <alternate residue name>: Desired residue name.

<existing residue name>: Residue name found in topology file.

Context: Before reading sequence with pdb. May call multiple times.

pdbalias residue <alternate name> <real name>

Purpose: Provide translations from residues found in PDB files to proper residue names read
in from topology definition files. Proper names from topology files will be used in generated
PSF and PDB files. Compare to “topology alias” above, in which the alias is is used as the
residue name in generated files. This command also exists under the deprecated name alias.

44

Arguments: <alternate name>: Residue name found in PDB file.
<real name>: Residue name found in topology file or aliases.
Context: Before reading sequence with pdb. May call multiple times.

segment [segids] [resids] [residue] [first] [last] <segment ID> [resid] [atom name] {
<commands> }

Purpose: Build a segment of the molecule. A segment is typically a single chain of protein
or DNA, with default patches applied to the termini. Segments may also contain pure solvent
or lipid. Options [segids| [resids| [residue] [first] [last] are used to query information
about the specified segment.

Arguments: segids: Return a list of segids for the molecule in the current context.
resids: Return a list of resids for the given segment in the current context.

residue: Return the residue name of the residue in the given segment with the given resid.
atoms: Return a list of atoms for the given segment with the given resid.

coordinates: Return x, y, z coordinates for the given atom.

velocities: Return x, y, z velocities for the given atom.

mass: Return the mass of the given atom.

charge: Return the charge of the given atom.

atomid: Return the one-based atomid of the given atom. These are only assigned/updated
when writing a file. Therefore writepsf, writepdb, or writemol must be called to avoid
returning old atomid values or zero.

first: Returns the name of the patch that was applied to the beginning of the specified
segment.

last: Returns the name of the patch that was applied to the end of the specified segment.
<segment ID>: Unique name for segment, 1-4 characters.

<commands>: Sequence of commands in Tcl syntax to build the primary structure of the
segment, including auto, first, last, residue, pdb, etc.

Context: After topology definitions and residue aliases. May call multiple times. Structure
information is generated at the end of every segment command.

auto [angles| [dihedrals] [none]

Purpose: Override default settings from topology file for automatic generation of angles and
dihedrals for the current segment.

Arguments: angles: Enable generation of angles from bonds.

dihedrals: Enable generation of dihedrals from angles.

none: Disable generation of angles and dihedrals.

Context: Anywhere within segment, does not affect later segments.

first <patch name>

Purpose: Override default patch applied to first residue in segment. Default is read from
topology file and may be residue-specific.

Arguments: <patch name>: Single-target patch residue name or none.

Context: Anywhere within segment, does not affect later segments.

last <patch name>
Purpose: Override default patch applied to last residue in segment. Default is read from
topology file and may be residue-specific.

45

Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

residue <resid> <resname> [chain]

Purpose: Add a single residue to the end of the current segment.

Arguments: <resid>: Unique name for residue, 1-5 characters, usually numeric.
<resname>: Residue type name from topology file. <chain>: Single-character chain identi-
fier.

Context: Anywhere within segment.

pdb <file name>

Purpose: Extract sequence information from PDB file when building segment. Residue IDs
will be preserved, residue names must match entries in the topology file or should be aliased
before pdb is called.

Arguments: <file name>: PDB file containing known or aliased residues.

Context: Anywhere within segment.

mutate <resid> <resname>

Purpose: Change the type of a single residue in the current segment.

Arguments: <resid>: Unique name for residue, 1-5 characters, usually numeric.
<resname>: New residue type name from topology file.

Context: Within segment, after target residue has been created.

patch [list| <patch residue name> <segid:resid> |[...]

Purpose: Apply a patch to one or more residues. Patches make small modifications to the
structure of residues such as converting one to a terminus, changing the protonation state, or
creating disulphide bonds between a pair of residues.

Arguments: 1list: Lists all patches applied explicitey using the command ’patch’.
listall: Lists all currently applied patches including default patches.

<patch residue name>: Name of patch residue from topology definition file.

<segid:resid>: List of segment and residue pairs to which patch should be applied.
Context: After one or more segments have been built.

regenerate [angles| [dihedrals]

Purpose: Remove all angles and/or dihedrals and completely regenerate them using the
segment automatic generation algorithms. This is only needed if patches were applied that
do not correct angles and bonds. Segment and file defaults are ignored, and angles/dihedrals
for the entire molecule are regenerated from scratch.

Arguments: angles: Enable generation of angles from bonds.

dihedrals: Enable generation of dihedrals from angles.

Context: After one or more segments have been built.

regenerate [resids|

Purpose: Remove insertion codes and minimally modify resids to retain uniqueness. No
modifications will be made in segments that have monotonically increasing resids and do
not contain insertion codes. Within a segment, no modifications will be made to residues
preceeding the first non-increasing resid or residue with an insertion code.

Arguments: resids: Enable regeneration of resids to remove insertion codes.

Context: After one or more segments have been built.

46

e multiply <factor> <segid|:resid[:atomname]]> |...]
Purpose: Create multiple images of a set of atoms for use in locally enhanced sampling. The
beta column of the output pdb file is set to 1...<factor> for each image. Multiple copies of
bonds, angles, etc. are created. Atom, residue or segment names are not altered; images are
distinguished only by beta value. This is not a normal molecular structure and may confuse
other tools.
Arguments: <factor>:
< segid:resid:atomname>: segment, residue, or atom to be multiplied. If :resid is omitted the
entire segment is multiplied; if :atomname is omitted the entire residue is multiplied. May be
repeated as many times as necessary to include all atoms.
Context: After one or more segments have been built, all patches applied, and coordinates
guessed. The effects of this command may confuse other commands.

e delatom <segid> [resid] [atomname]
Purpose: Delete one or more atoms. If only segid is specified, all atoms from that segment
will be removed from the structure. If both segid and resid are specified, all atoms from
just that residue will be removed. If segid, resid, and atomname are all specified, just a
single atom will be removed.
Arguments: <segid>: Segment ID of target atom.
<resid>: Residue ID of target atom (optional).
<atomname>: Name of target atom (optional).
Context: After one or more segments have been built.

e resetpsf
Purpose: Delete all segments in the structure. The topology definitions and aliases are left
intact. If you want to clear the topology and aliases as well, use psfcontext reset instead.
Arguments:
Context: After one or more segments have been built.

e psfcontext [contexl] [new] [delete]
Purpose: Switches between complete contexts, including structure, topology definitions, and
aliases. If no arguments are provided, the current context is returned. If <context> or new is
specified, a new context is entered and the old context is returned. If delete is also specified,
the old context is destroyed and “deleted <old context>" is returned. An error is returned if
the specified context does not exist or if delete was specified and the current context would
still be in use. It may be possible to write robust, error-tolerant code with this interface, but
it would not be easy. Please employ the following revised psfcontext usage instead.
Arguments: <contert>: Context ID returned by psfcontext.
Context: At any time.

e psfcontext mixedcase
Purpose: Make context case sensitive by preserving case of all segment, residue, atom, and
patch names on input.
Arguments:
Context: Before reading files requiring case sensitive behavior, normally as the first com-
mand.

e psfcontext allcaps
Purpose: Make context case insensitive by converting all segment, residue, atom, and patch

47

names to upper case characters on input. This is the default behavior and should match the
behavior of versions prior to 1.5.0.

Arguments:

Context: Before reading files requiring case insensitive behavior, not needed in normal use.

psfcontext reset

Purpose: Clears the structure, topology definitions, and aliases, creating clean environment
just like a new context.

Arguments:

Context: At any time.

psfcontext create

Purpose: Creates a new context and returns its ID, but does not switch to it. This is different
from psfcontext new above, which switches to the newly created context and returns the
current context’s ID.

Arguments:

Context: At any time.

psfcontext delete <contert>

Purpose: Deletes the specified context. An error is returned if the specified context does not
exist or would still be in use. This is different from psfcontext <context> delete above,
which switches to the specified context and deletes the current one.

Arguments: <contert>: Context ID returned by psfcontext.

Context: At any time.

psfcontext eval <context> { <commands> }

Purpose: Evaluates <commands> in the specified context, returning to the current context
on exit. This should be totally robust, returning to the orignal context in case of errors and
preventing its deletion when nested.

Arguments: <context>: Context ID returned by psfcontext create.

<commands>: Script to be executed in the specified context.

Context: At any time.

psfcontext stats

Purpose: Returns the total numbers of contexts that have been created and destroyed. This
is useful for checking if a script is leaking contexts.

Arguments:

Context: At any time.

writepsf [charmm| [x-plor]| [cmap| [nocmap| [nopatches] <file name>

Purpose: Write out structure information as PSF file. A simplified session log is listed in
the REMARKS section of the PSF file.

Arguments: charmm: Use CHARMM format (numbers for atom types).

x-plor: Use X-PLOR format (names for atom types), the default format required by NAMD.
cmap: Write cross-term entries to PSF file if present, the default.

nocmap: Do not write cross-term entries to PSF file, even if present.

nopatches: Do not write list of applied patches to PSF file header.

<file name>: PSF file to be generated.

Context: After all segments have been built and patched.

48

e readpsf <file name> [pdb| [pdb file name] [namdbin| [namdbin file name| [velnamdbin]
[velocity file name]
Purpose: Read in structure information from PSF file and add it to the structure. Option-
ally also read coordinates and insertion codes from a PDB file, assuming that the atom order
is the same in both files. Optionally also read coordinates a NAMD binary file, assuming
that the atom order is the same as the psf file. It is an error if any segments in the PSF file
already exist.
Arguments: <file name>: PSF file in X-PLOR format (names for atom types).
pdb: Read coordinates and insertion codes from PDB file.
<pdb file name>: PDB file with atoms in same order as PSF file.
namdbin: Read coordinates from NAMD binary file.
<namdbin file name>: NAMD binary file with atoms in same order as PSF file.
velnamdbin: Read velocities from NAMD binary file.
<welocity file name>: NAMD binary velocity file with atoms in same order as PSF file.
Context: Anywhere but within segment.

e pdbalias atom <residue name> <alternate name> <real name>
Purpose: Provide translations from atom names found in PDB files to proper atom names
read in from topology definition files. Proper names from topology files will be used in
generated PSF and PDB files. This command also exists under the deprecated name alias.
Arguments: <residue name>: Proper or aliased residue name.
<alternate name>: Atom name found in PDB file.
<real name>: Atom name found in topology file.
Context: Before reading coordinates with coordpdb. May call multiple times.

e coordpdb <file name> [segid] [namdbin] [namdbin file name]
Purpose: Read coordinates from PDB file, matching segment, residue and atom names.
Arguments: <file name>: PDB file containing known or aliased residues and atoms.
<segid>: If specified override segment IDs in PDB file.
namdbin: Read coordinates from NAMD binary file.
<namdbin file name>: NAMD binary file with atoms in same order as PDB file.
Context: After segment has been generated and atom aliases defined.

e guesscoord
Purpose: Guesses coordinates of atoms for which they were not explicitly set. Calculation
is based on internal coordinate hints contained in toplogy definition files. When these are
insufficient, wild guesses are attempted based on bond lengths of 1 A and angles of 109°.
Arguments: None.
Context: After stucture has been generated and known coordinates read in.

e coord <segid> <resid> <atomname> <{ x y z }>
Purpose: WILL BE DEPRECATED AFTER VERSON 1.6 (use psfset coord in-
stead) Set coordinates for a single atom.
Arguments: <segid>: Segment ID of target atom.
<resid>: Residue ID of target atom.
<atomname>: Name of target atom.
<{ z y z }>: Coordinates to be assigned.
Context: After structure has been generated.

49

e psfset <attribute> <segid> [resid] [atomname] <value>

Purpose: Set an attribute for a given segment, residue, or atom.

Arguments: <attribute>: Segment attributes: segid: the name of the segment Residue
attributes: resname: the name of the residue Atom attributes: name: the name of the atom,
mass: the mass of the atom, charge: the charge of the atom, beta: the PDB bfactor of the
atom, coord: the coordinates of the atom as {x y z}, vel: the velocity of the atom as {vx
vy vz}

<segid>: Segment ID of target segment, residue, or atom.

<resid>: Residue ID of target residue or atom.

<atomname>: Name of target atom.

<walue>: Value to be assigned.

Context: After structure has been generated or read from file.

writepdb <file name>

Purpose: Writes PDB file containing coordinates. Atom order is identical to PSF file gener-
ated by writepsf (unless structure has been changed). The O field is set to 1 for atoms with
known coordinates, 0 for atoms with guessed coordinates, and -1 for atoms with no coordinate

data available (coordinates are set to 0 for these atoms).
Arguments: <file name>: PDB file to be written.
Context: After structure and coordinates are complete.

e writenamdbin <file name> [velnamdbin] [velocity file name]
Purpose: Writes NAMD binary file containing coordinates. Atom order is identical to PSF
file generated by writepsf (unless structure has been changed). Coordinates are set to 0 for
atoms with no coordinate data.
Arguments: <file name>: NAMD binary file to be written.
velnamdbin: Also write velocities to NAMD binary file.
<welocity file name>: NAMD binary velocity file to be written.
Context: After structure and coordinates are complete.

4.7 Example of a Session Log

The command “writepst” prints a simple session log as “REMARKS” at the beginning of the PSF
file. The log contains information about applied patches and used topology files which not stored
in the standard records of PSF files. These informations are also available after a PSF file was read
by command “readpsf”. Here’a a simple axample:

PSF

1
REMARKS
REMARKS
REMARKS
REMARKS
REMARKS
REMARKS
REMARKS
REMARKS

INTITLE

original generated structure x-plor psf file

4 patches were applied to the molecule.

topology 1LOV_autopsf-temp.top

segment P1 { first NTER; last CTER; auto angles dihedrals }
segment 01 { first NONE; last NONE; auto none 1}

segment W1 { first NONE; last NONE; auto none }
defaultpatch NTER P1:1

defaultpatch CTER P1:104

50

REMARKS patch DISU P1:10 P1:2
REMARKS patch DISU P1:103 P1:6

1704 !NATOM
1P1 1 ALA N NH3 -0.300000 14.0070 0

All patches that were applied explicitely using the “patch” command are listed following the
keyword “patch”, but the patches that result from default patching like the first and last patches
of a segment are marked as “defaultpatch”. Further the segment based patching rules are listed
along with the angle/dihedral autogeneration rules.

51

5 Force Field Parameters

5.1 Potential energy functions

Evaluating the force is the most computationally demanding part of molecular dynamics. The force
is the negative gradient of a scalar potential energy function,

F(i) = =VU(7), (1)
and, for systems of biomolecules, this potential function involves the summing,

U(F) = Z Ubonded (F) + Z Unonbonded (F)y (2)

over a large number of bonded and nonbonded terms. The bonded potential terms involve 2—
, 3—, and 4-body interactions of covalently bonded atoms, with O(N) terms in the summation.
The nonbonded potential terms involve interactions between all pairs of atoms (usually excluding
pairs of atoms already involved in a bonded term), with O(N?) terms in the summation, although
fast evaluation techniques are used to compute good approximations to their contribution to the
potential with O(N) or O(N log N) computational cost.

5.1.1 Bonded potential energy terms

The bonded potential terms involve 2—, 3—, and 4-body interactions of covalently bonded atoms.
The 2-body spring bond potential describes the harmonic vibrational motion between an (i, j)—
pair of covalently bonded atoms,

Ubond = k(rij —10)?, 3)
where r;; = ||7; — || gives the distance between the atoms, r¢ is the equilibrium distance, and k is
the spring constant.

The 3-body angular bond potential describes the angular vibrational motion occurring between
an (i, j, k)—triple of covalently bonded atoms,

Uangle = ko (9 - 90)2 + Kup (Tik - Tub)Qa (4)

where, in the first term, ¢ is the angle in radians between vectors 7j; = 7; — 75 and 7%; = 7; — 7%, O
is the equilibrium angle, and kg is the angle constant. The second term is the Urey—Bradley term
used to describe a (noncovalent) spring between the outer ¢ and k atoms, active when constant
kub # 0, where, like the spring bond, 7 = |7 — 75| gives the distance between the pair of atoms
and 7y}, is the equilibrium distance.

The 4-body torsion angle (also known as dihedral angle) potential describes the angular spring
between the planes formed by the first three and last three atoms of a consecutively bonded
(i, j, k,l)-quadruple of atoms,

o {k(l +cos(ny + ¢)) ifn >0, 5)

k(v — ¢)? if n =0,

where 1) is the angle in radians between the (i,7j, k)-plane and the (j, k,l)—plane. The integer
constant n is nonnegative and indicates the periodicity. For n > 0, ¢ is the phase shift angle and k
is the multiplicative constant. For n = 0, ¢ acts as an equilibrium angle and the units of k change
to potential/radQ. A given (i, j, k,l)—quadruple of atoms might contribute multiple terms to the
potential, each with its own parameterization. The use of multiple terms for a torsion angle allows
for complex angular variation of the potential, effectively a truncated Fourier series.

52

5.1.2 Nonbonded potential energy terms

The nonbonded potential terms involve interactions between all (i, j)—pairs of atoms, usually ex-
cluding pairs of atoms already involved in a bonded term. Even using a fast evaluation methods
the cost of computing the nonbonded potentials dominates the work required for each time step of
an MD simulation.

The Lennard—Jones potential accounts for the weak dipole attraction between distant atoms
and the hard core repulsion as atoms become close,

(Fan)” (Rmmf] | ©)
Tij Tij

where r;; = ||7'j—7}|| gives the distance between the pair of atoms. The parameter Eyin = ULj(Rmin)
is the minimum of the potential term (Epi, < 0, which means that —Ey,;, is the well-depth). The
Lennard-Jones potential approaches 0 rapidly as r;; increases, so it is usually truncated (smoothly
shifted) to 0 past a cutoff radius, requiring O(N) computational cost.

The electrostatic potential is repulsive for atomic charges with the same sign and attractive for
atomic charges with opposite signs,

Ury = (—Emin)

Cqig;
Ueclec = €14 =) (7)
€0y
where r;; = ||7/; — 75|| gives the distance between the pair of atoms, and ¢; and g¢; are the charges

on the respective atoms. Coulomb’s constant C' and the dielectric constant ¢y are fixed for all
electrostatic interactions. The parameter €14 is a unitless scaling factor whose value is 1, except
for a modified 14 interaction, where the pair of atoms is separated by a sequence of three covalent
bonds (so that the atoms might also be involved in a torsion angle interaction), in which case
€14 = €, for a fixed constant 0 < e < 1. Although the electrostatic potential may be computed with
a cutoff like the Lennard—Jones potential, the 1/r potential approaches 0 much more slowly than
the 1/r% potential, so neglecting the long range electrostatic terms can degrade qualitative results,
especially for highly charged systems. There are other fast evaluation methods that approximate the
contribution to the long range electrostatic terms that require O(N) or O(N log N) computational
cost, depending on the method.

5.2 Non-bonded interactions

NAMD has a number of options that control the way that non-bonded interactions are calculated.
These options are interrelated and can be quite confusing, so this section attempts to explain the
behavior of the non-bonded interactions and how to use these parameters.

5.2.1 Van der Waals interactions

The simplest non-bonded interaction is the van der Waals interaction. In NAMD, van der Waals
interactions are always truncated at the cutoff distance, specified by cutoff. The main option
that effects van der Waals interactions is the switching parameter. With this option set to on, a
smooth switching function will be used to truncate the van der Waals potential energy smoothly at
the cutoff distance. A graph of the van der Waals potential with this switching function is shown
in Figure 1. If switching is set to off, the van der Waals energy is just abruptly truncated at the
cutoff distance, so that energy may not be conserved.

93

energy

distance

Figure 1: Graph of van der Waals potential with and without the application of the switching function.
With the switching function active, the potential is smoothly reduced to 0 at the cutoff distance. Without
the switching function, there is a discontinuity where the potential is truncated.

The switching function used is based on the X-PLOR switching function. The parameter
switchdist specifies the distance at which the switching function should start taking effect to bring
the van der Waals potential to 0 smoothly at the cutoff distance. Thus, the value of switchdist
must always be less than that of cutoff.

5.2.2 Electrostatic interactions

The handling of electrostatics is slightly more complicated due to the incorporation of multiple
timestepping for full electrostatic interactions. There are two cases to consider, one where full
electrostatics is employed and the other where electrostatics are truncated at a given distance.

First let us consider the latter case, where electrostatics are truncated at the cutoff distance.
Using this scheme, all electrostatic interactions beyond a specified distance are ignored, or assumed
to be zero. If switching is set to on, rather than having a discontinuity in the potential at the
cutoff distance, a shifting function is applied to the electrostatic potential as shown in Figure 2. As
this figure shows, the shifting function shifts the entire potential curve so that the curve intersects
the x-axis at the cutoff distance. This shifting function is based on the shifting function used by
X-PLOR.

Next, consider the case where full electrostatics are calculated. In this case, the electrostatic
interactions are not truncated at any distance. In this scheme, the cutoff parameter has a slightly
different meaning for the electrostatic interactions — it represents the local interaction distance,
or distance within which electrostatic pairs will be directly calculated every timestep. Outside of
this distance, interactions will be calculated only periodically. These forces will be applied using a
multiple timestep integration scheme as described in Section 7.3.4.

5.2.3 Non-bonded force field parameters

e cutoff < local interaction distance common to both electrostatic and van der Waals calcu-
lations (A) >
Acceptable Values: positive decimal
Description: See Section 5.2 for more information.

o4

energy

|
cutoff distance

Figure 2: Graph showing an electrostatic potential with and without the application of the shifting function.

energy

distance

Figure 3: Graph showing an electrostatic potential when full electrostatics are used within NAMD, with
one curve portion calculated directly and the other calculated using PME.

e switching < use switching function? >
Acceptable Values: on or off
Default Value: on
Description: If switching is specified to be off, then a truncated cutoff is performed.
If switching is turned on, then smoothing functions are applied to both the electrostatics
and van der Waals forces. For a complete description of the non-bonded force parameters see
Section 5.2. If switching is set to on, then switchdist must also be defined.

e vdwForceSwitching < use force switching for VDW? >
Acceptable Values: on or off

Default Value: off
Description: If both switching and vdwForceSwitching are set to on, then CHARMM

force switching is used for van der Waals forces.

e switchdist < distance at which to activate switching/splitting function for electrostatic
and van der Waals calculations (A) >

95

Acceptable Values: positive decimal < cutoff

Description: Distance at which the switching function should begin to take effect. This
parameter only has meaning if switching is set to on. The value of switchdist must be less
than or equal to the value of cutoff, since the switching function is only applied on the range
from switchdist to cutoff. For a complete description of the non-bonded force parameters
see Section 5.2.

exclude < non-bonded exclusion policy to use >

Acceptable Values: none, 1-2, 1-3, 1-4, or scaledl-4

Description: This parameter specifies which pairs of bonded atoms should be excluded
from non-bonded interactions. With the value of none, no bonded pairs of atoms will be
excluded. With the value of 1-2, all atom pairs that are directly connected via a linear bond
will be excluded. With the value of 1-3, all 1-2 pairs will be excluded along with all pairs of
atoms that are bonded to a common third atom (i.e., if atom A is bonded to atom B and atom
B is bonded to atom C, then the atom pair A-C would be excluded). With the value of 1-4,
all 1-3 pairs will be excluded along with all pairs connected by a set of two bonds (i.e., if atom
A is bonded to atom B, and atom B is bonded to atom C, and atom C is bonded to atom D,
then the atom pair A-D would be excluded). With the value of scaled1-4, all 1-3 pairs are
excluded and all pairs that match the 1-4 criteria are modified. The electrostatic interactions
for such pairs are modified by the constant factor defined by 1-4scaling. The van der Waals
interactions are modified by using the special 1-4 parameters defined in the parameter files.
The value of scaled1-4 is necessary to enable the modified 1-4 VDW parameters present in
the CHARMM parameter files.

1-4scaling < scaling factor for 1-4 electrostatic interactions >

Acceptable Values: 0 < decimal <1

Default Value: 1.0

Description: Scaling factor for 1-4 electrostatic interactions. This factor is only used when
the exclude parameter is set to scaled1-4. In this case, this factor is used to modify the
electrostatic interactions between 1-4 atom pairs. If the exclude parameter is set to anything
but scaled1-4, this parameter has no effect regardless of its value.

dielectric < dielectric constant for system >

Acceptable Values: decimal > 1.0

Default Value: 1.0

Description: Dielectric constant for the system. A value of 1.0 implies no modification of
the electrostatic interactions. Any larger value will lessen the electrostatic forces acting in
the system.

nonbondedScaling < scaling factor for nonbonded forces >

Acceptable Values: decimal > 0.0

Default Value: 1.0

Description: Scaling factor for electrostatic and van der Waals forces. A value of 1.0
implies no modification of the interactions. Any smaller value will lessen the nonbonded
forces acting in the system.

vdwGeometricSigma < use geometric mean to combine L-J sigmas >
Acceptable Values: yes or no

56

Default Value: no
Description: Use geometric mean, as required by OPLS, rather than traditional arithmetic
mean when combining Lennard-Jones sigma parameters for different atom types.

limitdist < maximum distance between pairs for limiting interaction strength(A) >
Acceptable Values: non-negative decimal

Default Value: 0.

Description: The electrostatic and van der Waals potential functions diverge as the
distance between two atoms approaches zero. The potential for atoms closer than 1imitdist
is instead treated as ar? + ¢ with parameters chosen to match the force and potential at
limitdist. This option should primarily be useful for alchemical free energy perturbation
calculations, since it makes the process of creating and destroying atoms far less drastic
energetically. The larger the value of 1imitdist the more the maximum force between atoms
will be reduced. In order to not alter the other interactions in the simulation, limitdist
should be less than the closest approach of any non-bonded pair of atoms; 1.3 A appears to
satisfy this for typical simulations but the user is encouraged to experiment. There should
be no performance impact from enabling this feature.

LJcorrection < Apply long-range corrections to the system energy and virial to account
for neglected vdW forces? >

Acceptable Values: yes or no

Default Value: no

Description: Apply an analytical correction to the reported vdW energy and virial that
is equal to the amount lost due to switching and cutoff of the LJ potential. The correction
will use the average of vdW parameters for all particles in the system and assume a constant,
homogeneous distribution of particles beyond the switching distance. See [99] for details
(the equations used in the NAMD implementation are slightly different due to the use of a
different switching function). Periodic boundary conditions are required to make use of tail
corrections.

5.2.4 PME parameters

PME stands for Particle Mesh Ewald and is an efficient full electrostatics method for use with
periodic boundary conditions. None of the parameters should affect energy conservation, although
they may affect the accuracy of the results and momentum conservation.

e PME < Use particle mesh Ewald for electrostatics? >

Acceptable Values: yes or no
Default Value: no
Description: Turns on particle mesh Ewald.

PMETolerance < PME direct space tolerance >

Acceptable Values: positive decimal

Default Value: 107°

Description: Affects the value of the Ewald coefficient and the overall accuracy of the
results.

PMEInterpOrder < PME interpolation order >
Acceptable Values: positive integer

o7

Default Value: 4 (cubic)
Description: Charges are interpolated onto the grid and forces are interpolated off using
this many points, equal to the order of the interpolation function plus one.

PMEGridSpacing < maximum space between grid points >

Acceptable Values: positive real

Description: The grid spacing partially determines the accuracy and efficiency of PME.
If any of the grid sizes below are not set, then PMEGridSpacing must be set (recommended
value is 1.0 A) and will be used to calculate them. If a grid size is set, then the grid spacing
must be at least PMEGridSpacing (if set, or a very large default of 1.5).

PMEGridSizeX < number of grid points in x dimension >

Acceptable Values: positive integer

Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeX should have only small integer factors (2, 3 and 5).

PMEGridSizeY < number of grid points in y dimension >

Acceptable Values: positive integer

Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeY should have only small integer factors (2, 3 and 5).

PMEGridSizeZ < number of grid points in z dimension >

Acceptable Values: positive integer

Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeZ should have only small integer factors (2, 3 and 5).

PMEProcessors < processors for FFT and reciprocal sum >

Acceptable Values: positive integer

Default Value: larger of x and y grid sizes up to all available processors

Description: For best performance on some systems and machines, it may be necessary
to restrict the amount of parallelism used. Experiment with this parameter if your parallel
performance is poor when PME is used.

FFTWEstimate < Use estimates to optimize FFT? >

Acceptable Values: yes or no

Default Value: no

Description: Do not optimize FFT based on measurements, but on FFTW rules of thumb.
This reduces startup time, but may affect performance.

FFTWUseWisdom < Use FFTW wisdom archive file? >

Acceptable Values: yes or no

Default Value: yes

Description: Try to reduce startup time when possible by reading FFTW “wisdom” from
a file, and saving wisdom generated by performance measurements to the same file for future
use. This will reduce startup time when running the same size PME grid on the same number
of processors as a previous run using the same file.

FFTWWisdomFile < name of file for FFTW wisdom archive >
Acceptable Values: file name
Default Value: FFTW_NAMD_version_platform.txt

58

Description: File where FFTW wisdom is read and saved. If you only run on one platform
this may be useful to reduce startup times for all runs. The default is likely sufficient, as it
is version and platform specific.

5.2.5 MSM parameters

The multilevel summation method (MSM) [44] is an alternative to PME for calculating full elec-
trostatic interactions. The use of the FFT in PME has two drawbacks: (1) it generally requires the
use of periodic boundary conditions, in which the simulation describes an infinite three-dimensional
lattice, with each lattice cell containing a copy of the simulated system, and (2) calculation of the
FFT becomes a considerable performance bottleneck to the parallel scalability of MD simulations,
due to the many-to-many communication pattern employed. MSM avoids the use of the FFT in
its calculation, instead employing the nested interpolation in real space of softened pair potentials,
which permits in addition to periodic boundary conditions the use of semi-periodic boundaries, in
which there is periodicity along just one or two basis vectors, or non-periodic boundaries, in which
the simulation is performed in a vacuum. Also, better parallel scaling has been observed with MSM
when scaling a sufficiently large system to a large number of processors. See the MSM research
web page (http://www.ks.uiuc.edu/Research/msm/) for more information.

In order to use the MSM, one need only specify “MSM on” in the configuration file. For
production use, we presently recommend using the default “MSMQuality 0” (C* cubic interpolation
with C? Taylor splitting), which has been validated to correctly reproduce the PME results [44].
At this time, we discourage use of the higher order interpolation schemes (Hermite, quintic, etc.),
as they are still under development. With cubic interpolation, MSM now gets roughly half the
performance of PME. Comparable performance and better scaling for MSM have been observed
with the optimizations described in Ref. [44], which will be available shortly.

For now, NAMD'’s implementation of the MSM does not calculate the long-range electrostatic
contribution to the virial, so use with a barostat for constant pressure simulation is inappropriate.
(Note that the experiments in Ref. [44] involving constant pressure simulation with MSM made use
of a custom version that is incompatible with some other NAMD features, so is not yet available.)
The performance of PME is generally still better for smaller systems with smaller processor counts.
MSM is the only efficient method in NAMD for calculating full electrostatics for simulations with
semi-periodic or non-periodic boundaries.

The periodicity is defined through setting the cell basis vectors appropriately, as discussed in
Sec. 7. The cutoff distance, discussed earlier in this section, also determines the splitting distance
between the MSM short-range part, calculated exactly, and long-range part, interpolated from the
grid hierarchy; this splitting distance is the primary control for accuracy for a given interpolation
and splitting, although most simulations will likely want to keep the cutoff set to the CHARMM-
prescribed value of 12 A.

The configuration options specific to MSM are listed below. A simulation employing non-
periodic boundaries in one or more dimensions might have atoms that attempt to drift beyond the
predetermined extent of the grid. In the case that an atom does drift beyond the grid, the simulation
will be halted prematurely with an error message. Several options listed below deal with defining
the extent of the grid along non-periodic dimensions beyond what can be automatically determined
by the initial coordinates. It is also recommended for non-periodic simulation to configure boundary
restraints to contain the atoms, for instance, through Tcl boundary forces in Sec. 8.11.

e MSM < Use multilevel summation method for electrostatics? >

99

http://www.ks.uiuc.edu/Research/msm/

Acceptable Values: yes or no
Default Value: no
Description: Turns on multilevel summation method.

MSMGridSpacing < spacing between finest level grid points (A) >

Acceptable Values: positive real

Default Value: 2.5

Description: The grid spacing determines in part the accuracy and efficiency of MSM. An
error versus cost analysis shows that the best tradeoff is setting the grid spacing to a value
close to the inter-particle spacing. The default value works well in practice for atomic scale
simulation. This value will be exact along non-periodic dimensions. For periodic dimensions,
the grid spacing must evenly divide the basis vector length; the actual spacing for a desired
grid spacing h is guaranteed to be within the interval [%h, gh).

MSMQuality < select the approximation quality >

Acceptable Values: 0,1,2,3,4

Default Value: 0

Description: This parameter offers a simplified way to select higher order interpolation
and splitting for MSM. The available choices are:

— 0 sets C! cubic (p = 3) interpolation with C? Taylor splitting,

1 sets C' Hermite (p = 4) interpolation with C® Taylor splitting,

2 sets C! quintic (p = 5) interpolation with C3 Taylor splitting,

— 3 sets C! septic (p = 7) interpolation with C* Taylor splitting,

— 4 sets C'' nonic (p = 9) interpolation with C® Taylor splitting.

We presently recommend using the default selection, which has been wvalidated to correctly
reproduce the PME results [44], and discourage use of the higher order interpolation schemes,
as they are still under development. With cubic interpolation, MSM now gets roughly half
the performance of PME. Comparable performance and better scaling for MSM have been
observed with the optimizations described in Ref. [44], which will be available shortly.

There is generally a tradeoff between quality and performance. Empirical results show that
the C'! interpolation schemes offer a little better accuracy than the alternative interpolation
schemes that have greater continuity. Also, better accuracy has been observed by using a
splitting function with ClP+1)/2] continuity where p is the order of the interpolant.

MSMApprox < select the interpolant >
Acceptable Values: 0,1,...,7

Default Value: 0

Description: Select the interpolation scheme:

0 sets C* cubic (p = 3) interpolation,
— 1 sets C'' quintic (p = 5) interpolation,
— 2 sets C? quintic (p = 5) interpolation,

3 sets C'! septic (p = 7) interpolation,

=7
— 4 sets C3 septic (p = 7) interpolation,

60

— 5 sets C'! nonic () interpolation,

p=9
— 6 sets C* nonic (p = 9) interpolation,

— 7 sets C! Hermite (p = 4) interpolation.

MSMSplit < select the splitting >
Acceptable Values: 0,1,...,6

Default Value: 0

Description: Select the splitting function:

0 sets C? Taylor splitting,

1 sets C3 Taylor splitting,
— 2 sets C* Taylor splitting,

3 sets C° Taylor splitting,
4 sets C% Taylor splitting,

— 5 sets C7 Taylor splitting,
— 6 sets C® Taylor splitting.

MSMLevels < maximum number of levels >

Acceptable Values: non-negative integer

Default Value: 0

Description: Set the maximum number of levels to use in the grid hierarchy. Although
setting slightly lower than the default might (or might not) improve performance and/or
accuracy for non-periodic simulation, it is generally best to leave this at the default value ”0”
which will then automatically adjust the levels to the size of the given system.

MSMPadding < grid padding (A) >

Acceptable Values: non-negative real

Default Value: 2.5

Description: The grid padding applies only to non-periodic dimensions, for which the
extent of the grid is automatically determined by the maximum and minimum of the initial
coordinates plus the padding value.

MSMxmin, MSMymin, MSMzmin < minimum x-, y-, z-coordinate (A) >

Acceptable Values: real

Description: Set independently the minimum x-, y-, or z-coordinates of the simulation.
This parameter is applicable only to non-periodic dimensions. It is useful in conjunction with
setting a boundary restraining force with Tcl boundary forces in Sec. 8.11.

MSMxmax, MSMymax, MSMzmax < maximum x-, y-, z-coordinate (A) >

Acceptable Values: real

Description: Set independently the maximum x-, y-, or z-coordinates of the simulation.
This parameter is applicable only to non-periodic dimensions. It is useful in conjunction with
setting a boundary restraining force with Tcl boundary forces in Sec. 8.11.

MSMBlockSizeX, MSMBlockSizeY, MSMBlockSizeZ < block size for grid decomposition >
Acceptable Values: positive integer
Default Value: 8

61

Description: Tune parallel performance by adjusting the block size used for parallel domain
decomposition of the grid. Recommended to keep the default.

e MSMSerial < Use serial long-range solver? >
Acceptable Values: yes or no
Default Value: no
Description: Enable instead the slow serial long-range solver. Intended to be used only
for testing and diagnostic purposes.

5.2.6 Full direct parameters

The direct computation of electrostatics is not intended to be used during real calculations, but
rather as a testing or comparison measure. Because of the O(N?) computational complexity for
performing direct calculations, this is much slower than using PME or MSM to compute full electro-
statics for large systems. In the case of periodic boundary conditions, the nearest image convention
is used rather than a full Ewald sum.

e FullDirect < calculate full electrostatics directly? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not direct computation of full electrostatics should be
performed.

5.2.7 Tabulated nonbonded interaction parameters

In order to support coarse grained models and semiconductor force fields, the tabulated energies
feature replaces the normal van der Waals potential for specified pairs of atom types with one
interpolated from user-supplied energy tables. The electrostatic potential is not altered.

Pairs of atom types to which the modified interactions apply are specified in a CHARMM
parameter file by an NBTABLE section consisting of lines with two atom types and a corresponding
interaction type name. For example, tabulated interactions for SI-O, O-O, and SI-SI pairs would
be specified in a parameter file as:

NBTABLE

SI 0 SIO

0 0 00

SI ST SISI

Each interaction type must correspond to an entry in the energy table file. The table file consists
of a header formatted as:

multiple comment lines
<number_of_tables> <table_spacing (A)> <maximum_distance (A)>

followed by number_of_tables energy tables formatted as:

TYPE <interaction type name>

0 <energy (kcal/mol)> <force (kcal/mol/A)>

<table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>
<2+table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>

62

<3*table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>

<maximum_distance - 3*table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>
<maximum_distance - 2%table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>
<maximum_distance - table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>

The table entry at maximum_distance will match the energy of the previous entry but have a
force of zero. The maximum distance must be at least equal to the nonbonded cutoff distance and
entries beyond the cutoff distance will be ignored. For the above example with a cutoff of 12 A the
table file could look like:

parameters for silicon dioxide
3 0.01 14.0

TYPE SIO

0 5.092449e+26 3.055469e+31

0.01 5.092449e+14 3.055469e+17
0.02 7.956951e+12 2.38708be+15
0.03 6.985526e+11 1.397105e+14

13.98 0.000000e+00 -0.000000e+00
13.99 0.000000e+00 -0.000000e+00
TYPE 00

0 1.832907e+27 1.099744e+32

0.01 1.832907e+15 1.099744e+18
0.02 2.863917e+13 8.591751e+15
0.03 2.514276e+12 5.028551e+14

13.98 0.000000e+00 -0.000000e+00
13.99 0.000000e+00 -0.000000e+00
TYPE SISI

0 0.000000e+00 -0.000000e+00
0.01 0.000000e+00 -0.000000e+00

13.98 0.000000e+00 -0.000000e+00
13.99 0.000000e+00 -0.000000e+00

The following three parameters are required for tabulated energies.

e tabulatedEnergies < use tabulated energies >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not tabulated energies will be used for van der Waals
interactions between specified pairs of atom types.

e tabulatedEnergiesFile < file containing energy table >
Acceptable Values: file name
Description: Provides one energy table for each interaction type in parameter file. See
format above.

63

e tableInterpType < cubic or linear interpolation >
Acceptable Values: cubic or linear
Description: Specifies the order for interpolating between energy table entries.

5.3 Water Models

NAMD currently supports the 3-site TIP3P water model, the 4-site TIP4P water model, and the
5-site SWM4-NDP water model (from the Drude force field) [61]. TIP3P is the current default
water model. Usage of alternative water models is described below.

e waterModel < using which water model? >
Acceptable Values: tip3, tip4, swmé
Default Value: tip3
Description: Specifies the water model to be used. When using the TIP3P water model,
the ordering of atoms within each TIP3P water molecule must be oxygen, hydrogen, hydro-
gen. When using the TIP4P water model, the ordering of atoms within each TIP4P water
molecule must be oxygen, hydrogen, hydrogen, lone pair. When using the SWM4-NDP water
model, the ordering of atoms within each SWM4-NDP water molecule must be oxygen, Drude
particle, lone pair, hydrogen, hydrogen. Alternative orderings will fail.

5.4 Drude polarizable force field

The Drude oscillator model represents induced electronic polarization by introducing an auxiliary
particle attached to each polarizable atom via a zero-length harmonic spring. The advantage with
the Drude model is that it preserves the simple particle-particle Coulomb electrostatic interaction
employed in nonpolarizable force fields, thus its implementation in NAMD is more straightforward
than alternative models for polarization. NAMD performs the integration of Drude oscillators by
employing a novel dual Langevin thermostat to “freeze” the Drude oscillators while maintaining the
normal “warm” degrees of freedom at the desired temperature [51]. Use of the Langevin thermostat
enables better parallel scalability than the earlier reported implementation which made use of a
dual Nosé-Hoover thermostat acting on, and within, each nucleus-Drude pair [62]. Performance
results show that the NAMD implementation of the Drude model maintains good parallel scalability
with an increase in computational cost by not more than twice that of using a nonpolarizable force
field [51].

Excessive “hyperpolarization” of Drude oscillators can be prevented by two different schemes.
The default “hard wall” option reflects elongated springs back towards the nucleus using a simple
collision model. Alternatively, the Drude oscillators can be supplemented by a flat-bottom quartic
restraining potential (usually with a large force constant).

The Drude polarizable force field requires some extensions to the CHARMM force field. An
anisotropic spring term is added to account for out-of-plane forces from a polarized atom and
its covalently bonded neighbor with two more covalently bonded neighbors (similar in structure
to an improper bond). The screened Coulomb correction of Thole is calculated between pairs of
Drude oscillators that would otherwise be excluded from nonbonded interaction and optionally
between non-excluded, nonbonded pairs of Drude oscillators that are within a prescribed cutoff
distance [110, 111]. Also included in the Drude force field are the use of off-centered massless
interaction sites, so called “lone pairs” (LPs), to avoid the limitations of centrosymmetric-based
Coulomb interactions [43]. The coordinate of each LP site is constructed based on three “host”

64

atoms. The calculated forces on the massless LP must be transferred to the host atoms, preserving
total force and torque. After an integration step of velocities and positions, the position of the LP
is updated based on the three host atoms, along with additional geometry parameters that give
displacement and in-plane and out-of-plane angles. See our research web page (http://www.ks.
uiuc.edu/Research/Drude/) for additional details and parallel performance results.

5.4.1 Required input files

No additional files are required by NAMD to use the Drude polarizable force field. However, it is
presently beyond the capability of the psfgen tool to generate the PSF file needed to perform a
simulation using the Drude model. For now, CHARMM is needed to generate correct input files.

The CHARMM force field parameter files specific to the Drude model are required. The PDB
file must also include the Drude particles (mass between 0.05 and 1.0) and the LPs (mass 0). The
Drude particles always immediately follow their parent atom. The PSF file augments the “atom”
section with additional columns that include the “Thole” and “alpha” parameters for the screened
Coulomb interactions of Thole. The PSF file also requires additional sections that list the LPs,
including their host atoms and geometry parameters, and list the anisotropic interaction terms,
including their parameters. A Drude-compatible PSF file is denoted by the keyword “DRUDE”
given along the top line.

5.4.2 Standard output

The NAMD logging to standard output is extended to provide additional temperature data on the
cold and warm degrees of freedom. Four additional quantities are listed on the ETITLE and ENERGY
lines:

DRUDECOM gives the temperature for the warm center-of-mass degrees of freedom,
DRUDEBOND gives the temperature for the cold Drude oscillator degrees of freedom,

DRCOMAVG gives the average temperature (averaged since the previously reported temperature) for
the warm center-of-mass degrees of freedom,

DRBONDAVG gives the average temperature (averaged since the previously reported temperature) for
the cold Drude oscillator degrees of freedom.

The energies resulting from the Drude oscillators and the anisotropic interactions are summed into
the BOND energy. The energies resulting from the LPs and the screened Coulomb interactions of
Thole are summed into the ELECT energy.

5.4.3 Drude force field parameters

The Drude model should be used with the Langevin thermostat enabled (Langevin=on). Doing
so permits the use of normal sized time steps (e.g., 1 fs). The Drude model is also compatible
with constant pressure simulation using the Langevin piston. Long-range electrostatics may be
calculated using PME. The nonbonded exclusions should generally be set to use either the 1-3
exclusion policy (exclude=1-3) or the scaled 1-4 exclusion policy (exclude=scaledl-4).

The Drude water model (SWM4-NDP) is a 5-site model with four charge sites and a nega-
tively charged Drude particle [61], with the particles ordered in the input files as oxygen, Drude
particle, LP, hydrogen, hydrogen. The atoms in the water molecules should be constrained

65

http://www.ks.uiuc.edu/Research/Drude/
http://www.ks.uiuc.edu/Research/Drude/

(rigidBonds=water), with use of the SETTLE algorithm recommended (useSettle=on). Ex-
plicitly setting the water model (waterModel=swm4) is optional.

drude < Perform integration of Drude oscillators? >

Acceptable Values: on or off

Default Value: off

Description: The integration uses a dual Langevin thermostat to freeze the Drude
oscillators while maintaining the warm degrees of freedom at the desired temperature. Must
also enable the Langevin thermostat. If drude is set to on, then drudeTemp must also be
defined.

drudeTemp < temperature for freezing the Drude oscillators (K) >

Acceptable Values: non-negative decimal

Description: For stability, the Drude oscillators must be kept at a very cold termpature.
Using a Langevin thermostat, it is possible to set this temperature to 0 K.

drudeDamping < damping coefficient for Drude oscillators (1/ps) >

Acceptable Values: positive decimal

Description: The Langevin coupling coefficient to be applied to the Drude oscillators. If
not given, drudeDamping is set to the value of langevinDamping, but values of as much as
an order of magnitude greater may be appropriate.

drudeNbTholeCut < nonbonded Thole interaction radius (A) >

Acceptable Values: positive decimal

Default Value: 5.0

Description: If drudeNbTholeCut is non-zero, the screened Coulomb correction of Thole
is also calculated for non-excluded, nonbonded pairs of Drude oscillators that are within this
radius of interaction.

drudeHardWall < use collisions to correct hyperpolarization? >

Acceptable Values: on or off

Default Value: on

Description: Excessively elongated Drude oscillator bonds are avoided by reflective
collisions induced at a fixed cutoff, drudeBondLen. A large number of such events is usually
indicative of unstable/unphysical dynamics and a simulation will stop if double the cutoff is
exceeded.

drudeBondLen < hyperpolarization cutoff (A) >

Acceptable Values: positive decimal

Default Value: 0.25

Description: If using drudeHardWall on, this is the distance at which collisions occur.
Otherwise, this is the distance at which an additional quartic restraining potential is applied
to each Drude oscillator. In this latter case, a value of 0.2 A (slightly smaller than default)
is recommended.

drudeBondConst < Drude oscillator restraining force constant >

Acceptable Values: positive decimal

Default Value: 40000.0

Description: If drudeHardWall off and drudeBondConst is non-zero, an additional quar-
tic restraining potential is applied to a Drude oscillator if its length exceeds drudeBondLen.

66

5.5 MARTINI Residue-Based Coarse-Grain Forcefield

The MARTINI forcefield for residue-based coarse-grain models allows simulation of several tens
of atoms as only several large coarse-grained particles [72, 73, 78]. In the MARTINI model, each
protein residue is represented by a backbone bead and usually one or more sidechain beads.

When preparing MARTINT simulations it is important to include only those dihedrals specified
by the forcefield. Using the “auto dihedrals” or “regenerate dihedrals” feature of psfgen will create
dihedrals for all possible sets of four bonded atoms. This is incorrect for MARTINI and will result
in energy jumps because the dihedral potential function is degenerate for the angles of 180 degrees
allowed by cosine-based angles.

When using MARTINI the following configuration parameters should be set as indicated:

cosAngles on
martiniSwitching on
dielectric 15.0

PME off

e cosAngles < enable the MARTINI cosine-based angle potential function >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not the MARTINI forcefield is being used, specifically
cosine-based angle potential function. The cosine-based potential will only be used for angles
in CHARMM parameter files that specify the cos keyword.

e martiniSwitching < enable the MARTINI Lennard-Jones switching function? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not the MARTINI forcefield is being used, specifically
the Lennard-Jones switching function.

e martiniDielAllow < Allow dielectrics != 15.0 for use with MARTINI >
Acceptable Values: on or off
Description: off Allows user to specify a dielectric not equal to 15.0, ie a non-standard
dielectric for MARTINI.

5.6 Constraints and Restraints
5.6.1 Bond constraint parameters

e rigidBonds < controls if and how ShakeH is used >
Acceptable Values: none, water, all
Default Value: none
Description: When water is selected, the hydrogen-oxygen and hydrogen-hydrogen dis-
tances in waters are constrained to the nominal length or angle given in the parameter file,
making the molecules completely rigid. When rigidBonds is all, waters are made rigid
as described above and the bond between each hydrogen and the (one) atom to which it is
bonded is similarly constrained. For the default case none, no lengths are constrained.

e rigidTolerance < allowable bond-length error for ShakeH (A) >
Acceptable Values: positive decimal

67

Default Value: 1.0e-8
Description: The ShakeH algorithm is assumed to have converged when all constrained
bonds differ from the nominal bond length by less than this amount.

e rigidIterations < maximum ShakeH iterations >
Acceptable Values: positive integer
Default Value: 100
Description: = The maximum number of iterations ShakeH will perform before giving up
on constraining the bond lengths. If the bond lengths do not converge, a warning message is
printed, and the atoms are left at the final value achieved by ShakeH. Although the default
value is 100, convergence is usually reached after fewer than 10 iterations.

e rigidDieOnError < maximum ShakeH iterations >
Acceptable Values: on or off
Default Value: on
Description: Exit and report an error if rigidTolerance is not achieved after rigidItera-
tions.

e useSettle < Use SETTLE for waters. >
Acceptable Values: on or off
Default Value: on
Description: If rigidBonds are enabled then use the non-iterative SETTLE algorithm to
keep waters rigid rather than the slower SHAKE algorithm.

5.6.2 Position restraint parameters

The following describes the parameters for the position restraints feature of NAMD. For historical
reasons the term “constraints” has been carried over from X-PLOR. This feature allows a restraining
potential to each atom of an arbitrary set during the simulation.

e constraints < are position restraints active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not position restraints are active. If it is set to off, then
no position restraints are computed. If it is set to on, the potential k& x (x — x¢)P is applied
to each atom. Per-atom values for k£ can be defined by either conskfile or conskcol, for xg
by consref, and for p by consexp.

e consexp < exponent for position restraint energy function >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent to be use in the position restraint energy function. This value must
be a positive integer, and only even values really make sense. This parameter is used only if
constraints is set to on.

e consref < PDB file containing restraint reference positions >
Acceptable Values: UNIX file name
Description: PDB file to use for reference positions for position restraints. Each atom that
has a positive force constant will be restrained about the position specified in this file.

68

e conskfile < PDB file containing force constant values >
Acceptable Values: UNIX filename
Description: PDB file to use for force constants for position restraints.

e conskcol < column of PDB file containing force constant >
Acceptable Values: X,Y,Z, 0,orB
Description: Column of the PDB file to use for the position restraint force constant.
This parameter may specify any of the floating point fields of the PDB file, either X, Y, Z,
occupancy, or beta-coupling (temperature-coupling). Regardless of which column is used, a
value of 0 indicates that the atom gshould not be restrained. Otherwise, the value specified
is used as the force constant for that atom’s restraining potential.

e constraintScaling < scaling factor for position restraint energy function >
Acceptable Values: positive
Default Value: 1.0
Description: The position restraint energy function is multiplied by this parameter, making
it possible to gradually turn off restraints during equilibration. This parameter is used only
if constraints is set to on.

e selectConstraints < Restrain only selected Cartesian components of the coordinates? >
Acceptable Values: on or off
Default Value: off
Description: This option is useful to restrain the positions of atoms to a plane or a line
in space. If active, this option will ensure that only selected Cartesian components of the
coordinates are restrained. E.g.: Restraining the positions of atoms to their current z values
with no restraints in x and y will allow the atoms to move in the x-y plane while retaining
their original z-coordinate. Restraining the x and y values will lead to free motion only along
the z coordinate.

e selectConstrX < Restrain X components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian x components of the positions.

e selectConstrY < Restrain Y components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian y components of the positions.

e selectConstrZ < Restrain Z components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian z components of the positions.

5.6.3 Fixed atoms parameters

Atoms may be held fixed during a simulation. NAMD avoids calculating most interactions in which
all affected atoms are fixed unless fixedAtomsForces is specified.

69

e fixedAtoms < are there fixed atoms? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not fixed atoms are present.

o fixedAtomsForces < are forces between fixed atoms calculated? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not forces between fixed atoms are calculated. This
option is required to turn fixed atoms off in the middle of a simulation. These forces will
affect the pressure calculation, and you should leave this option off when using constant
pressure if the coordinates of the fixed atoms have not been minimized. The use of constant
pressure with significant numbers of fixed atoms is not recommended.

e fixedAtomsFile < PDB file containing fixed atom parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the fixed atom flags for each atom. If this parameter is
not specified, then the PDB file specified by coordinates is used.

e fixedAtomsCol < column of PDB containing fixed atom parameters >
Acceptable Values: X,Y,Z, 0,orB
Default Value: 0
Description: Column of the PDB file to use for the containing fixed atom parameters for
each atom. The coefficients can be read from any floating point column of the PDB file. A
value of 0 indicates that the atom is not fixed.

5.6.4 Extra bond, angle, and dihedral restraints

Additional bond, angle, and dihedral energy terms may be applied to system, allowing secondary
or tertiary structure to be restrained, for example. Extra bonded terms are not considered part
of the molecular structure and hence do not alter nonbonded exclusions. The energies from extra
bonded terms are included with the normal bond, angle, and dihedral energies in NAMD output.

All extra bonded terms are harmonic potentials of the form U (z) = k(x—x,cf)? except dihedrals
and impropers with a non-zero periodicity specified, which use U(z) = k(1 + cos(nz — x,.f)). The
only difference between dihedrals and impropers is the output field that their potential energy is
added to.

Due to a very old bug all NAMD releases prior to 2.13 have used the MARTINI cosine-based
angle potential function for all extra angles. Since workflows may unknowingly depend on this
undocumented behavior, cosine-based angles remain the default, but a warning is printed unless
the desired behavior is specified via the new option extraBondsCosAngles (defaults to “on”, set to
“off” to use the normal harmonic angle potential function for all extra angles).

The extra bonded term implementation shares the parallel implementation of regular bonded
terms in NAMD, allowing large numbers of extra terms to be specified with minimal impact on
parallel scalability. Extra bonded terms do not have to duplicate normal bonds/angles/dihedrals,
but each extra bond/angle/dihedral should only involve nearby atoms. If the atoms involved are
too far apart a bad global bond count will be reported in parallel runs.

Extra bonded terms are enabled via the following options:

70

e extraBonds < enable extra bonded terms? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not extra bonded terms are present.

e extraBondsCosAngles < are extra angles cosine-based? >
Acceptable Values: on or off
Default Value: on
Description: Specifies whether or not all extra angles are cosine-based for consistency with
previous versions. Set to off to use normal harmonic angle potential for all extra angles.

e extraBondsFile < file containing extra bonded terms >
Acceptable Values: file
Description: File containing extra bonded terms. May be repeated for multiple files.

The extra bonds file(s) should contain lines of the following formats:

e bond <atom> <atom> <k> <ref>

e angle <atom> <atom> <atom> <k> <ref>

e dihedral <atom> <atom> <atom> <atom> <k> <ref>

e dihedral <atom> <atom> <atom> <atom> <k> <n> <ref>
e improper <atom> <atom> <atom> <atom> <k> <ref>

e improper <atom> <atom> <atom> <atom> <k> <n> <ref>
e wall <atom> <atom> <k> <lower> <upper>

e # <comment ...>

In all cases <atom> is a zero-based atom index (the first atom has index 0), <ref> is a reference
distance in A (bond) or angle in degrees (others), and <k> is a spring constant in the potential
energy function U(z) = k(z — x,¢f)* or, for dihedrals and impropers with periodicity <n> specified
and not 0, U(x) = k(1 + cos(nz — 2,.¢)). Note that z,.s is only a minimum for the harmonic
potential; the sinusoidal potential has minima at (z,.s 4+ 180)/n 4 i x 360/n.

Use of wall implements a harmonic wall potential similar to the Colvars harmonic wall restraint.
The potential function is

k(z — :cupper)Q, if > Tupper
U(.’E) =190, if Ziower < @ < Lupper -

2 .
k(ZC - xlower) ; itr < Llower

71

6 Generalized Born Implicit Solvent

Generalized Born implicit solvent (GBIS) is a fast but approximate method for calculating molecular
electrostatics in solvent as described by the Poisson Boltzmann equation which models water as a
dielectric continuum. GBIS enables the simulation of atomic structures without including explicit
solvent water. The elimination of explicit solvent greatly accelerates simulations; this speedup is
lessed by the increased computational complexity of the implicit solvent electrostatic calculation
and a longer interaction cutoff. These are discussed in greater detail below.

6.1 Theoretical Background

Water has many biologically necessary properties, one of which is as a dielectric. As a dielectric,
water screens (lessens) electrostatic interactions between charged particles. Water can therefore be
crudely modeled as a dielectric continuum. In this manner, the electrostatic forces of a biological
system can be expressed as a system of differential equations which can be solved for the electric
field caused by a collection of charges.

6.1.1 Poisson Boltzmann Equation

The Poisson Boltzmann equation (PBE),

V- Ve = —ampf(47TZC GA(F) exp[k z@]

is a nonlinear equation which solves for the electrostatic field, ¥(7), based on the position dependent
dielectric, €(7), the position-dependent accessibility of position 7 to the ions in solution, A(7), the
solute charge distribution, p/(7), and the bulk charge density, c°, of ion ¢;. While this equation
does exactly solve for the electrostic field of a charge distribution in a dielectric, it is very expensive
to solve, and therefore not suitable for molecular dynamics.

6.1.2 Generalized Born

The Generalized Born (GB) equation is an approximation of the PBE. It models atoms as charged
spheres whose internal dielectric is lower than that of the environment. The screening which each
atom, 7, experiences is determined by the local environment; the more atom i is surrounded by other
atoms, the less it’s electrostatics will be screened since it is more surrounded by low dielectric; this
property is called one atom descreening another. Different GB models calculate atomic descreening
differently. Descreening is used to calculate the Born radius, «;, of each atom. The Born radius of
an atom measures the degree of descreening. A large Born radius represents small screening (strong
electric field) as if the atom were in vacuum. A small Born radius represents large screening (weak
electric field) as if the atom were in bulk water. The next section describes how the Born radius is
calculated and how it is used to calculate electrostatics.

6.1.3 Generalized Born Equations

In a GB simulation, the total electrostatic force on an atom, 4, is the net Coulomb force on atom 4
(from nearby atoms) minus the GB force on atom i (also caused by nearby atoms):

F, = F;Coulomb _ FiGB'

72

Forces are contributed by other nearby atoms within a cutoff. The GB force on atom ¢ is the
derivative of the total GB energy with respect to relative atom distances 7;;,

. ‘dEGB .
I ®
i
i GB GB
- X G G ®
T Lk 8ak dT’Z‘j 677]-

anG«B dOéj 8ESB
aOéj d’l”ij 87“1']'

i (10)

- _Z 6041- d?“ij+

j L

where the partial derivatives are included since the Born radius, a, is a function of all relative atom
distances. The total GB energy of the system is

EGP =YY "E7P+) EG", (11)
i g>i i

where El-ch is the Born radius dependent self energy of atom 4, and the GB energy between atoms
i and j is given by

EGB = —k, Dy 1L (12)
fij
The dielectric term [104] is
1 — ..
D;; = < _ &P (=rfy) Hfz])) ; (13)
€p €s
and the GB function [107] is
—r2
= .| T 4 o Yo 14
Ji Tij T 00 OXP dajay a9

As the Born radii of atoms 7 and j decrease (increasing screening), the effective distance between
the atoms (f;;) increases. The implicit solvent implemented in NAMD is the model of Onufriev,
Bashford and Case [83, 84] which calculates the Born radius as

11 B
= [pko — - tanh (u — B0 + w;“;)] 19)
where
Ui = pro Z Hiy . (16)
!

H;j is the piecewise descreening function [84, 45, 95]; the seven piecewise regimes are

0 735 > re+ pjs (sphere j beyond cutoff)
I 7 >1c— pjs (sphere j partially within cutoff)
IT ri > 4pjs (artificial regime for smoothing)
Regimes = ¢ III 7;; > pjo + pjs (spheres not overlapping) (17)
IV 745 > |pio — pjs| (spheres overlapping)
V' pio < pjs (sphere ¢ inside sphere j)
VI otherwise (sphere j inside sphere 7)

73

and the values of H;; are

00
1 2rij 1 (.2 _ 2 Tij—Pjs
I & { R T <7“z'j Arerij = pjs) +21In =5
2 2 2
P2, pi r3 p3 p3 r3
II]25 pJQS CL"— jS b_|_ jQS C"—]25 d_|_ ése
T T ” 5 5 i
Hyy = III & |2 LIy T lie
J 2 | r3—p3, + 2ri; 7 rijtpjs
1|1 1 2 2 2 _ 1 1 Pi0
v 4 | pio (2 273 pio <T2J + Pio pJS>) rij+pPjs + Tij In Tij+pPjs
1| _pss 2 1 Pis—Tij
Vo3 iP5, The T 2ri; In Tij+pj5:|
VI 0

\

(18)

Below are defined the derivatives of the above functions which are required for force calculations.

OLij _ K [%'Qj ODi; qig;Dij 3fij]

Orij fig O ff Ory
BDU - K B 8f1]
872-]- = g exp (K}f”) ar”

Ofij _ T - lexp —rin
87“1']' fij 4 4O£Z'Ozj

da a? d
9% % (1t (55— 007 +70)) (6 — 2005 + 35u7) T
Tij Pk Tij
dy dHy
d’l“ij = P Z d’l“ij
. OHy; dry
N PkOZ a’l“kl d’l“z'j
B OHy; OHy;
= Pko {ark Ori + e, 5@}
do _ aleo (1 — tanh® (64 — BY7 +v93)) (6 — 28vi + 36¢7) F» 8H” Ok

dT’Z‘j pi

+ %‘70 < — tanh? ((WJJ ﬁ@DQ + 71/1) (5 28¢5 + 3ﬁ¢2) aHﬂ‘SkJ

8Eij - 1 keQin <Iﬁ] DZ]>

—r2

=———05" | —exp(—~fij) — e e exp Y

Oy o 2fij €s fij 4o o

OE;; 1 keqiqj [k £i) D n 2; —r%
= —— —exp (—k ;0 ex

80zj Qy 2 12] €s p g fzy o P 4aiaj

74

(19)

(20)

(23)
(24)

(25)

(26)

(27)

(28)

(0 0
I (Tc+p]a_7'1] Te— Pg.s'i‘rz])(P?S'i‘r?j) _ 12 ln Tij—Pjs
87"2 z](P]s_""zj) 4rij Te
11 pﬁ 6pr3 — el 10dpfs - 126'0]3
1.7 2] 7‘J 1.7
8H7f] _ 111 1] (T1J+p]3) 1 1 Tij —Pjs 29
o 2 T gz Mo (29)
rij r”(rz] p]s) ij J J]
2 3, 2 (2_ 2
v 1 3 (Po—r3) =2risp 03 (Po—r3.) 1y —pio
4 _22 + 22 2 -~ N\2 - 2 nT—‘rp
Pio T3P0 (Tij+rjs) Tij wThis
2 2
v 1 _pas(rHRR) 1y Ty
2L or(rg-es)” G T
VI 0

Other variables referenced in the above GB equations are

e 7;; - distance between atoms i and j; calculated from atom coordinates.

e & - debye screening length; calculated from ion concentration, x~! = 4/ ;?\fpkg :k~ 1 =10A for
pe?l
0.1 M monovalent salt.

e ¢, - dielectric constant of solvent.

e ¢, - dielectric constant of protein.

e «; - Born radius of atom 1.

e p; - intrinsic radius of atom ¢ taken from Bondi [10].

e pp - intrinsic radius offset; pg = 0.09 A by default [84].
® Pi0 = Pi — PO

® pis = PinSi;

e S;; - atom radius scaling factor [45, 104].

e k. - Coulomb’s constant

, 332.063711 keal A / 2.

’ 47re

o {5,8,7}=1{0.8,0,2.91} or {1.0,0.8,4.85} [84]

6.2 3-Phase Calculation

The GBIS algorithm requires three phases of calculation, with each phase containing an iteration

over all atom pairs with the cutoff. In phase 1, the screening of atom pairs is summed; at the
GB

8E
conclusion of phase 1, the Born radii are calculated. In phase 2, the o force contribution

(hereafter called the dEdr force) is calculated as well as the partial derivative of the Born radii with

respect to the atom positions, gfi_. In phase 3, the 2 8a 37?” force contribution (hereafter called
ij

the dEda force) is calculated.

75

6.3

Configuration Parameters

When using GBIS, user’s should not use PME (because it is not compatible with GBIS). Periodic
boundary conditions are supported but are optional. User’s will need to increase cutoff; 16-18 A is
a good place to start but user’s will have to check their system’s behavior and increase cutoff
accordingly. GBIS interactions are never excluded regardless of the type of force field used, thus
user’s can choose any value for exclude without affecting GBIS; user’s should still choose exclude
based on the force field as if using explicit solvent. When using GBIS, multiple timestepping behaves
as follows: the dEdr force is calculated every nonbondedFreq steps (as with explicit solvent, 2 is a
reasonable frequency) and the dEda force is calculated every fullElectFrequency steps (because
dEda varies more slowly than dEdr, 4 is a reasonable frequency).

GBIS < Use Generalized Born Implicit Solvent? >
Acceptable Values: on or off

Default Value: off

Description: Turns on GBIS method in NAMD.

solventDielectric < dielectric of water >

Acceptable Values: positive decimal

Default Value: 78.5

Description: Defines the dielectric of the solvent, usually 78.5 or 80.

intrinsicRadiusOffset < shrink the intrinsic radius of atoms (A) >

Acceptable Values: positive decimal

Default Value: 0.09

Description: This offset shrinks the intrinsic radius of atoms (used only for calculating
Born radius) to give better agreement with Poisson Boltzmann calculations. Most users
should not change this parameter.

ionConcentration < concentration of ions in solvent (Molar) >

Acceptable Values: positive decimal

Default Value: 0.2

Description: An ion concentration of 0 M represents distilled water. Increasing the ion
concentration increases the electrostatic screening.

GBISDelta < GBOYBC parameter for calculating Born radii >

Acceptable Values: decimal

Default Value: 1.0

Description: Use {GBISDelta,GBISBeta,GBISGamma} = {1.0,0.8,4.85} for GBYBCII and
{0.8,0.0,2.90912} for GBOBCI. See {a, 3,~} in [84] for more information.

GBISBeta < GBOYBC parameter for calculating Born radii >
Acceptable Values: decimal

Default Value: 0.8

Description: See GBISDelta.

GBISGamma < GBOYPC parameter for calculating Born radii >
Acceptable Values: decimal

Default Value: 4.85

Description: See GBISDelta.

76

e alphaCutoff < cutoff used in calculating Born radius and derivatives (phases 1 and 3) (A)
>
Acceptable Values: positive decimal
Default Value: 15
Description: Cutoff used for calculating Born radius. Only atoms within this cutoff de-
screen an atom. Though alphaCutoff can bet set to be larger or shorter than cutoff, since
atom forces are more sensitive to changes in position than changes in Born radius, user’s
should generally set alphaCutoff to be shorter than cutoff.

e SASA < whether or not to calculate SASA >
Acceptable Values: on or off
Default Value: off
Description: The nonpolar / hydrophobic energy contribution from implicit solvent is
calculated; it is proportional to the solvent-accessible surface area (SASA) which is calculated
by the Linear Combination of Pairwise Overlap (LCPO) method [116]. It evaluated every
nonbondedFreq steps and its energy is added into the reported ELECT energy

e surfaceTension < surface tension of SASA energy >
Acceptable Values: positive decimal
Default Value: 0.005 kcal/mol/A?
Description: Surface tension used when calculating hydrophobic SASA energy; Enonpolar =
surfaceTension x surfaceArea.

Below is a sample excerpt from a NAMD config file for nonbonded and multistep parameters
when using GBIS and SASA:

#GBIS parameters

GBIS on
ionConcentration 0.3
alphaCutoff 14
#nonbonded parameters
switching on
switchdist 15

cutoff 16
pairlistdist 18
#hydrophobic energy
sasa on
surfaceTension 0.006
#multistep parameters
timestep 1
nonbondedFreq 2
fullElectFrequency 4

77

7 Standard Minimization and Dynamics Parameters

7.1 Boundary Conditions

In addition to periodic boundary conditions, NAMD provides spherical and cylindrical boundary
potentials to contain atoms in a given volume. To apply more general boundary potentials written
in Tcl, use tc1BC as described in Sec. 8.11.

7.1.1 Periodic boundary conditions

NAMD provides periodic boundary conditions in 1, 2 or 3 dimensions. The following parameters
are used to define these boundary conditions.

e cellBasisVectorl < basis vector for periodic boundaries (A) >
Acceptable Values: vector
Default Value: 000
Description: Specifies a basis vector for periodic boundary conditions.

e cellBasisVector2 < basis vector for periodic boundaries (A) >
Acceptable Values: vector
Default Value: 000
Description: Specifies a basis vector for periodic boundary conditions.

e cellBasisVector3 < basis vector for periodic boundaries (A) >
Acceptable Values: vector
Default Value: 000

Description: Specifies a basis vector for periodic boundary conditions.

e cellOrigin < center of periodic cell (A) >
Acceptable Values: position
Default Value: 000
Description: When position rescaling is used to control pressure, this location will remain
constant. Also used as the center of the cell for wrapped output coordinates.

e extendedSystem < XSC file to read cell parameters from >
Acceptable Values: file name
Description: In addition to .coor and .vel output files; NAMD generates a .xsc (eXtended
System Configuration) file which contains the periodic cell parameters and extended system
variables, such as the strain rate in constant pressure simulations. Periodic cell parameters
will be read from this file if this option is present, ignoring the above parameters.

e XSTfile < XST file to write cell trajectory to >
Acceptable Values: file name
Default Value: outputname.xst
Description: NAMD can also generate a .xst (eXtended System Trajectory) file which
contains a record of the periodic cell parameters and extended system variables during the
simulation. If XSTfile is defined, then XSTfreq must also be defined.

e XSTfreq < how often to append state to XST file >
Acceptable Values: positive integer

78

Description: Like the DCDfreq option, controls how often the extended system configura-
tion will be appended to the XST file.

e wrapAll < wrap all coordinates around periodic boundaries? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally output relative to the way they were read in.
Hence, if part of a molecule crosses a periodic boundary it is not translated to the other
side of the cell on output. This option applies a translation to the center-of-mass of each
molecule or contiguous cluster of bonded atoms to keep it within the periodic unit cell. The
translation has usually no effect on the physical trajectory, because the force field potentials
used in NAMD follow the minimum-image convention for interatomic distances. However,
some complex quantities, for example the center of mass of a multimeric protein, will be
undefined as a result of this option. If you plan on applying external forces (SMD, tclForces
or Colvars) to such quantities, it is recommended to keep this option off, and to possibly
replace it with a custom restraint.

e wrapWater < wrap water coordinates around periodic boundaries? >
Acceptable Values: on or off
Default Value: off
Description: This option is similar to the wrapAll option, but its effect is restricted to
water molecules only.

e wrapNearest < use nearest image to cell origin when wrapping coordinates? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally wrapped to the diagonal unit cell centered on the
origin. This option, combined with wrapWater or wrapAll, wraps coordinates to the nearest
image to the origin, providing hexagonal or other cell shapes.

7.1.2 Spherical harmonic boundary conditions

NAMD provides spherical harmonic boundary conditions. These boundary conditions can consist
of a single potential or a combination of two potentials. The following parameters are used to define
these boundary conditions.

e sphericalBC < use spherical boundary conditions? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not spherical boundary conditions are to be applied to
the system. If set to on, then sphericalBCCenter, sphericalBCrl and sphericalBCkl must
be defined, and sphericalBCexpl, sphericalBCr2, sphericalBCk2, and sphericalBCexp2
can optionally be defined.

e sphericalBCCenter < center of sphere (A) >
Acceptable Values: position
Description: Location around which sphere is centered.

79

e sphericalBCrl < radius for first boundary condition (A) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect.
This distance is a radius from the center.

e sphericalBCkl < force constant for first potential >
Acceptable Values: non-zero decimal
Description: Force constant for the first harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

e sphericalBCexpl < exponent for first potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for first boundary potential. The only likely values to use are 2
and 4.

e sphericalBCr2 < radius for second boundary condition (A) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes effect.
This distance is a radius from the center. If this parameter is defined, then spericalBCk2
must also be defined.

e sphericalBCk2 < force constant for second potential >
Acceptable Values: non-zero decimal
Description: Force constant for the second harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

e sphericalBCexp2 < exponent for second potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for second boundary potential. The only likely values to use are 2
and 4.

7.1.3 Cylindrical harmonic boundary conditions

NAMD provides cylindrical harmonic boundary conditions. These boundary conditions can consist
of a single potential or a combination of two potentials. The following parameters are used to define
these boundary conditions.

e cylindricalBC < use cylindrical boundary conditions? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not cylindrical boundary conditions are to be applied to
the system. If set to on, then cylindricalBCCenter, cylindricalBCrl, cylindricalBCl1
and cylindricalBCkl must be defined, and cylindricalBCAxis, cylindricalBCexpl,
cylindricalBCr2, cylindricalBCl2, cylindricalBCk2, and cylindricalBCexp2 can op-
tionally be defined.

80

cylindricalBCCenter < center of cylinder (A) >
Acceptable Values: position
Description: Location around which cylinder is centered.

cylindricalBCAxis < axis of cylinder (A) >
Acceptable Values: x,y, or z
Description: Axis along which cylinder is aligned.

cylindricalBCrl < radius for first boundary condition (A) >

Acceptable Values: positive decimal

Description: Distance at which the first potential of the boundary conditions takes effect
along the non-axis plane of the cylinder.

cylindricalBCll < distance along cylinder axis for first boundary condition (A) >
Acceptable Values: positive decimal

Description: Distance at which the first potential of the boundary conditions takes effect
along the cylinder axis.

cylindricalBCkl < force constant for first potential >

Acceptable Values: non-zero decimal

Description: Force constant for the first harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

cylindricalBCexpl < exponent for first potential >

Acceptable Values: positive, even integer

Default Value: 2

Description: Exponent for first boundary potential. The only likely values to use are 2
and 4.

cylindricalBCr2 < radius for second boundary condition (A) >

Acceptable Values: positive decimal

Description: Distance at which the second potential of the boundary conditions takes effect
along the non-axis plane of the cylinder. If this parameter is defined, then cylindricalBC12
and spericalBCk2 must also be defined.

cylindricalBC12 < radius for second boundary condition (A) >

Acceptable Values: positive decimal

Description: Distance at which the second potential of the boundary conditions takes
effect along the cylinder axis. If this parameter is defined, then cylindricalBCr2 and
spericalBCk2 must also be defined.

cylindricalBCk2 < force constant for second potential >

Acceptable Values: non-zero decimal

Description: Force constant for the second harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

cylindricalBCexp2 < exponent for second potential >

Acceptable Values: positive, even integer

Default Value: 2

Description: Exponent for second boundary potential. The only likely values to use are 2
and 4.

81

7.2 Energy Minimization
7.2.1 Conjugate gradient parameters

The default minimizer uses a sophisticated conjugate gradient and line search algorithm with much
better performance than the older velocity quenching method. The method of conjugate gradients
is used to select successive search directions (starting with the initial gradient) which eliminate
repeated minimization along the same directions. Along each direction, a minimum is first bracketed
(rigorously bounded) and then converged upon by either a golden section search, or, when possible,
a quadratically convergent method using gradient information.

For most systems, it just works.

e minimization < Perform conjugate gradient energy minimization? >
Acceptable Values: on or off
Default Value: off
Description: Turns efficient energy minimization on or off.

e minTinyStep < first initial step for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-6
Description: If your minimization is immediately unstable, make this smaller.

e minBabyStep < max initial step for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-2

Description: If your minimization becomes unstable later, make this smaller.

e minlLineGoal < gradient reduction factor for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-4
Description: Varying this might improve conjugate gradient performance.

7.2.2 Velocity quenching parameters

You can perform energy minimization using a simple quenching scheme. While this algorithm is not
the most rapidly convergent, it is sufficient for most applications. There are only two parameters
for minimization: one to activate minimization and another to specify the maximum movement of
any atom.

e velocityQuenching < Perform old-style energy minimization? >
Acceptable Values: on or off
Default Value: off
Description: Turns slow energy minimization on or off.

e maximumMove < maximum distance an atom can move during each step (A) >
Acceptable Values: positive decimal
Default Value: 0.75 x cutoff/stepsPerCycle
Description: Maximum distance that an atom can move during any single timestep of
minimization. This is to insure that atoms do not go flying off into space during the first few
timesteps when the largest energy conflicts are resolved.

82

7.3 Dynamics
7.3.1 Timestep parameters

e numsteps < number of timesteps >
Acceptable Values: positive integer
Description: The number of simulation timesteps to be performed. An integer greater
than 0 is acceptable. The total amount of simulation time is numsteps X timestep.

e timestep < timestep size (fs) >
Acceptable Values: non-negative decimal
Default Value: 1.0
Description: The timestep size to use when integrating each step of the simulation. The
value is specified in femtoseconds.

o firsttimestep < starting timestep value >
Acceptable Values: non-negative integer
Default Value: 0
Description: The number of the first timestep. This value is typically used only when a
simulation is a continuation of a previous simulation. In this case, rather than having the
timestep restart at 0, a specific timestep number can be specified.

7.3.2 Initialization

e temperature < initial temperature (K) >
Acceptable Values: positive decimal
Description: Initial temperature value for the system. Using this option will generate a
random velocity distribution for the initial velocities for all the atoms such that the system
is at the desired temperature. Either the temperature or the velocities/binvelocities
option must be defined to determine an initial set of velocities. Both options cannot be used
together.

e COMmotion < allow initial center of mass motion? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not motion of the center of mass of the entire system
is allowed. If this option is set to no, the initial velocities of the system will be adjusted to
remove center of mass motion of the system. Note that this does not preclude later center-
of-mass motion due to external forces such as random noise in Langevin dynamics, boundary
potentials, and harmonic restraints.

e seed < random number seed >

Acceptable Values: positive integer

Default Value: pseudo-random value based on current UNIX clock time

Description: Number used to seed the random number generator if temperature or
langevin is selected. This can be used so that consecutive simulations produce the same
results. If no value is specified, NAMD will choose a pseudo-random value based on the
current UNIX clock time. The random number seed will be output during the simulation
startup so that its value is known and can be reused for subsequent simulations. Note that if

83

Langevin dynamics are used in a parallel simulation (i.e., a simulation using more than one
processor) even using the same seed will not guarantee reproducible results.

7.3.3 Conserving momentum

e zeroMomentum < remove center of mass drift due to PME >
Acceptable Values: yes or no
Default Value: no
Description: If enabled, the net momentum of the simulation and any resultant drift
is removed before every full electrostatics step. This correction should conserve energy and
have minimal impact on parallel scaling. This feature should only be used for simulations that
would conserve momentum except for the slight errors in PME. (Features such as fixed atoms,
harmonic restraints, steering forces, and Langevin dynamics do not conserve momentum; use
in combination with these features should be considered experimental.) Since the momentum
correction is delayed, enabling outputMomenta will show a slight nonzero linear momentum
but there should be no center of mass drift.

7.3.4 Multiple timestep parameters

To further reduce the cost of computing full electrostatics, NAMD uses a multiple timestepping
integration scheme. In this scheme, the total force acting on each atom is broken into two pieces, a
quickly varying local component and a slower long range component. The local force component is
defined in terms of a splitting function. The local force component consists of all bonded and van der
Waals interactions as well as that portion of electrostatic interactions for pairs that are separated
by less than the local interaction distance determined by the splitting function. The long range
component consists only of electrostatic interactions outside of the local interaction distance. Since
the long range forces are slowly varying, they are not evaluated every timestep. Instead, they are
evaluated every k timesteps, specified by the NAMD parameter fullElectFrequency. An impulse
of k times the long range force is applied to the system every k timesteps (i.e., the r-RESPA
integrator is used). For appropriate values of k, it is believed that the error introduced by this
infrequent evaluation is modest compared to the error already incurred by the use of the numerical
(Verlet) integrator. Improved methods for incorporating these long range forces are currently being
investigated, with the intention of improving accuracy as well as reducing the frequency of long
range force evaluations.

In the scheme described above, the van der Waals forces are still truncated at the local interac-
tion distance. Thus, the van der Waals cutoff distance forms a lower limit to the local interaction
distance. While this is believed to be sufficient, there are investigations underway to remove this
limitation and provide full van der Waals calculations in O(N) time as well.

One of the areas of current research being studied using NAMD is the exploration of better
methods for performing multiple timestep integration. Currently the only available method is the
impulse-based Verlet-I or r-RESPA method which is stable for timesteps up to 4 fs for long-range
electrostatic forces, 2 fs for short-range nonbonded forces, and 1 fs for bonded forces Setting rigid
all (i.e., using SHAKE) increases these timesteps to 6 fs, 2 fs, and 2 fs respectively but eliminates
bond motion for hydrogen. The mollified impulse method (MOLLY) reduces the resonance which
limits the timesteps and thus increases these timesteps to 6 fs, 2 fs, and 1 fs while retaining all
bond motion.

84

fullElectFrequency < number of timesteps between full electrostatic evaluations >
Acceptable Values: positive integer factor of stepspercycle

Default Value: nonbondedFreq

Description: This parameter specifies the number of timesteps between each full elec-
trostatics evaluation. It is recommended that fullElectFrequency be chosen so that the
product of fullElectFrequency and timestep does not exceed 4.0 unless rigidBonds all
or molly on is specified, in which case the upper limit is perhaps doubled.

nonbondedFreq < timesteps between nonbonded evaluation >

Acceptable Values: positive integer factor of fullElectFrequency

Default Value: 1

Description: This parameter specifies how often short-range nonbonded interactions should
be calculated. Setting nonbondedFreq between 1 and fullElectFrequency allows triple
timestepping where, for example, one could evaluate bonded forces every 1 fs, short-range
nonbonded forces every 2 fs, and long-range electrostatics every 4 fs.

MTSAlgorithm < MTS algorithm to be used >

Acceptable Values: impulse/verletlI or constant/naive

Default Value: impulse

Description: Specifies the multiple timestep algorithm used to integrate the long and short
range forces. impulse/verletI is the same as r-RESPA. constant/naive is the stale force
extrapolation method.

longSplitting < how should long and short range forces be split? >

Acceptable Values: c1, c2

Default Value: c1

Description: Specifies the method used to split electrostatic forces between long and short
range potentials. The c1 option uses a cubic polynomial splitting function,

3 T 1 r\°
83(T) =1- 5 <Tcut> * 5 <Tcut) ’

to affect C'! continuity in the splitting of the electrostatic potential [103]. The c2 option uses
a quintic polynomial splitting function,

r 3 r 4 r 5
S5(7“)=1—10<) +15<) —6< > ,
Tcut Tcut Tcut

to affect C? continuity in the splitting of the electrostatic potential. The Ss splitting func-
tion, contributed by Bruce Berne, Ruhong Zhou, and Joe Morrone, produces demonstrably
better long time stability than S5 without requiring any additional computational cost during
simulation, since the nonbonded forces are calculated via a lookup table. Note that earlier
options xplor and sharp are no longer supported.

molly < use mollified impulse method (MOLLY)? >

Acceptable Values: on or off

Default Value: off

Description: This method eliminates the components of the long range electrostatic forces
which contribute to resonance along bonds to hydrogen atoms, allowing a fullElectFrequency

85

of 6 (vs. 4) with a 1 fs timestep without using rigidBonds all. You may use rigidBonds
water but using rigidBonds all with MOLLY makes no sense since the degrees of freedom
which MOLLY protects from resonance are already frozen.

e mollyTolerance < allowable error for MOLLY >
Acceptable Values: positive decimal
Default Value: 0.00001
Description: Convergence criterion for MOLLY algorithm.

e mollyIterations < maximum MOLLY iterations >
Acceptable Values: positive integer
Default Value: 100
Description: Maximum number of iterations for MOLLY algorithm.

7.4 Temperature Control and Equilibration
7.4.1 Langevin dynamics parameters

NAMD is capable of performing Langevin dynamics, where additional damping and random forces
are introduced to the system. This capability is based on that implemented in X-PLOR which is
detailed in the X-PLOR User’s Manual [14], although a different integrator is used.

e langevin < use Langevin dynamics? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Langevin dynamics active. If set to on, then the
parameter langevinTemp must be set and the parameters langevinFile and langevinCol
can optionally be set to control the behavior of this feature.

e langevinTemp < temperature for Langevin calculations (K) >
Acceptable Values: positive decimal
Description: Temperature to which atoms affected by Langevin dynamics will be adjusted.
This temperature will be roughly maintained across the affected atoms through the addition
of friction and random forces.

e langevinDamping < damping coefficient for Langevin dynamics (1/ps) >
Acceptable Values: positive decimal
Default Value: per-atom values from PDB file
Description: Langevin coupling coefficient to be applied to all atoms (unless
langevinHydrogen is off, in which case only non-hydrogen atoms are affected). If not given,
a PDB file is used to obtain coefficients for each atom (see langevinFile and langevinCol
below).

e langevinHydrogen < Apply Langevin dynamics to hydrogen atoms? >
Acceptable Values: on or off
Default Value: on
Description: If langevinDamping is set then setting langevinHydrogen to off will turn
off Langevin dynamics for hydrogen atoms. This parameter has no effect if Langevin coupling
coefficients are read from a PDB file.

86

e langevinFile < PDB file containing Langevin parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the Langevin coupling coefficients for each atom. If this
parameter is not specified, then the PDB file specified by coordinates is used.

e langevinCol < column of PDB from which to read coefficients >
Acceptable Values: X, Y, Z 0, orB
Default Value: 0
Description: Column of the PDB file to use for the Langevin coupling coefficients for each
atom. The coefficients can be read from any floating point column of the PDB file. A value
of 0 indicates that the atom will remain unaffected.

7.4.2 Temperature coupling parameters

NAMD is capable of performing temperature coupling, in which forces are added or reduced to
simulate the coupling of the system to a heat bath of a specified temperature. This capability is
based on that implemented in X-PLOR which is detailed in the X-PLOR User’s Manual [14].

e tCouple < perform temperature coupling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not temperature coupling is active. If set to on, then
the parameter tCoupleTemp must be set and the parameters tCoupleFile and tCoupleCol
can optionally be set to control the behavior of this feature.

e tCoupleTemp < temperature for heat bath (K) >
Acceptable Values: positive decimal
Description: Temperature to which atoms affected by temperature coupling will be ad-
justed. This temperature will be roughly maintained across the affected atoms through the
addition of forces.

e tCoupleFile < PDB file with tCouple parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the temperature coupling coefficient for each atom. If
this parameter is not specified, then the PDB file specified by coordinates is used.

e tCoupleCol < column of PDB from which to read coeflicients >
Acceptable Values: X, Y,Z 0,orB
Default Value: 0
Description: Column of the PDB file to use for the temperature coupling coefficient for
each atom. This value can be read from any floating point column of the PDB file. A value
of 0 indicates that the atom will remain unaffected.

7.4.3 Stochastic velocity rescaling parameters

The stochastic velocity rescaling method originated by [15] can be viewed as an extension (and
correction) of the Berendsen method. The implementation in NAMD is based on that from GRO-
MACS, with some slight performance modifications during random number generation.

87

e stochRescale < perform stochastic rescaling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not stochastic rescaling is active. If set to on, then the
parameters stochRescaleTemp and stochRescalePeriod must be set.

e stochRescaleTemp < temperature for heat bath (K) >
Acceptable Values: positive decimal
Description: Temperature to which all atoms will be periodically readjusted toward. This
temperature will be correctly maintained (in the canonical sense) over all atoms by rescaling
the velocities with both deterministic (using the instantaneous temperature) and stochastic
components.

e stochRescalePeriod < time parameter (ps) for temperature coupling >

Acceptable Values: positive decimal

Description: The stochastic rescaling algorithm holds for an arbitrary time parameter
introduced when solving the Fokker-Planck equation. For systems predominantly composed
of liquid water a value near 2 ps is appropriate and values between 0.5 and 2 ps are com-
mon in the literature for simulations of biomolecules. Larger values will generally result in
weaker coupling and thus more NVE-like dynamics, but may also lead to slow (i.e. incorrect)
convergence to the correct ensemble.

e stochRescaleFreq < number of timesteps between rescalings >
Acceptable Values: positive integer
Default Value: stepsPerCycle
Description: The stochastic rescaling algorithm is invoked at fixed intervals. The effec-
tive time parameter is technically the ratio stochRescaleFreq/stochRescalePeriod (after
converting into proper units using the value of timestep). The default should be adequate
for most applications, but a smaller value closer to the frequency at which the nonbonded
list is rebuilt would also be appropriate. When using multiple time stepping, it is important
that rescaling occurs at timesteps that are integer multiples of the slowest interaction type
(usually fullElectFrequency).

e stochRescaleHeat < Should heat transfer and work be computed? >
Acceptable Values: yes or no
Default Value: no
Description: When active, the cumulative heat transfer with the thermostat will be
reported as HEAT. The work due to the thermostat and integrator can then be computed
as the change in total energy less the heat transfer and is reported as WORK. Note that the
work includes all sources, including non-conservative elements of the Hamiltonian, but should
otherwise approach zero for simulations at or near equilibrium. The accumulation starts
at firstTimestep and can be reset from Tcl by re-setting this to zero. This is an
experimental option and not yet guaranteed for any specific purpose.

7.4.4 Temperature rescaling parameters

NAMD allows equilibration of a system by means of temperature rescaling. Using this method,
all of the velocities in the system are periodically rescaled so that the entire system is set to the

88

desired temperature. The following parameters specify how often and to what temperature this
rescaling is performed.

e rescaleFreq < number of timesteps between temperature rescaling >
Acceptable Values: positive integer
Description: The equilibration feature of NAMD is activated by specifying the number of
timesteps between each temperature rescaling. If this value is given, then the rescaleTemp
parameter must also be given to specify the target temperature.

e rescaleTemp < temperature for equilibration (K) >
Acceptable Values: positive decimal
Description: The temperature to which all velocities will be rescaled every rescaleFreq
timesteps. This parameter is valid only if rescaleFreq has been set.

7.4.5 Temperature reassignment parameters

NAMD allows equilibration of a system by means of temperature reassignment. Using this method,
all of the velocities in the system are periodically reassigned so that the entire system is set to the
desired temperature. The following parameters specify how often and to what temperature this
reassignment is performed.

e reassignFreq < number of timesteps between temperature reassignment >
Acceptable Values: positive integer
Description: The equilibration feature of NAMD is activated by specifying the num-
ber of timesteps between each temperature reassignment. If this value is given, then the
reassignTemp parameter must also be given to specify the target temperature.

e reassignTemp < temperature for equilibration (K) >
Acceptable Values: positive decimal
Default Value: temperature if set, otherwise none
Description: The temperature to which all velocities will be reassigned every reassignFreq
timesteps. This parameter is valid only if reassignFreq has been set.

e reassignIncr < temperature increment for equilibration (K) >
Acceptable Values: decimal
Default Value: 0
Description: In order to allow simulated annealing or other slow heating/cooling protocols,
reassignIncr will be added to reassignTemp after each reassignment. (Reassignment is
carried out at the first timestep.) The reassignHold parameter may be set to limit the final
temperature. This parameter is valid only if reassignFreq has been set.

e reassignHold < holding temperature for equilibration (K) >
Acceptable Values: positive decimal
Description: The final temperature for reassignment when reassignIncr is set;
reassignTemp will be held at this value once it has been reached. This parameter is valid
only if reassignIncr has been set.

89

7.4.6 Lowe-Andersen dynamics parameters

NAMD can perform Lowe-Andersen dynamics, a variation of Andersen dynamics whereby the
radial relative velocities of atom pairs are randomly modified based on a thermal distribution.
The Lowe-Andersen thermostat is Galilean invariant, therefore conserving momentum, and is thus
independent of absolute atom velocities. Forces are applied only between non-bonded, non-hydrogen
pairs of atoms. When using rigid bonds, forces are applied to the center of mass of hydrogen groups.
The implementation is based on Koopman and Lowe [58].

e loweAndersen < use Lowe-Andersen dynamics? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Lowe-Andersen dynamics are active. If set to on,
then the parameter loweAndersenTemp must be set and the parameters loweAndersenCutoff
and loweAndersenRate can optionally be set.

e loweAndersenTemp < temperature for Lowe-Andersen calculations (K) >
Acceptable Values: positive decimal
Description: Temperature of the distribution used to set radial relative velocities. This
determines the target temperature of the system.

e loweAndersenCutoff < cutoff radius for Lowe-Andersen collisions (A) >
Acceptable Values: positive decimal
Default Value: 2.7
Description: Forces are only applied to atoms within this distance of one another.

e loweAndersenRate < rate for Lowe-Andersen collisions (1/ps) >
Acceptable Values: positive decimal
Default Value: 50
Description: Determines the probability of a collision between atoms within the cutoff
radius. The probability is the rate specified by this keyword times the non-bonded timestep.

7.5 Pressure Control

Constant pressure simulation (and pressure calculation) require periodic boundary conditions. Pres-
sure is controlled by dynamically adjusting the size of the unit cell and rescaling all atomic coordi-
nates (other than those of fixed atoms) during the simulation.

Pressure values in NAMD output are in bar. PRESSURE is the pressure calculated based on
individual atoms, while GPRESSURE incorporates hydrogen atoms into the heavier atoms to which
they are bonded, producing smaller fluctuations. The TEMPAVG, PRESSAVG, and GPRESSAVG
are the average of temperature and pressure values since the previous ENERGY output; for the
first step in the simulation they will be identical to TEMP, PRESSURE, and GPRESSURE.

The phenomenological pressure of bulk matter reflects averaging in both space and time of the
sum of a large positive term (the kinetic pressure, nRT/V), and a large cancelling negative term
(the static pressure). The instantaneous pressure of a simulation cell as simulated by NAMD will
have mean square fluctuations (according to David Case quoting Section 114 of Statistical Physics
by Landau and Lifshitz) of kT'/(V 3), where (3 is the compressibility, which is RMS of roughly 100
bar for a 10,000 atom biomolecular system. Much larger fluctuations are regularly observed in
practice.

90

The instantaneous pressure for a biomolecular system is well defined for “internal” forces that
are based on particular periodic images of the interacting atoms, conserve momentum, and are
translationally invariant. When dealing with externally applied forces such as harmonic constraints,
fixed atoms, and various steering forces, NAMD bases its pressure calculation on the relative
positions of the affected atoms in the input coordinates and assumes that the net force will average
to zero over time. For time periods during with the net force is non-zero, the calculated pressure
fluctuations will include a term proportional to the distance to the affected from the user-defined
cell origin. A good way to observe these effects and to confirm that pressure for external forces
is handled reasonably is to run a constant volume cutoff simulation in a cell that is larger than
the molecular system by at least the cutoff distance; the pressure for this isolated system should
average to zero over time.

Because NAMD'’s impluse-basd multiple timestepping system alters the balance between bonded
and non-bonded forces from every timestep to an average balance over two steps, the calculated
pressure on even and odd steps will be different. The PRESSAVG and GPRESSAVG fields provide
the average over the non-printed intermediate steps. If you print energies on every timestep you
will see the effect clearly in the PRESSURE field.

The following options affect all pressure control methods.

e useGroupPressure < group or atomic quantities >
Acceptable Values: yes or no
Default Value: no
Description: Pressure can be calculated using either the atomic virial and kinetic energy
(the default) or a hydrogen-group based pseudo-molecular virial and kinetic energy. The
latter fluctuates less and is required in conjunction with rigidBonds (SHAKE).

e useFlexibleCell < anisotropic cell fluctuations >
Acceptable Values: yes or no
Default Value: no
Description: NAMD allows the three orthogonal dimensions of the periodic cell to fluctuate
independently when this option is enabled.

e useConstantRatio < constant shape in first two cell dimensions >
Acceptable Values: yes or no
Default Value: no
Description: When enabled, NAMD keeps the ratio of the unit cell in the x-y plane
constant while allowing fluctuations along all axes. The useFlexibleCell option is required
for this option.

e useConstantArea < constant area and normal pressure conditions >
Acceptable Values: yes or no
Default Value: no
Description: When enabled, NAMD keeps the dimension of the unit cell in the x-y plane
constant while allowing fluctuations along the z axis. This is not currently implemented in
Berendsen’s method.

7.5.1 Berendsen pressure bath coupling

NAMD provides constant pressure simulation using Berendsen’s method. The following parameters
are used to define the algorithm.

91

e BerendsenPressure < use Berendsen pressure bath coupling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Berendsen pressure bath coupling
is active. If set to on, then the parameters BerendsenPressureTarget,
BerendsenPressureCompressibility and BerendsenPressureRelaxationTime must
be set and the parameter BerendsenPressureFreq can optionally be set to control the
behavior of this feature.

e BerendsenPressureTarget < target pressure (bar) >
Acceptable Values: positive decimal
Description: Specifies target pressure for Berendsen’s method. A typical value would be
1.01325 bar, atmospheric pressure at sea level.

e BerendsenPressureCompressibility < compressibility (bar=!) >
Acceptable Values: positive decimal
Description: Specifies compressibility for Berendsen’s method. A typical value would
be 4.57E-5 bar~!, corresponding to liquid water. The higher the compressibility, the more
volume will be adjusted for a given pressure difference. The compressibility and the relaxation
time appear only as a ratio in the dynamics, so a larger compressibility is equivalent to a
smaller relaxation time.

e BerendsenPressureRelaxationTime < relaxation time (fs) >

Acceptable Values: positive decimal

Description: Specifies relaxation time for Berendsen’s method. If the instantaneous pres-
sure did not fluctuate randomly during a simulation and the compressibility estimate was
exact then the inital pressure would decay exponentially to the target pressure with this time
constant. Having a longer relaxation time results in more averaging over pressure measure-
ments and hence smaller fluctuations in the cell volume. A reasonable choice for relaxation
time would be 100 fs. The compressibility and the relaxation time appear only as a ratio in
the dynamics, so a larger compressibility is equivalent to a smaller relaxation time.

e BerendsenPressureFreq < how often to rescale positions >
Acceptable Values: positive multiple of nonbondedFrequency and fullElectFrequency
Default Value: nonbondedFrequency or fullElectFrequency if used
Description: Specifies number of timesteps between position rescalings for Berendsen’s
method. Primarily to deal with multiple timestepping integrators, but also to reduce cell
volume fluctuations, cell rescalings can occur on a longer interval. This could reasonably be
between 1 and 20 timesteps, but the relaxation time should be at least ten times larger.

7.5.2 Nosé-Hoover Langevin piston pressure control

NAMD provides constant pressure simulation using a modified Nosé-Hoover method in which
Langevin dynamics is used to control fluctuations in the barostat. This method should be combined
with a method of temperature control, such as Langevin dynamics, in order to simulate the NPT
ensemble.

The Langevin piston Nose-Hoover method in NAMD is a combination of the Nose-Hoover
constant pressure method as described in GJ Martyna, DJ Tobias and ML Klein, ” Constant pressure

92

molecular dynamics algorithms”, J. Chem. Phys 101(5), 1994, with piston fluctuation control
implemented using Langevin dynamics as in SE Feller, Y Zhang, RW Pastor and BR Brooks,
”Constant pressure molecular dynamics simulation: The Langevin piston method”, J. Chem. Phys.
103(11), 1995.

The equations of motion are:

"= p/m+eér
p = F—ép—gp+R
V' = 3Vvé

¢ 3V/W(P — Py) — ge¢' + Re/W
W = 3N7%kT
<R*>> = 2mgkT/h
7 = oscillationperiod
<R)> = 2Wg.kT/h

)
I

Here, W is the mass of piston, R is noise on atoms, and R, is the noise on the piston.

The user specifies the desired pressure, oscillation and decay times of the piston, and tempera-
ture of the piston. The compressibility of the system is not required. In addition, the user specifies
the damping coefficients and temperature of the atoms for Langevin dynamics.

The following parameters are used to define the algorithm.

e LangevinPiston < use Langevin piston pressure control? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Langevin piston pressure control is ac-
tive. If set to on, then the parameters LangevinPistonTarget, LangevinPistonPeriod,
LangevinPistonDecay and LangevinPistonTemp must be set.

e LangevinPistonTarget < target pressure (bar) >
Acceptable Values: positive decimal
Description: Specifies target pressure for Langevin piston method. A typical value would
be 1.01325 bar, atmospheric pressure at sea level.

e LangevinPistonPeriod < oscillation period (fs) >
Acceptable Values: positive decimal
Description: Specifies barostat oscillation time scale for Langevin piston method. If
the instantaneous pressure did not fluctuate randomly during a simulation and the decay
time was infinite (no friction) then the cell volume would oscillate with this angular period.
Having a longer period results in more averaging over pressure measurements and hence slower
fluctuations in the cell volume. A reasonable choice for the piston period would be 200 fs.

e LangevinPistonDecay < damping time scale (fs) >
Acceptable Values: positive decimal
Description: Specifies barostat damping time scale for Langevin piston method. A value
larger than the piston period would result in underdamped dynamics (decaying ringing in the
cell volume) while a smaller value approaches exponential decay as in Berendsen’s method
above. A smaller value also corresponds to larger random forces with increased coupling to

93

the Langevin temperature bath. Typically this would be chosen equal to or smaller than the
piston period, such as 100 fs.

LangevinPistonTemp < noise temperature (K) >

Acceptable Values: positive decimal

Description: Specifies barostat noise temperature for Langevin piston method. This should
be set equal to the target temperature for the chosen method of temperature control.

SurfaceTensionTarget < Surface tension target (dyn/cm) >

Acceptable Values: decimal

Default Value: 0.0

Description: Specifies surface tension target. Must be used with useFlexibleCell and
periodic boundary conditions. The pressure specified in LangevinPistonTarget becomes the
pressure along the z axis, and surface tension is applied in the x-y plane.

StrainRate < initial strain rate >

Acceptable Values: decimal triple (x y z)

Default Value: 0. 0. 0.

Description: Optionally specifies the initial strain rate for pressure control. Is overridden
by value read from file specified with extendedSystem. There is typically no reason to set
this parameter.

ExcludeFromPressure < Should some atoms be excluded from pressure rescaling? >
Acceptable Values: on or off

Default Value: off

Description: Specifies whether or not to exclude some atoms from pressure rescaling. The
coordinates and velocites of such atoms are not rescaled during constant pressure simulations,
though they do contribute to the virial calculation. May be useful for membrane protein
simulation. EXPERIMENTAL.

ExcludeFromPressureFile < File specifying excluded atoms >

Acceptable Values: PDB file

Default Value: coordinates file

Description: PDB file with one column specifying which atoms to exclude from pressure
rescaling. Specify 1 for excluded and 0 for not excluded.

ExcludeFromPressureCol < Column in PDB file for specifying excluded atoms >
Acceptable Values: O, B, X, Y, or Z
Default Value: O

Description: Specifies which column of the pdb file to check for excluded atoms.

94

8 User Defined Forces

There are several ways to apply external forces to simulations with NAMD. These are described
below.

8.1 Constant Forces

NAMD provides the ability to apply constant forces to some atoms. There are three parameters
that control this feature.

e constantForce < Apply constant forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not constant forces are applied.

e consForceFile < PDB file containing forces to be applied >
Acceptable Values: UNIX filename
Description: The X, Y, Z and occupancy (O) fields of this file are read to determine
the constant force vector of each atom, which is (X,Y,Z)*O, in unit of kcal/(mol*A). The
occupancy (O) serves as a scaling factor, which could expand the range of the force applied.
(One may be unable to record very large or very small numbers in the data fields of a PDB
file due to limited space). Zero forces are ignored.

Specifying consforcefile is optional; constant forces may be specified or updated between
runs by using the consForceConfig command.

e consForceScaling < Scaling factor for constant forces >
Acceptable Values: decimal
Default Value: 1.0
Description: Scaling factor by which constant forces are multiplied. May be changed
between run commands.

8.2 External Electric Field

NAMD provides the ability to apply a constant electric field to the molecular system being simu-
lated. Energy due to the external field will be reported in the MISC column and will be continuous
even in simulations using periodic boundary conditions as unwrapped coordinates are used to cal-
culate energy and pressure, resulting in linearly increasing pressure over time for systems with free
ions. To avoid this effect, for periodic simulations the new eFieldNormalized option should be
used with the electric field vector multiplied by the cell dimension. There are three parameters
that control this feature.

e cFieldOn < apply electric field? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not an electric field is applied.

e eField < electric field vector >
Acceptable Values: vector of decimals (x y z)
Description: Vector which describes the electric field to be applied. Units are

95

kcal/(mol A e), which is natural for simulations. This parameter may be changed between
run commands, allowing a square wave or other approximate wave form to be applied.

eFieldNormalized < electric field vector scaled by cell basis vectors? >

Acceptable Values: yes or no

Default Value: no

Description: Specifies whether or not that eField vector has been scaled by the cell basis
vectors, thus indicating the voltage drop across the cell in units of kcal/(mol e). The eField
vector is then scaled by the reciprocal lattice vectors at each timestep. When eFieldNormal-
ized is true the eField forces do not contribute to the pressure calculation.

8.3 Grid Forces

NAMD provides the ability to specify grids describing a potential in the simulation space. Each
atom is affected by the potential based on its charge and its position, using the potential function
interpolated from the specified grid(s). Energy due to the grid-defined field will be reported in the
MISC column of the output, unless a scaling factor not proportional to (1,1,1) is used.

NAMD allows the definition of multiple grids, each with a separate set of defining parame-

ters. This is specified using a tag field in each of the mgridforce XXX commands. The tag is an
alphanumeric string without spaces which identifies to which grid the specified field applies.

The grid file format is a subset of the DataExplorer DX file format, as shown below:

Lines at the beginning of the file starting with a # symbol
are ignored as comments
Variables (replaced by numbers in an actual file):

#

H OH HF H OH H H H H H H H R

xn, yn, and zn are the number of data points along each dimension;
xorg, yorg, and zorg is the origin of the grid, in angstroms;
x[1-3]del, y[1-3]del, and z[1-3]del are the basis vectors which transform
grid indices to coordinates in angstroms:
x(i,j,k) = xorg + i * xldel + j * yldel + k * zldel
y(i,j,k) = yorg + i * x2del + j * y2del + k * z2del
z(i,j,k) = zorg + i * x3del + j * y3del + k * z3del

Grid data follows, with three values per line, ordered z fast, y medium,
and x slow. Exactly xn*yn*zn values should be given. Grid data is then
terminated with a field object.

Note: Other features of the DX file format are not handled by this code

object 1 class gridpositions counts xn yn zn

origin xorg yorg zorg

delta xldel yldel zldel

delta x2del y2del z2del

delta x3del y3del z3del

object 2 class gridconnections counts xn yn zn

object 3 class array type double rank O items [xn*yn*zn] data follows
f1 £2 £3

f4 £5 £6

96

object 4 class field

component "positions" value 1
component "connections" value 2
component "data" value 3

Each dimension of the grid may be specified as continuous or not. If the grid is not continuous in
a particular dimension, the potential grid is padded with one border slices on each non-continuous
face of the grid, and border grid values are computed so that the force felt by an atom outside the
grid goes to zero. If the grid is continuous along a particular dimension, atoms outside the grid
are affected by a potential that is interpolated from the grid and its corresponding periodic image
along that dimension.

To calculate the force on an atom due to the grid, the atom’s coordinates are transformed
according to the current basis vectors of the simulation box to a coordinate frame that is centered
at the center of the specified grid. Note that the size and spatial coordinates of the grid remain
fixed, and are not scaled as the size of the simulation box fluctuates. For atoms within the grid,
the force is computed by analytically determining the gradient of the tricubic polynomial used to
interpolate the potential from surrounding grid values. For atoms outside the grid, the state of the
mgridforcecont[1,2,3] determine whether the force is zero, or computed from the images of the
grid as described above. Note that if the grid is ever larger than the periodic box, it is truncated
at the edge of that box. The consequence of this is that the computed potential will not vary
smoothly at the edges, introducing numerical instability.

NAMD also supports non-uniform grids, allowing regions of a grid to be defined at higher
resolution. Non-uniform grids are structured hierarchically, with a single maingrid which has one
or more subgrids. Each subgrid spans a number of maingrid cells in each of the three dimensions, and
effectively redefines the data in that region. The subgrids are usually defined at higher resolution,
with the restriction that the number of cells along each dimension is an integral number of the
original number in the maingrid. Note that the maingrid still has data points in regions where
subgrids are defined, and that, on the boundary of a subgrid, they must agree with the values in
the subgrid. Subgrids, in turn, may have subgrids of their own, which may have subgrids of their
own, etc.

A non-uniform grid file takes the form of a special comment block followed by multiple normal
grid definitions. The special comment block defines the grid hierarchy, and consists of comments
beginning with # namdnugrid. An example follows:

namdnugrid version 1.0

namdnugrid maingrid subgrids count 2

namdnugrid subgrid 1 generation 1 min x1 yl1 zl max x2 y2 z2 subgrids count 2
namdnugrid subgrid 2 generation 2 min x3 y3 z3 max x4 y4 z4 subgrids count O
namdnugrid subgrid 3 generation 2 min x5 y5 zb max x6 y6 z6 subgrids count O
namdnugrid subgrid 4 generation 1

H OH HF O H H H

min x7 y7 z7 max x8 y8 z8 subgrids count O

The maingrid is described by the number of subgrids. Subgrids are additionally described by a
subgrid number; a generation number, which should be one higher than the generation of its super-
grid; and min and max attributes, which describe the location of the subgrid within its supergrid.
In this example, the maingrid has two subgrids, subgrid 1 and subgrid 4, labeled generation 1.

97

The first of these subgrids has two subgrids of its own (generation 2). Notice that subgrids are
described immediately after their supergrid. The min and max attributes are given in units of grid
cells of the supergrid. For example, a subgrid with min 0 0 0 max 1 1 1 would redefine 8 cells
of its supergrid, the space between gridpoints (0, 0, 0) and (2, 2, 2) in grid coordinates. Following
the comment block, the maingrid and subgrids are defined in the format described above, in the
same order as the comment block.

The following parameters describe the grid-based potentials.

e mgridforce < apply grid forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not any grid forces are being applied.

e mgridforcefile < tag > < PDB file specifying force multipliers and charges for each atomd
>
Acceptable Values: UNIX file name
Description: The force on each atom is scaled by the corresponding value in this PDB file.
By setting the force multiplier to zero for an atom, it will not be affected by the grid force.

e mgridforcecol < tag > < column of PDB from which to read force multipliers >
Acceptable Values: X, Y, 7, O, or B
Default Value: B
Description: Which column in the PDB file specified by mgridforcefile contains the
scaling factor

e mgridforcechargecol < tag > < column of PDB from which to read atom charges >
Acceptable Values: X, Y, 7, O,or B
Default Value: Atom charge used for electrostatics.
Description: Which column in the PDB file specified by mgridforcefile contains the
atom charge. By default, the charge value specified for the short-range Columb interactions
are also used for the grid force. Both mgridforcecol and mgridforceqcol can be specified,
in which case the apparent charge of the atom will be the product of the two values.

e mgridforcepotfile < tag > < grid potential file name >
Acceptable Values: UNIX file name
Description: File specifying the grid size, coordinates, and potential values.

e mgridforcevolts < tag > < grid potential units in eV /charge >
Acceptable Values: yes or no
Default Value: no
Description: If set, the grid potential values are expressed in eV. Otherwise, values are in
kcal/(mol charge)

e mgridforcescale < tag > < scale factor for grid potential >
Acceptable Values: Vector of decimals scale, scaley, scale,
Default Value: 111
Description: Defines the scale factors that modulate the amplitude of the grid potential
forces in each dimension. When the three values are the same number, the grid potential’s
value is also included in the MISC column of the energy output. After initialization, the

98

three scale factors may be updated between “run” commands by the updategridforcescale
command. In the special case when “0 0 0” is given for this option, the corresponding grid
potential can be used a collective variable in the Colvars module (Sec. 9), allowing the use of
restraint potentials and fully time-dependent forces.

e updategridforcescale < tag > < scale factor for grid potential >
Acceptable Values: Vector of decimals scale, scaley, scale,
Default Value: 111
Description: Provides new scale factors to be applied to the grid potential values. This
comand can be issued between “run” commands to modify the amplitude of the grid potential.
The values provided remain constant for the duration of each “run” command.

e mgridforcecontl < tag > < Is grid continuous in the direction of the first basis vector >
Acceptable Values: yes or no
Default Value: no
Description: By specifying that the grid is continuous in a direction, atoms outside of the
grid will be affected by a force determined by interpolating based on the values at the edge
of the grid with the values of the corresponding edge of the periodic image of the grid. The
current size of the simulation box is taken into account, so that as the simulation box size
fluctuates, the force on an atom outside of the grid varies continuously until it re-enters the
opposite edge of the grid. If the grid is not continuous in this direction, the interpolated force
on atoms near the edge of the grid is calculated so that it continuously approaches zero as an
atom approaches the edge of the grid.

e mgridforcecont2 < tag > < Is grid continuous in the direction of the second basis vector
>
Acceptable Values: yes or no
Default Value: no
Description: Operates the same as mgridforcecontl except applies in the direction of
the second basis vector

e mgridforcecont3 < tag > < Is grid continuous in the direction of the third basis vector >
Acceptable Values: yes or no
Default Value: no
Description: Operates the same as mgridforcecontl except applies in the direction of
the third basis vector

e mgridforcevoff < tag > < Offset periodic images of the grid by specified amounts >
Acceptable Values: vector of decimals (x y z)
Default Value: (00 0)
Description: If a continuous grid is used along a particular basis vector, it may be desirable
to shift the potentials in the image to manipulate the potential outside the grid. For example,
consider the case where the potential is a ramp in the x direction and the grid is defined for
points [0, N), with a potential f(i,j, k) given by f(i,j,k) = fo +i(f1 — fo)/N. By shifting
the images of the grid, the potential can be transformed as illustrated in Fig. 4.

e mgridforcelite < tag > < Is grid to use Gridforce Lite interpolation? >
Acceptable Values: yes or no
Default Value: no

99

22

20 —

18 - —

16 —

14[] R

Potential

1]
12 B
10 - B
8 4

Unshifted ———

Shifted —5—

6(/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

Grid index

Figure 4: Graph showing a slice of a ramp potential, with eight grid points along the axis, and a periodic
cell size which just contains the grid. The Unshifted case shows how the pontential is not smooth when
mgridforcevoff is not specified, or set to zero. The Shifted potential shows the grid that results when
mgridfocevoff is set so that the wrapped potential is offset so that the potential has constant slope at the
periodic boundaries.

Description: When Gridforce Lite is enabled, a faster but less accurate interpolation
method is used to compute forces. Specifically, rather than computing a tri-cubic interpolation
of the potential, from which the force is then computed analytically, Gridforce Lite computes
force as a linear interpolation. This method also increases the memory required by Gridforce.
Note that Gridforce Lite is incompatible with use of the mgridforcecont [123] keywords and
with non-uniform grids.

8.4 Moving Constraints

Moving constraints feature works in conjunction with the Harmonic Constraints (see an appropriate
section of the User’s guide). The reference positions of all constraints will move according to

F(t) = 7y + Ut. (30)

A velocity vector ¥ (movingConsVel) needs to be specified.

The way the moving constraints work is that the moving reference position is calculated ev-
ery integration time step using Eq. 30, where ¥ is in A/ timestep, and ¢ is the current timestep
(i.e., firstTimestep plus however many timesteps have passed since the beginning of NAMD
run). Therefore, one should be careful when restarting simulations to appropriately update the

100

firstTimestep parameter in the NAMD configuration file or the reference position specified in the
reference PDB file.
NOTE: NAMD actually calculates the constraints potential with U = k(x — z0)¢ and the force
with F' = dk(x — x9), where d is the exponent consexp. The result is that if one specifies some
value for the force constant k in the PDB file, effectively, the force constant is 2k in calculations.
This caveat was removed in SMD feature.

The following parameters describe the parameters for the moving harmonic constraint feature
of NAMD.

e movingConstraints < Are moving constraints active >
Acceptable Values: on or off
Default Value: off
Description: Should moving restraints be applied to the system. If set to on, then
movingConsVel must be defined. May not be used with rotConstraints.

e movingConsVel < Velocity of the reference position movement >
Acceptable Values: vector in A /timestep
Description: The velocity of the reference position movement. Gives both absolute value
and direction

8.5 Rotating Constraints

The constraints parameters are specified in the same manner as for usual (static) harmonic con-
straints. The reference positions of all constrained atoms are then rotated with a given angular
velocity about a given axis. If the force constant of the constraints is sufficiently large, the con-
strained atoms will follow their reference positions.

A rotation matrix M about the axis unit vector v is calculated every timestep for the angle
of rotation corresponding to the current timestep. angle = Qt, where € is the angular velocity of
rotation.

From now on, all quantities are 3D vectors, except the matrix M and the force constant K.

The current reference position R is calculated from the initial reference position Ry (at ¢t = 0),
R = M(Ry — P) + P, where P is the pivot point.

Coordinates of point N can be found as N = P+ ((R — P) - v)v. Normal from the atom pos to
the axis is, similarly, normal = (P + ((X — P) - v)v) — X The force is, as usual, F' = K(R — X);
This is the force applied to the atom in NAMD (see below). NAMD does not know anything
about the torque applied. However, the torque applied to the atom can be calculated as a vector
product torque = F' x normal Finally, the torque applied to the atom with respect to the axis is
the projection of the torque on the axis, i.e., torquep,o; = torque - v

If there are atoms that have to be constrained, but not moved, this implementation is not
suitable, because it will move all reference positions.

Only one of the moving and rotating constraints can be used at a time.

Using very soft springs for rotating constraints leads to the system lagging behind the reference
positions, and then the force is applied along a direction different from the ”ideal” direction along
the circular path.

Pulling on N atoms at the same time with a spring of stiffness K amounts to pulling on the
whole system by a spring of stiffness NK, so the overall behavior of the system is as if you are
pulling with a very stiff spring if N is large.

101

In both moving and rotating constraints the force constant that you specify in the constraints
pdb file is multiplied by 2 for the force calculation, i.e., if you specified K = 0.5 kcal/mol/ A% in the

pdb file, the force actually calculated is F' =2K(R— X) =1 kcal/mol/A2 (R— X). SMD feature
of namd2 does the calculation without multiplication of the force constant specified in the config
file by 2.

e rotConstraints < Are rotating constraints active >
Acceptable Values: on or off
Default Value: off
Description: Should rotating restraints be applied to the system. If set to on, then
rotConsAxis, rotConsPivot and rotConsVel must be defined. May not be used with
movingConstraints.

e rotConsAxis < Axis of rotation >
Acceptable Values: vector (may be unnormalized)
Description: Axis of rotation. Can be any vector. It gets normalized before use. If the
vector is 0, no rotation will be performed, but the calculations will still be done.

e rotConsPivot < Pivot point of rotation >
Acceptable Values: position in A
Description: Pivot point of rotation. The rotation axis vector only gives the direction of
the axis. Pivot point places the axis in space, so that the axis goes through the pivot point.

e rotConsVel < Angular velocity of rotation >
Acceptable Values: rate in degrees per timestep
Description: Angular velocity of rotation, degrees/timestep.

8.6 Symmetry Restraints

Symmetry restraints are based on symmetrical relationships between monomers. Defined monomers
are transformed to overlap and an average position for each atom is calculated. After the average
structure is transformed back, a harmonic force is calculated which drives each monomer to the
average.

e symmetryRestraints < Are symmetry restraints active? >
Acceptable Values: on or off
Default Value: off
Description: Should Symmetry constraining forces be applied to the system. If symmetry
restraints are enabled, symmetryk* and symmetryFile must be defined in the input file as
well. *See symmetryk entry for details.

e symmetryFirstFullStep < First step to apply full harmonic force >
Acceptable Values: Non-negative integer
Default Value: symmetryFirstStep
Description: Force constant symmetryk linearly increased from symmetryFirstStep to
symmetryFirstFullStep

e symmetryLastFullStep < Last step to apply full harmonic force >
Acceptable Values: Non-negative integer

102

Default Value: symmetryLastStep
Description: Force constant symmetryk linearly decreased from symmetryLastFullStep
to symmetryLastStep

symmetryk < Constant for harmonic restraining forces >

Acceptable Values: Positive value

Description: Harmonic force constant. Scaled down by number of atoms in the monomer.
If this setting is omitted, the value in the occupancy column of the pdb file specified by
symmetrykFile will be used as the constant for that atom. This allows the user to specify
the constant on a per-atom basis.

symmetrykFile < pdb containing per atom force constants >

Acceptable Values: Path to pdb file

Description: pdb where the occupancy column specifies the per atom force constants.
If using overlapping symmetry groups, you must include one additional symmetrykfile per
symmetryFile

symmetryScaleForces < Scale symmetry restraints over time >

Acceptable Values: on or off

Default Value: off

Description: If turned on, the harmonic force applied by the symmetry re-
straints will linearly evolve with each time step based on symmetryFirstFullStep and
symmetryLastFullStep.

symmetryFile < File for symmetry information >

Acceptable Values: Path to PDB file

Description: Restrained atoms are those whose occupancy (O) is nonzero in the symmetry
pdb file. The file must contain no more atoms than the structure file and those atoms present
must have the exact same index as the structure file (i.e., the file may contain a truncated atom
selection “index < N” but not an arbitrary selection). The value in the occupancy column
represent the ”"symmetry group” the atom belongs to. These symmetry groups are used for
denoting monomers of the same type. These groups will be transformed by the matrices in
their own symmetryMatrixFile and averaged separetely from other groups. The designation
in the occupancy column should be an integer value starting at 1 and proceeding in ascending
order, mirroring the order of the corresponding matrix file within the configuration file (e.g.
the first symmetryMatrixFile contains the matrices for symmetry group 1). The value in the
atom’s beta column represents its monomer designation. This should be an integer value
starting at 1 and proceeding in ascending order, relative to the order of the corresponding
transformation matrix found in the symmetry group’s symmetryMatrixFile. If an atom is
contained in more than one symmetry group, additional pdb files can be listed. These pdb
files should follow the same rules as the first one (unique group and monomer identifiers in
increasing order).

symmetryMatrixFile < File for transformation matrices >

Acceptable Values: Path to matrix file

Description: @ The symmetryMatrixFile is a path to a file that contains a list of trans-
formation matrices to make the monomers overlap. The file should contain one (and only
one) matrix for each monomer in the order of monomer ID designated in the symmetryFile.

103

Each symmetry group should have its own symmetryMatrixFile file containing only the ma-
trices used by the monomers in that group. These should be formatted with spaces between
columns and NO spaces between rows as follows:

1000
0100
0010
0001

with different matrices separated by a single blank line (and no line before the first or after
the last matrix). This file is OPTIONAL. Leave this line out to have namd generate the
transformations for you.

e symmetryFirstStep < first symmetry restraint timestep >
Acceptable Values: Non-negative integer
Default Value: 0
Description:

e symmetryLastStep < last symmetry restraint timestep >
Acceptable Values: Positive integer
Default Value: infinity
Description: Symmetry restraints are applied only between symmetryFirstStep and
symmetryLastStep. Use these settings with caution and ensure restraints are only being
applied when necessary (e.g. not during equilibration).

8.7 Targeted Molecular Dynamics (TMD)

In TMD, subset of atoms in the simulation is guided towards a final ’target’ structure by means
of steering forces. At each timestep, the RMS distance between the current coordinates and the
target structure is computed (after first aligning the target structure to the current coordinates).
The force on each atom is given by the gradient of the potential

Urmp = %% [RMS(t) — RM S*(t)]? (31)
where RM S(t) is the instantaneous best-fit RMS distance of the current coordinates from the
target coordinates, and RM S*(t) evolves linearly from the initial RMSD at the first TMD step to
the final RMSD at the last TMD step. The spring constant k is scaled down by the number N of
targeted atoms.

Atoms can be separated into non-overlapping constraint domains by assigning integer values
in the beta column of the TMDFile. Forces on the atoms will be calculated for each domain
independently of the other domains.

Within each domain, the set of atoms used to fit the target structure can be different from the
set of atoms that are biased towards the target structure. If the altloc field in the TMDFile is not
¢ or ‘0’ then the atom is fitted. If the occupancy is non-zero then the atom is biased. If none of
the atoms in a domain have altloc set then all biased atoms are fitted.

Note that using different atoms for fitting and biasing or not using the same spring constant for
all target atoms within a domain will result in forces conserving neither energy nor momentum. In
this case harmonic restraints and Langevin dynamics are likely needed.

104

TMD < Is TMD active >

Acceptable Values: on or off

Default Value: off

Description: Should TMD steering forces be applied to the system. If TMD is enabled,
TMDk, TMDFile, and TMDLastStep must be defined in the input file as well.

TMDk < Elastic constant for TMD forces >

Acceptable Values: Positive value in kcal /mol /A2

Description: The value of k£ in Eq. 31. A value of 200 seems to work well in many cases. If
this setting is omitted, the value in the occupancy column of the pdb file specified by TMDFile
will be used as the constant for that atom. This allows the user to specify the constant on a
per-atom basis.

TMDOutputFreq < How often to print TMD output >

Acceptable Values: Positive integer

Default Value: 1

Description: = TMD output consists of lines of the form TMD ts targetRMS currentRMS
where ts is the timestep, targetRMS is the target RMSD at that timestep, and currentRMS
is the actual RMSD.

TMDFile < File for TMD information >

Acceptable Values: Path to PDB file

Description: Biased atoms are those whose occupancy (O) is nonzero in the TMD PDB
file. Fitted atoms are those whose altloc field is not ¢’ or ‘0’, if present, otherwise all biased
atoms are fitted. The file must contain no more atoms than the structure file and those
atoms present must have the exact same index as the structure file (i.e., the file may contain
a truncated atom selection “index < N” but not an arbitrary selection). The coordinates
for the target structure are also taken from the targeted atoms in this file. Non-targeted
atoms are ignored. The beta column of targetted atoms is used to designate non-overlapping
constraint domains. Forces will be calculated for atoms within a domain separately from
atoms of other domains.

TMDFirstStep < first TMD timestep >
Acceptable Values: Positive integer
Default Value: 0

Description:

TMDLastStep < last TMD timestep >

Acceptable Values: Positive integer

Description: TMD forces are applied only between TMDFirstStep and TMDLastStep. The
target RMSD evolves linearly in time from the initial to the final target value.

TMDInitialRMSD < target RMSD at first TMD step >

Acceptable Values: Non-negative value in A

Default Value: from coordinates

Description: In order to perform TMD calculations that involve restarting a previous
NAMD run, be sure to specify TMDInitialRMSD with the same value in each NAMD input
file, and use the NAMD parameter firstTimestep in the continuation runs so that the target
RMSD continues from where the last run left off.

105

e TMDFinalRMSD < target RMSD at last TMD step >
Acceptable Values: Non-negative value in A
Default Value: 0
Description: If no TMDInitialRMSD is given, the initial RMSD will be calculated at the
first TMD step. TMDFinalRMSD may be less than or greater than TMDInitialRMSD, depending
on whether the system is to be steered towards or away from a target structure, respectively.
Forces are applied only if RMS(t) is betwween TMDInitialRMSD and RMS = (t); in other
words, only if the current RMSD fails to keep pace with the target value.

e TMDDiffRMSD < Is double-sided TMD active? >
Acceptable Values: on or off
Default Value: off
Description: Turns on the double-sided TMD feature which targets the transition between
two structures. This is accomplished by modifying the TMD force such that the potential is
based on the difference of RMSD’s from the two structures:

1k
Urap = 54 [DRMS(t) DRMS*(t)]? (32)
where DRM S(t) is RMS1(t) - RMS2(2) (RMS1 being the RMSD from structure 1 and RMS2
the RMSD from structure 2). The first structure is specified as normal in TMDFile and the
second structure should be specified in TMDFile2, preserving any domain designations found
in TMDFile.

e TMDFile2 < Second structure file for double-sided TMD >
Acceptable Values: Path to PDB file
Description: PDB file defining the second structure of a double sided TMD. This file should
contain the same number of atoms as TMDFile along with the same domain designations if
any are specified.

8.8 Steered Molecular Dynamics (SMD)

The SMD feature is independent from the harmonic constraints, although it follows the same ideas.
In both SMD and harmonic constraints, one specifies a PDB file which indicates which atoms are
'tagged’ as constrained. The PDB file also gives initial coordinates for the constraint positions.
One also specifies such parameters as the force constant(s) for the constraints, and the velocity
with which the constraints move.

There are two major differences between SMD and harmonic constraints:

e In harmonic constraints, each tagged atom is harmonically constrained to a reference point
which moves with constant velocity. In SMD, it is the center of mass of the tagged atoms
which is constrained to move with constant velocity.

e In harmonic constraints, each tagged atom is constrained in all three spatial dimensions. In
SMD, tagged atoms are constrained only along the constraint direction (unless the optional
SMDk2 keyword is used.)

The center of mass of the SMD atoms will be harmonically constrained with force constant k
(SMDk) to move with velocity v (SMDVel) in the direction 7 (SMDDir). SMD thus results in the

106

following potential being applied to the system:

1 - 5 2
U(F1 T, ent) = 5k vt = (R(t) = Ro) - 71] . (33)

Here, t = N;4dt where Ny is the number of elapsed timesteps in the simulation and dt is the size
of the timestep in femtoseconds. Also, E(t) is the current center of mass of the SMD atoms and
Ry is the initial center of mass as defined by the coordinates in SMDFile. Vector 7i is normalized
by NAMD before being used.

Optionally, one may also specify a transverse force constant ko (SMDk2). The potential then
becomes

1 - o 2 1 - \2 - - 2
U1, 7, t) = Sk vt = (R(t) = Ro) - ﬁ} + 5k [(R(t) - Ro) - ((R(t) ~ Ry)- ﬁ)] . (34)
In this case, the force constant k controls the potential parallel to the pulling direction 77, while the

transverse force constant ko controls the potential perpendicular to 7.

Output NAMD provides output of the current SMD data. The frequency of output is specified
by the SMDOutputFreq parameter in the configuration file. Every SMDOutputFreq timesteps NAMD
will print the current timestep, current position of the center of mass of the restrained atoms, and
the current force applied to the center of mass (in piconewtons, pN). The output line starts with
word SMD

Parameters The following parameters describe the parameters for the SMD feature of NAMD.

e SMD < Are SMD features active >
Acceptable Values: on or off
Default Value: off
Description: Should SMD harmonic constraint be applied to the system. If set to on, then
SMDk, SMDFile, SMDVel, and SMDDir must be defined. Specifying SMDOutputFreq is optional.

e SMDFile < SMD constraint reference position >

Acceptable Values: UNIX filename

Description: File to use for the initial reference position for the SMD harmonic constraints.
All atoms in this PDB file with a nonzero value in the occupancy column will be tagged as
SMD atoms. The coordinates of the tagged SMD atoms will be used to calculate the initial
center of mass. During the simulation, this center of mass will move with velocity SMDVel
in the direction SMDDir. The actual atom order in this PDB file must match that in the
structure or coordinate file, since the atom number field in this PDB file will be ignored.

e SMDk < force constant to use in SMD simulation >
Acceptable Values: positive real
Description: SMD harmonic constraint force constant. Must be specified in kcal/mol/AZ2.
The conversion factor is 1 kcal/mol = 69.479 pN A.

e SMDk2 < force constant for transverse direction to use in SMD simulation >
Acceptable Values: positive real
Default Value: 0
Description: SMD transverse harmonic constraint force constant. Must be specified in
kcal/mol/A2. The conversion factor is 1 kcal/mol = 69.479 pN A.

107

e SMDVel < Velocity of the SMD reference position movement >
Acceptable Values: nonzero real, A/timestep
Description: The velocity of the SMD center of mass movement. Gives the absolute value.

e SMDDir < Direction of the SMD center of mass movement >
Acceptable Values: non-zero vector
Description: The direction of the SMD reference position movement. The vector does not
have to be normalized, it is normalized by NAMD before being used.

e SMDOutputFreq < frequency of SMD output >
Acceptable Values: positive integer
Default Value: 1
Description: The frequency in timesteps with which the current SMD data values are
printed out.

8.9 Interactive Molecular Dynamics (IMD)

NAMD now works directly with VMD to allow you to view and interactively steer your simulation.
With IMD enabled, you can connect to NAMD at any time during the simulation to view the
current state of the system or perform interactive steering.

e IMDon < is IMD active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not to listen for an IMD connection.

e IMDport < port number to expect a connection on >
Acceptable Values: positive integer
Description: This is a free port number on the machine that node 0 is running on. This
number will have to be entered into VMD.

e IMDfreq < timesteps between sending coordinates >
Acceptable Values: positive integer
Description: This allows coordinates to be sent less often, which may increase NAMD
performance or be necessary due to a slow network.

e IMDwait < wait for an IMD connection? >
Acceptable Values: yes or no
Default Value: no
Description: If no, NAMD will proceed with calculations whether a connection is present
or not. If yes, NAMD will pause at startup until a connection is made, and pause when the
connection is lost.

e IMDignore < ignore interactive steering forces >
Acceptable Values: yes or no
Default Value: no
Description: If yes, NAMD will ignore any steering forces generated by VMD to allow a
simulation to be monitored without the possibility of perturbing it.

108

8.10 Tcl Forces and Analysis

NAMD provides a limited Tcl scripting interface designed for applying forces and performing on-
the-fly analysis. This interface is efficient if only a few coordinates, either of individual atoms or
centers of mass of groups of atoms, are needed. In addition, information must be requested one
timestep in advance. To apply forces individually to a potentially large number of atoms, use tc1BC
instead as described in Sec. 8.11. The following configuration parameters are used to enable the
Tecl interface:

e tclForces < is Tcl interface active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Tcl interface is active. If it is set to off, then no Tcl
code is executed. If it is set to on, then Tcl code specified in tclForcesScript parameters
is executed.

e tclForcesScript < input for Tcl interface >
Acceptable Values: file or {script}
Description: Must contain either the name of a Tcl script file or the script itself between {
and } (may include multiple lines). This parameter may occur multiple times and scripts will
be executed in order of appearance. The script(s) should perform any required initialization
on the Tcl interpreter, including requesting data needed during the first timestep, and define
a procedure calcforces { } to be called every timestep.

At this point only low-level commands are defined. In the future this list will be expanded.
Current commands are:

e print <anything>
This command should be used instead of puts to display output. For example,
“print Hello World”.

e atomid <segname> <resid> <atomname>
Determines atomid of an atom from its segment, residue, and name. For example, “atomid
br 2 N”.

e addatom <atomid>
Request coordinates of this atom for next force evaluation, and the calculated total force on
this atom for current force evaluation. Request remains in effect until clearconfig is called.
For example, “addatom 4” or “addatom [atomid br 2 NJ]”.

e addgroup <atomid list>
Request center of mass coordinates of this group for next force evaluation. Returns a group
ID which is of the form gN where N is a small integer. This group ID may then be used to
find coordinates and apply forces just like a regular atom ID. Aggregate forces may then be
applied to the group as whole. Request remains in effect until clearconfig is called. For
example, “set groupid [addgroup { 14 10 12 }17.

e clearconfig
Clears the current list of requested atoms. After clearconfig, calls to addatom and addgroup
can be used to build a new configuration.

109

getstep
Returns the current step number.

loadcoords <varname>

Loads requested atom and group coordinates (in A) into a local array. loadcoords should
only be called from within the calcforces procedure. For example, “loadcoords p” and
“print $p(4)”.

loadforces <varname>

Loads the forces applied in the previous timestep (in kcal mol ™! A‘l) into a local array.
loadforces should only be called from within the calcforces procedure. For example,
“loadforces f” and “print $f(4)”.

enabletotalforces/disabletotalforces
Enables/disables the “loadtotalforces” command, described below, which is disabled by
default to avoid unneeded work and communication.

loadtotalforces <varname>

Loads the total forces on each requested atom and group in the previous time step (in kcal
mol~'A~!) into a local array. The total force also includes external forces. Note that the
“loadforces” command returns external forces applied by the user. Therefore, one can
subtract the external force on an atom from the total force on this atom to get the pure force
arising from the simulation system. Note that “enabletotalforces” must be called first.

loadmasses <varname>
Loads requested atom and group masses (in amu) into a local array. loadmasses should only
be called from within the calcforces procedure. For example, “loadcoords m” and “print

$m(4)”.

addforce <atomid|groupid> <force vector>
Applies force (in keal mol~' A~1) to atom or group. addforce should only be called from
within the calcforces procedure. For example, “addforce $groupid { 1. 0. 2. }”.

addenergy <energy (kcal/mol)>

This command adds the specified energy to the MISC column (and hence the total energy) in
the energy output. For normal runs, the command does not affect the simulation trajectory
at all, and only has an artificial effect on its energy output. However, it can indeed affect
minimizations.

With the commands above and the functionality of the Tcl language, one should be able to
perform any on-the-fly analysis and manipulation. To make it easier to perform certain tasks, some
Tcl routines are provided below.

Several vector routines (vecadd, vecsub, vecscale) from the VMD Tcl interface are defined.

Please refer to VMD manual for their usage.

The following routines take atom coordinates as input, and return some geometry parameters

(bond, angle, dihedral).

e getbond <coorl> <coor2>

Returns the length of the bond between the two atoms. Actually the return value is simply
the distance between the two coordinates. “coorl” and “coor2” are coordinates of the atoms.

110

e getangle <coorl> <coor2> <coor3>
Returns the angle (from 0 to 180) defined by the three atoms. “coorl”, “coor2” and “coor3”
are coordinates of the atoms.

e getdihedral <coorl> <coor2> <coor3> <coor4>
Returns the dihedral (from -180 to 180) defined by the four atoms. “coorl”, “coor2”, “coor3”
and “coor4” are coordinates of the atoms.

The following routines calculate the derivatives (gradients) of some geometry parameters (angle,
dihedral).

e anglegrad <coorl> <coor2> <coor3>
An angle defined by three atoms is a function of their coordinates: 6 (71,73,73) (in radian).

This command takes the coordinates of the three atoms as input, and returns a list of {g—é
5?7% g—%}. Each element of the list is a 3-D vector in the form of a Tcl list.
e dihedralgrad <coorl> <coor2> <coor3> <coor4>

A dihedral defined by four atoms is a function of their coordinates: ¢ (71, 72,73, 74) (in radian).

This command takes the coordinates of the four atoms as input, and returns a list of {%
99 0¢ %} Each element of the list is a 3-D vector in the form of a T¢cl list.

ors 0ry 0ry
As an example, here’s a script which applies a harmonic constraint (reference position being 0)
to a dihedral. Note that the “addenergy” line is not really necessary — it simply adds the calculated
constraining energy to the MISC column, which is displayed in the energy output.

tclForcesScript {
The IDs of the four atoms defining the dihedral
set aidl 112
set aid2 123
set aid3 117
set aid4 115

The "spring constant" for the harmonic constraint
set k 3.0

addatom $aidl
addatom $aid2
addatom $aid3
addatom $aid4
set PI 3.1416
proc calcforces {} {

global aidl aid2 aid3 aid4 k PI

loadcoords p

111

Calculate the current dihedral

set phi [getdihedral $p($aidl) $p($aid2) $p($aid3) $p($aid4)]
Change to radian

set phi [expr $phi*$PI/180]

(optional) Add this constraining energy to "MISC" in the energy output
addenergy [expr $k*$phi*$phi/2.0]

Calculate the "force" along the dihedral according to the harmonic constraint
set force [expr -$k*$phi]

Calculate the gradients
foreach {gl g2 g3 g4} [dihedralgrad $p($aidl) $p($aid2) $p($aid3) $p($aid4)] {3}

The force to be applied on each atom is proportional to its
corresponding gradient

addforce $aidl [vecscale $gl $force]

addforce $aid2 [vecscale $g2 $force]

addforce $aid3 [vecscale $g3 $force]

addforce $aid4 [vecscale $g4 $forcel

8.11 Tcl Boundary Forces

While the tclForces interface described above is very flexible, it is only efficient for applying
forces to a small number of pre-selected atoms. Applying forces individually to a potentially large
number of atoms, such as applying boundary conditions, is much more efficient with the tc1BC
facility described below.

e tclBC < are Tcl boundary forces active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Tcl interface is active. If it is set to off, then no
Tecl code is executed. If it is set to on, then Tcl code specified in the tc1BCScript parameter
is executed.

e tclBCScript < input for Tcl interface >
Acceptable Values: {script}
Description: Must contain the script itself between { and } (may include multiple lines).
This parameter may occur only once. The script(s) should perform any required initialization
on the Tcl interpreter and define a procedure calcforces <step> <unique> [args...] to
be called every timestep.

e tclBCArgs < extra args for tcIBC calcforces command >
Acceptable Values: {args...}
Description: The string (or Tcl list) provided by this option is appended to the tcIBC

112

calcforces command arguments. This parameter may appear multiple times during a run in
order to alter the parameters of the boundary potential function.

The script provided in tc1BCScript and the calcforces procedure it defines are executed in
multiple Tcl interpreters, one for every processor that owns patches. These tc1BC interpreters do
not share state with the Tcl interpreter used for tclForces or config file parsing. The calcforces
procedure is passed as arguments the current timestep, a “unique” flag which is non-zero for exactly
one Tcl interpreter in the simulation (that on the processor of patch zero), and any arguments
provided to the most recent tclBCArgs option. The “unique” flag is useful to limit printing of
messages, since the command is invoked on multiple processors.

The print, vecadd, vecsub, vecscale, getbond, getangle, getdihedral, anglegrad, and
dihedralgrad commands described under tclForces are available at all times.

The wrapmode <mode> command, available in the tc1BCScript or the calcforces procedure,
determines how coordinates obtained in the calcforces procedure are wrapped around periodic
boundaries. The options are:

e patch, (default) the position in NAMD’s internal patch data structure, requires no extra
calculation and is almost the same as cell

e input, the position corresponding to the input files of the simulation
e cell, the equivalent position in the unit cell centered on the cellOrigin

e nearest, the equivalent position nearest to the cellOrigin
The following commands are available from within the calcforces procedure:

e nextatom
Sets the internal counter to a new atom and return 1, or return 0 if all atoms have been
processed (this may even happen the first call). This should be called as the condition of a
while loop, i.e., while {[nextatoml} { ... } to iterate over all atoms. One one atom may
be accessed at a time.

e dropatom
Excludes the current atom from future iterations on this processor until cleardrops is called.
Use this to eliminate extra work when an atom will not be needed for future force calculations.
If the atom migrates to another processor it may reappear, so this call should be used only
as an optimization.

e cleardrops
All available atoms will be iterated over by nextatom as if dropatom had never been called.

e getcoord
Returns a list {x y z} of the position of the current atom wrapped in the periodic cell (if
there is one) in the current wrapping mode as specified by wrapmode.

e getcell
Returns a list of 1-4 vectors containing the cell origin (center) and as many basis vectors
as exist, i.e., {{ox oy oz} {ax ay az} {bx by bz} {cx cy cz}}. It is more efficient to set
the wrapping mode than to do periodic image calculations in Tcl.

113

e getmass
Returns the mass of the current atom.

e getcharge
Returns the charge of the current atom.

o getid
Returns the 1-based ID of the current atom.

e addforce {<fx> <fy> <fz>}
Adds the specified force to the current atom for this step.

e addenergy <energy>
Adds potential energy to the BOUNDARY column of NAMD output.

As an example, these spherical boundary condition forces:

sphericalBC on
sphericalBCcenter 0.0,0.0,0.0
sphericalBCrl 48
sphericalBCk1 10

sphericalBCexpl 2
Are replicated in the following script:

tclBC on
tclBCScript {
proc veclen2 {vi} {
foreach {x1 y1 z1} $v1 { break }
return [expr $x1x$xl1 + $yl*x$yl + $z1x$z1]

wrapmode input

wrapmode cell

wrapmode nearest

wrapmode patch ;# the default

H H OH ®

proc calcforces {step unique R K} {
if { $step % 20 == 0 } {
cleardrops
if $unique { print "clearing dropped atom list at step $step" }
}
set R [expr 1.*$R]
set R2 [expr $R*$R]
set tol 2.0
set cut2 [expr ($R-$tol)*($R-$tol)]

while {[nextatom]} {
addenergy 1 ; # monitor how many atoms are checked

114

set rvec [getcoord]
set r2 [veclen2 $rvec]
if { $r2 < $cut2 ¥ {
dropatom
continue
}
if { $r2 > $R2 } {
addenergy 1 ; # monitor how many atoms are affected
set r [expr sqrt($r2)]
addenergy [expr $K*($r - $R)*($r - $R)]
addforce [vecscale $rvec [expr -2.*$K*($r-$R)/$r]]

tclBCArgs {48.0 10.0}

8.12 External Program Forces

This feature allows an external program to be called to calculate forces at every force evaluation,
taking all atom coordinates as input.

e extForces < Apply external program forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not external program forces are applied.

e extForcesCommand < Force calculation command >
Acceptable Values: UNIX shell command
Description: This string is the argument to the system() function at every forces evaluation
and should read coordinates from the file specified by extCoordFilename and write forces to
the file specified by extForceFilename.

e extCoordFilename < Temporary coordinate file >
Acceptable Values: UNIX filename
Description: Atom coordinates are written to this file, which should be read by the
extForcesCommand. The format is one line of “atomid charge x y z” for every atom followed
by three lines with the periodic cell basis vectors “a.x a.y a.z”, “b.x b.y b.z”, and “c.x c.y
c.z”. The atomid starts at 1 (not 0). For best performance the file should be in /tmp and
not on a network-mounted filesystem.

e extForceFilename < Temporary force file >
Acceptable Values: UNIX filename
Description: Atom forces are read from this file after extForcesCommand in run. The
format is one line of “atomid replace fx fy fz” for every atom followed by the energy on a line
by itself and then, optionally, three lines of the virial “v.xx v.xy v.xz”, “v.yx v.yy v.yz”, “v.zx
v.zy v.zz” where, e.g., v.xy = - fx * y for a non-periodic force. The atomid starts at 1 (not 0)

115

and all atoms must be present and in order. The energy is added to the MISC output field.
The replace flag should be 1 if the external program force should replace the forces calculated
by NAMD for that atom and 0 if the forces should be added. For best performance the file
should be in /tmp and not on a network-mounted filesystem.

116

9 Collective Variable-based Calculations (Colvars)

The features described in this section were originally contributed to NAMD by Giacomo Fiorin
(NIH) and Jérome Hénin (CNRS, France) and are currently developed at this external repository:
https://github.com/Colvars/colvars

An updated version of this section can also be downloaded as a separate manual:

HTML: https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html
PDF': https://colvars.github.io/pdf/colvars-refman-namd.pdf

See section 9.7 for specific changes that affect compatibility between versions. Please ask any
usage questions through the NAMD mailing list, and development questions through GitHub.

Overview

In molecular dynamics simulations, it is often useful to reduce the large number of degrees of
freedom of a physical system into few parameters whose statistical distributions can be analyzed
individually, or used to define biasing potentials to alter the dynamics of the system in a controlled
manner. These have been called ‘order parameters’, ‘collective variables’, ‘(surrogate) reaction
coordinates’, and many other terms.

Here we use primarily the term ‘collective variable’, often shortened to colvar, to indicate any
differentiable function of atomic Cartesian coordinates, x;, with 7 between 1 and N, the total
number of atoms:

§(t) =&(X(1) = &(xit),z;(t), e (t),..) , 1<i,5,k... <N (35)

The module is designed to perform multiple tasks concurrently during or after a simulation, the
most common of which are:

e apply restraints or biasing potentials to multiple variables, tailored on the system by choosing
from a wide set of basis functions, without limitations on their number or on the number of
atoms involved; while this can in principle be done through a TclForces script, using the
Colvars module is both easier and computationally more efficient;

e calculate potentials of mean force (PMF's) along any set of variables, using different enhanced
sampling methods, such as Adaptive Biasing Force (ABF), metadynamics, steered MD and
umbrella sampling; variants of these methods that make use of an ensemble of replicas are
supported as well;

e calculate statistical properties of the variables, such as running averages and standard de-
viations, correlation functions of pairs of variables, and multidimensional histograms: this
can be done either at run-time without the need to save very large trajectory files, or after a
simulation has been completed using VMD and the cv command or NAMD and the coorfile
read command as illustrated in 18.

Detailed explanations of the design of the Colvars module are provided in reference [33]. Please
cite this reference whenever publishing work that makes use of this module.

117

https://github.com/Colvars/colvars
https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html
https://colvars.github.io/pdf/colvars-refman-namd.pdf

9.1 Writing a Colvars configuration: a crash course

The Colvars configuration is a plain text file or string that defines collective variables, biases,
and general parameters of the Colvars module. It is passed to the module using back-end-specific
commands documented in section 9.2.

Now let us look at a complete, non-trivial configuration. Suppose that we want to run a steered
MD experiment where a small molecule is pulled away from a protein binding site. In Colvars
terms, this is done by applying a moving restraint to the distance between the two objects. The
configuration will contain two blocks, one defining the distance variable (see section 9.3 and 9.3.2),
and the other the moving harmonic restraint (9.5.5).

colvar {
name dist
distance {
groupl { atomNumbersRange 42-55 }
group2 {
psfSegID PR
atomNameResidueRange CA 15-30

}
}
}

harmonic {
colvars dist
forceConstant 20.0
centers 4.0 # initial distance
targetCenters 15.0 # final distance
targetNumSteps 500000

Reading this input in plain English: the variable here named dist consists in a distance function
between the centers of two groups: the ligand (atoms 42 to 55) and the a-carbon atoms of residues
15 to 30 in the protein (segment name PR). To the “dist” variable, we apply a harmonic potential
of force constant 20 kcal/mol/A2, initially centered around a value of 4 A, which will increase to
15 A over 500,000 simulation steps.

The atom selection keywords are detailed in section 9.4.

9.2 Enabling and controlling the Colvars module in NAMD

Here, we document the syntax of the commands and parameters used to set up and use the Colvars
module in NAMD. One of these parameters is the configuration file or the configuration text for
the module itself, whose syntax is described in 9.2.4 and in the following sections.

9.2.1 Units in the Colvars module

The “internal units” of the Colvars module are the units in which values are expected to be in
the configuration file, and in which collective variable values, energies, etc. are expressed in the
output and colvars trajectory files. Generally the Colvars module uses internally the same

118

units as its back-end MD engine, with the exception of VMD, where different unit sets
are supported to allow for easy setup, visualization and analysis of Colvars simulations performed
with any simulation engine.

Note that angles are expressed in degrees, and derived quantites such as force constants are
based on degrees as well. Atomic coordinates read from XYZ files (and PDB files where applicable)
are expected to be expressed in Angstrom, no matter what unit system is in use by the back-end
or the Colvars Module.

To avoid errors due to reading configuration files written in a different unit system, it can be
specified within the input:

e units < Unit system to be used >
Context: global
Acceptable Values: string
Description: A string defining the units to be used internally by Colvars. In NAMD the
only allowed value is NAMD’s native units: real (A, kcal/mol).

9.2.2 NAMD parameters

To enable a Colvars-based calculation, the colvars on command must be added to the NAMD
script. Two optional commands, colvarsConfig and colvarsInput can be used to define the
module’s configuration or continue a previous simulation. Because these are static parameters, it
is typically more convenient to use the cv command in the rest of the NAMD script.

e colvars < Enable the Colvars module >
Context: NAMD configuration file
Acceptable Values: boolean
Default Value: off
Description: If this flag is on, the Colvars module within NAMD is enabled.

e colvarsConfig < Configuration file for the collective variables >
Context: NAMD configuration file
Acceptable Values: UNIX filename
Description: Name of the Colvars configuration file (9.2.4, 9.2.5 and following sections).
This file can also be provided by the Tcl command cv configfile. Alternatively, the con-
tents of the file (as opposed to the file itself) can be given as a string argument to the command
cv config.

e colvarsInput < Input state file for the collective variables >
Context: NAMD configuration file
Acceptable Values: UNIX filename
Description: Keyword used to specify the input state file’s name (9.2.6). If the input file is
meant to be loaded within a Tcl script section, the cv load command may be used instead.

9.2.3 Using the cv command to control the Colvars module

At any moment after the first initialization of the Colvars module, several options can be read or
modified by the Tcl command cv, with the following syntax:
cv <subcommand> [args ...]

119

The most frequent uses of the cv command are discussed here. For a complete list of all sub-
commands of cv, see section 9.6.

Setting up the Colvars module If the NAMD configuration parameter colvars is on, the cv
command can be used anywhere in the NAMD script, and will be invoked as soon as NAMD begins
processing Tcl commands.

To define collective variables and biases, configuration can be loaded using either:
cv configfile colvars-file.in
to load configuration from a file, or:
cv config "keyword { ... }"
to load configuration as a string argument.

The latter version is particularly useful to dynamically define the Colvars configuration. For
example, when running an ensemble of umbrella sampling simulations in NAMD, it may be
convenient to use an identical NAMD script, and let the queuing system assist in defining the
window. In this example, in a Slurm array job an environment variable is used to define the
window’s numeric index (starting at zero), and the umbrella restraint center (starting at 2 for the
first window, and increasing in increments of 0.25 for all other windows):
cv configfile colvars-definition.in
set window $env(SLURM_ARRAY TASK_ID)
cv config "harmonic {

name us_${window}
colvars xi
centers [expr 2.0 + 0.25 * ${window}]

}

Using the Colvars version in scripts The vast majority of the syntax in Colvars is backward-
compatible, adding keywords when new features are introduced. However, when using multiple
versions simultaneously it may be useful to test within the script whether the version is recent
enough to support the desired feature. cv version can be used to get the Colvars version for this
use:
if { [cv version] >= "2020-02-25" } {

cv config "(use a recent feature)"

}

Loading and saving the Colvars state and other information After a configuration is fully
defined, cv load may be used to load a state file from a previous simulation that contains e.g. data
from history-dependent biases), to either continue that simulation or analyze its results:

cv load <oldjob>.colvars.state

or more simply using the prefix of the state file itself:

cv load <oldjob>

The latter is much more convenient in combination with the NAMD reinitatoms command, for
example:

120

reinitatoms <oldjob>

cv load <oldjob>

The step number contained by the loaded file will be used internally by Colvars to control time-
dependent biases, unless firstTimestep is issued, in which case that value will be used.

When the system’s topology is changed during simulation via the structure command (e.g.
in constant-pH simulations), it is generally best to reset and re-initalize the module from scratch
before loading the corresponding snapshot:
structure newsystem.psf
reinitatoms <snapshot>
cv reset
cv configfile ...
cv load <snapshot>

cv save, analogous to cv load, saves all restart information to a state file. This is normally not
required during a simulation if colvarsRestartFrequency (see 9.2.5) is defined (either directly or
indirectly by the NAMD restart frequency), but it is necessary in post-processing e.g. with VMD.
Because not only a state file (used to continue simulations) but also other data files (used to analyze
the trajectory) are written, it is generally clearer to use cv save with a prefix rather than a file
name:
cv save <job>

See 9.6.1 for a complete list of scripting commands used to manage the Colvars module.

Managing collective variables After one or more collective variables are defined, they can be
accessed via cv colvar [args ...]. For example, to recompute the collective variable xi the
following command can be used:

cv colvar xi update

This ordinarily is not needed during a simulation run, where all variables are recomputed at every
step (along with biasing forces acting on them). However, when analyzing an existing trajectory a
call to update is generally required.

While in all typical cases all configuration of the variables is done with cv config or cv

configfile, a limited set of changes can be enacted at runtime using cv colvar <name>>
modifycvcs [args ...]. Each argument is a string passed to the function or functions that
are used to compute the variable, and are called colvar components, or CVCs (9.3.1). For example,
a variable DeltaZ made of a single distanceZ CVC can be made periodic with a period equal to
the unit cell dimension along the Z-axis:
cv colvar DeltaZ modifycvcs "period $Lz"
where $Lz is obtained outside Colvars.
This option is currently limited to changing the values of componentCoeff (see 9.3.15) and
componentExp (see 9.3.15) (e.g. to update the polynomial superposition parameters on the fly), of
period (see 9.3.13) and wrapAround (see 9.3.13), and of the forceNoPBC option for all components
that support it.

If the variable is computed using more than one CVC, it is possible to selectively turn some of
them on or off:
cv colvar xi cvcflags <flags>
where <flags> is a list of 0/1 values, one per component. This is useful for example when
Tcl script-based path collective variables in Cartesian coordinates (9.3.10) are used, to minimize

121

computational cost by disabling the computation of terms that are very close to zero.

Important: None of the changes enacted by modifycves or cvecflags will be saved to state
files, and will be lost when restarting a simulation, deleting the corresponding collective variable,
or resetting the module with cv reset.

Applying and analyzing forces on collective variables As soon as a collective variable is
up to date (during a MD run or after its update method has been called), forces can be applied to
it, e.g. as part of a custom restraint implemented by scriptedColvarForces (see 9.5.12):
cv colvar xi addforce $force
where $force is a scalar or a vector (depending on the type of variable xi) and is defined by
the user’s function. The force will be physically applied to the corresponding atoms during the
simulation after Colvars communicates all forces to the rest of NAMD. Until then, the total force
applied to xi from all biases can be retrieved by:
cv colvar xi getappliedforce
(see also the use of the outputAppliedForce (see 9.3.19) option).

To obtain the total force projected on the variable xi:
cv colvar xi gettotalforce
Note that not all types of variable support this option, and the value of the total force may not be
available immediately: see outputTotalForce (see 9.3.19) for more details.

See 9.6.2 for a complete list of scripting commands used to manage collective variables.

Managing collective variable biases Because biases depend only upon data internal to the
Colvars module (i.e. they do not need atomic coordinates from NAMD), it is generally easy to
create them or update their configuration at any time. For example, given the most current value
of the variable xi, an already-defined restraint on it named harmonic_xi can be updated as:

cv bias harmonic_xi update

Again, this is not generally needed during a running simulation, when an automat ic update of
each bias is already carried out.

Calling update for a bias is most useful for just-defined biases or when changing their config-
uration. When update is called e.g. as part of the function invoked by scriptedColvarForces
(see 9.5.12), it is executed before any biasing forces are applied to the variables, thus allowing
to modify them. This use of update is often used e.g. in the definition of custom bias-exchange
algorithms as part of the NAMD script. Because a bias is a relatively light-weight object, the
easiest way to change the configuration of an existing bias is deleting it and re-creating it:

Delete the restraint "harmonic xi"
cv bias harmonic_xi delete
Re-define it, but using an updated restraint center
cv config "harmonic {
name harmonic_xi
centers ${new_center}]

}

Now update it (based on the current value of "xi")
cv bias harmonic_xi update
It is also possible to make the change subject to a condition on the energy of the new bias:

122

cv bias harmonic_xi update
if { [cv bias harmonic xi energy] < ${E_accept} } {

}

Loading and saving the state of individual biases Some types of bias are history-dependent,
and the magnitude of their forces depends not only on the values of their corresponding variables,
but also on previous simulation history. It is thus useful to load information from a state file that
contains information specifically for one bias only, for example:
cv bias metadynamicsl load old.colvars.state
or alternatively, using the prefix of the file instead of its full name:
cv bias metadynamicsl load old
A corresponding save function is also available:
cv bias metadynamicsl save new
This pair of functions is also used internally by Colvars to implement e.g. multiple-walker metady-
namics (9.5.4), but they can be called from a scripted function to implement alternative coupling
schemes.

See 9.6.3 for a complete list of scripting commands used to manage biases.

9.2.4 Configuration syntax used by the Colvars module

All the parameters defining variables and their biasing or analysis algorithms are read from the
file specified by the configuration option colvarsConfig, or by the Tcl commands cv config and
cv configfile. None of the keywords described in the remainder of this manual are recognized
directly in the NAMD configuration file, unless as arguments of cv config. FEach configuration
line follows the format “keyword value”, where the keyword and its value are separated by any
white space. The following rules apply:

e keywords are case-insensitive (upperBoundary is the same as upperboundary and
UPPERBOUNDARY): their string values are however case-sensitive (e.g. file names);

e a long value, or a list of multiple values, can be distributed across multiple lines by using
curly braces, “{” and “}”: the opening brace “{” must occur on the same line as the keyword,
following a space character or other white space; the closing brace “}” can be at any position
after that; any keywords following the closing brace on the same line are not valid (they
should appear instead on a different line);

e many keywords are nested, and are only meaningful within a specific context: for every
keyword documented in the following, the “parent” keyword that defines such context is also
indicated in parentheses;

e the ‘=’ sign between a keyword and its value, deprecated in the NAMD main configuration
file, is not allowed;

e Tcl syntax is generally not available, but it is possible to use Tcl variables or bracket expansion
of commands within a configuration string, when this is passed via the command cv config

123

.. .; this is particularly useful when combined with parameter introspection (see 2.2.2), e.g.
cv config "colvarsTrajFrequency [DCDFreql";

e if a keyword requiring a boolean value (yes|on|true or noloff|false) is provided without
an explicit value, it defaults to ‘yes|on|true’; for example, ‘outputAppliedForce’ may be
used as shorthand for ‘outputAppliedForce on’;

e the hash character # indicates a comment: all text in the same line following this character
will be ignored.

9.2.5 Global keywords

The following keywords are available in the global context of the Colvars configuration, i.e. they
are not nested inside other keywords:

e colvarsTrajFrequency < Colvar value trajectory frequency >
Context: global
Acceptable Values: positive integer
Default Value: 100
Description: The values of each colvar (and of other related quantities, if requested)
are written to the file outputName.colvars.traj every these many steps throughout the
simulation. If the value is 0, such trajectory file is not written. For optimization the output
is buffered, and synchronized with the disk only when the restart file is being written.

e colvarsRestartFrequency < Colvar module restart frequency >
Context: global
Acceptable Values: positive integer
Default Value: NAMD parameter restartFreq
Description: The state file and any other output files produced by Colvars are written
every these many steps (the trajectory file is still written every colvarsTrajFrequency (see
9.2.5) steps). It is generally a good idea to leave this parameter at its default value, unless
needed for special cases or to disable automatic writing of output files altogether. Writing
can still be invoked at any time via the command cv save.

e indexFile < Index file for atom selection (GROMACS “ndx” format) >
Context: global
Acceptable Values: UNIX filename
Description: This option reads an index file (usually with a .ndx extension) as produced
by the make ndx tool of GROMACS. This keyword may be repeated to load multiple index
files. A group with the same name may appear multiple times, as long as it contains the same
indices in identical order each time: an error is raised otherwise. The names of index groups
contained in this file can then be used to define atom groups with the indexGroup keyword.
Other supported methods to select atoms are described in 9.4.

e smp < Whether SMP parallelism should be used >
Context: global
Acceptable Values: boolean
Default Value: on
Description: If this flag is enabled (default), SMP parallelism over threads will be used to
compute variables and biases, provided that this is supported by the NAMD build in use.

124

To illustrate the flexibility of the Colvars module, a non-trivial setup is represented in Figure 5.
The corresponding configuration is given below. The options within the colvar blocks are
described in 9.3, those within the harmonic and histogram blocks in 9.5. Note: except colvar,
none of the keywords shown is mandatory.

biases colvars components
e ~N e N s ™
distance “d,™
| atoms [1, 2] [3-5]
colvar “d” (C=1.0,p=1)
(dl i d2) H [13 ”
harmonic restraint: distance “d,”:
Yo K[(d-d,(0)2w,2 + atoms [7] [8-10]
(c-cy(0)Hw?] (C=-10,p=1)
. colvar “c” coord. num. “coord”:
> @) —® atoms [1-10] [11-20]
radius 6 A
histogram:
(alpha, c)
colvar “alpha” alpha helix “alpha”:

— -

(alpha) residues [1-10]

Figure 5: Graphical representation of a Colvars configuration. The colvar called “d” is defined as
the difference between two distances: the first distance (d;) is taken between the center of mass of
atoms 1 and 2 and that of atoms 3 to 5, the second (d2) between atom 7 and the center of mass
of atoms 8 to 10. The difference d = dy — ds is obtained by multiplying the two by a coefficient
C = +1 or C = —1, respectively. The colvar called “c” is the coordination number calculated
between atoms 1 to 10 and atoms 11 to 20. A harmonic restraint is applied to both d and ¢: to
allow using the same force constant K, both d and ¢ are scaled by their respective fluctuation
widths wg and w,.. A third colvar “alpha” is defined as the a-helical content of residues 1 to 10.
The values of “c” and “alpha” are also recorded throughout the simulation as a joint 2-dimensional
histogram.

colvar {
difference of two distances
name d
width 0.2 # 0.2 A of estimated fluctuation width
distance {
componentCoeff 1.0
groupl { atomNumbers 1 2 }
group2 { atomNumbers 3 4 5 }
¥
distance {
componentCoeff -1.0

125

groupl { atomNumbers 7 }
group2 { atomNumbers 8 9 10 }

}
}

colvar {
name ¢
coordNum {
cutoff 6.0
groupl { atomNumbersRange 1-10 }
group2 { atomNumbersRange 11-20 }

}
}

colvar {
name alpha
alpha {
psfSegID PROT
residueRange 1-10

}
}

harmonic {
colvars d c
centers 3.0 4.0
forceConstant 5.0

}

histogram {
colvars c alpha

}

Section 9.3 explains how to define a colvar and its behavior, regardless of its specific functional
form. To define colvars that are appropriate to a specific physical system, Section 9.4 documents
how to select atoms, and section 9.3 lists all of the available functional forms, which we call “colvar
components”. Finally, section 9.5 lists the available methods and algorithms to perform biased
simulations and multidimensional analysis of colvars.

9.2.6 Input state file

Because many of the methods implemented in Colvars are history-dependent, a state file is often
needed to continue a long simulation over consecutive runs. Such state file is written automatically
at the end of any simulation with Colvars, and contains data accumulated during that simulation
along with the step number at the end of it. The step number read from the state file is then used
to control such time-dependent biases: because of this essential role, the step number internal to
Colvars may not always match the step number reported by the MD program that carried during
the simulation (which may instead restart from zero each time). If a state file is not given, the

126

NAMD command firstTimestep may be used to control the Colvars step number.

Depending on the configuration, a state file may need to be loaded issued at the beginning of
a new simulation when time-dependent biasing methods are applied (moving restraints, metady-
namics, ABF, ...). When the Colvars module is initialized in NAMD, the colvarsInput keyword
can be used to give the name of the state file. After initialization, a state file may be loaded at
any time with the Tcl command cv load.

It is possible to load a state file even if the configuration has changed: for example, new variables
may be defined or restraints be added in between consecutive runs. For each newly defined variable
or bias, no information will be read from the state file if this is unavailable: such new objects will
remain uninitialized until the first compute step. Conversely, any information that the state file has
about variables or biases that are not defined any longer is silently ignored. Because these checks
are done by the names of variables or biases, it is the user’s responsibility to ensure that these are
consistent between runs.

9.2.7 Qutput files

During a simulation with collective variables defined, the following three output files are written:

e A state file, named outputName.colvars.state; this file is in ASCII (plain text) format,
regardless of the value of binaryOutput in the NAMD configuration. This file is written at
the end of the specified run, but can also be written at any time with the command cv save
(9.2.3).

This is the only Colvars output file needed to continue a simulation.

e If the parameter colvarsRestartFrequency (see 9.2.5) is larger than zero, a restart file is
written every that many steps: this file is fully equivalent to the final state file. The name of
this file is restartName.colvars.state.

e If the parameter colvarsTrajFrequency (see 9.2.5) is greater than 0 (default: 100), a trajec-
tory file is written during the simulation: its name is outputName.colvars.traj; unlike the
state file, it is not needed to restart a simulation, but can be used later for post-processing
and analysis.

Other output files may also be written by specific methods, e.g. the ABF or metadynamics
methods (9.5.2, 9.5.4). Like the trajectory file, they are needed only for analyzing, not continuing
a simulation. All such files’ names also begin with the prefix outputName.

Lastly, the total energy of all biases or restraints applied to the colvars appears under the
NAMD standard output, under the MISC column.

9.3 Defining collective variables

A collective variable is defined by the keyword colvar followed by its configuration options con-
tained within curly braces:

colvar {
name xi
<other options>
function name {
<parameters>

127

<atom selection>

}
}

There are multiple ways of defining a variable:

e The simplest and most common way way is using one of the precompiled functions (here
called “components”), which are listed in section 9.3.1. For example, using the keyword rmsd
(section 9.3.5) defines the variable as the root mean squared deviation (RMSD) of the selected
atoms.

e A new variable may also be constructed as a linear or polynomial combination of the compo-
nents listed in section 9.3.1 (see 9.3.15 for details).

e A user-defined mathematical function of the existing components (see list in section 9.3.1),
or of the atomic coordinates directly (see the cartesian keyword in 9.3.8). The function is
defined through the keyword customFunction (see 9.3.16) (see 9.3.16 for details).

e A user-defined Tcl function of the existing components (see list in section 9.3.1), or of the
atomic coordinates directly (see the cartesian keyword in 9.3.8). The function is provided
by a separate Tcl script, and referenced through the keyword scriptedFunction (see 9.3.17)
(see 9.3.17 for details).

Choosing a component (function) is the only parameter strictly required to define a collective
variable. It is also highly recommended to specify a name for the variable:

e name < Name of this colvar >
Context: colvar
Acceptable Values: string
Default Value: “colvar” + numeric id
Description: The name is an unique case-sensitive string which allows the Colvars module
to identify this colvar unambiguously; it is also used in the trajectory file to label to the
columns corresponding to this colvar.

9.3.1 Choosing a function

In this context, the function that computes a colvar is called a component. A component’s choice
and definition consists of including in the variable’s configuration a keyword indicating the type of
function (e.g. rmsd), followed by a definition block specifying the atoms involved (see 9.4) and any
additional parameters (cutoffs, “reference” values, ...). At least one component must be chosen to
define a variable: if none of the keywords listed below is found, an error is raised.

The following components implement functions with a scalar value (i.e. a real number):

e distance (see 9.3.2): distance between two groups;
e distanceZ (see 9.3.2): projection of a distance vector on an axis;
e distanceXY (see 9.3.2): projection of a distance vector on a plane;

e distancelnv (see 9.3.2): mean distance between two groups of atoms (e.g. NOE-based dis-
tance);

128

e angle (see 9.3.3): angle between three groups;

e dihedral (see 9.3.3): torsional (dihedral) angle between four groups;

e dipoleAngle (see 9.3.3): angle between two groups and dipole of a third group;
e dipoleMagnitude (see ??7) magnitude of the dipole of a group of atoms;

e polarTheta (see 9.3.3): polar angle of a group in spherical coordinates;

e polarPhi (see 9.3.3): azimuthal angle of a group in spherical coordinates;

e coordNum (see 9.3.4): coordination number between two groups;

e selfCoordNum (see 9.3.4): coordination number of atoms within a group;

e hBond (see 9.3.4): hydrogen bond between two atoms;

e rmsd (see 9.3.5): root mean square deviation (RMSD) from a set of reference coordinates;
e eigenvector (see 9.3.5): projection of the atomic coordinates on a vector;

e mapTotal (see 77): total value of a volumetric map;

e orientationAngle (see 9.3.6): angle of the best-fit rotation from a set of reference coordi-
nates;

e orientationProj (see 9.3.6): cosine of orientationProj (see 9.3.6);

e spinAngle (see 9.3.6): projection orthogonal to an axis of the best-fit rotation from a set of
reference coordinates;

e tilt (see 9.3.6): projection on an axis of the best-fit rotation from a set of reference coordi-
nates;

e gyration (see 9.3.5): radius of gyration of a group of atoms;

e inertia (see 9.3.5): moment of inertia of a group of atoms;

e inertiaZ (see 9.3.5): moment of inertia of a group of atoms around a chosen axis;
e alpha (see 9.3.7): a-helix content of a protein segment.

e dihedralPC (see 9.3.7): projection of protein backbone dihedrals onto a dihedral principal
component.

Some components do not return scalar, but vector values:
e distanceVec (see 9.3.2): distance vector between two groups (length: 3);
e distanceDir (see 9.3.2): unit vector parallel to distanceVec (length: 3);

e cartesian (see 9.3.8): vector of atomic Cartesian coordinates (length: N times the number
of Cartesian components requested, X, Y or Z);

e distancePairs (see 9.3.8): vector of mutual distances (length: N; x Na);

129

e orientation (see 9.3.6): best-fit rotation, expressed as a unit quaternion (length: 4).

The types of components used in a colvar (scalar or not) determine the properties of that colvar,
and particularly which biasing or analysis methods can be applied.

What if “X” is not listed? If a function type is not available on this list, it may be possible
to define it as a polynomial superposition of existing ones (see 9.3.15), a custom function (see
9.3.16), or a scripted function (see 9.3.17).

In the rest of this section, all available component types are listed, along with their physical
units and the ranges of values, if limited. Such limiting values can be used to define lowerBoundary
(see 9.3.18) and upperBoundary (see 9.3.18) in the parent colvar.

For each type of component, the available configurations keywords are listed: when two com-
ponents share certain keywords, the second component references to the documentation of the first
one that uses that keyword. The very few keywords that are available for all types of components
are listed in a separate section 9.3.12.

9.3.2 Distances

distance: center-of-mass distance between two groups. Thedistance {...} block defines
a distance component between the two atom groups, groupl and group?2.
List of keywords (see also 9.3.15 for additional options):

e groupl < First group of atoms >
Context: distance
Acceptable Values: Block groupl {...}
Description: First group of atoms.

e group2: analogous to groupl

e forceNoPBC < Calculate absolute rather than minimum-image distance? >
Context: distance
Acceptable Values: boolean
Default Value: no
Description: By default, in calculations with periodic boundary conditions, the distance
component returns the distance according to the minimum-image convention. If this parame-
ter is set to yes, PBC will be ignored and the distance between the coordinates as maintained
internally will be used. This is only useful in a limited number of special cases, e.g. to de-
scribe the distance between remote points of a single macromolecule, which cannot be split
across periodic cell boundaries, and for which the minimum-image distance might give the
wrong result because of a relatively small periodic cell.

e oneSiteTotalForce < Measure total force on group 1 only? >
Context: angle, dipoleAngle, dihedral
Acceptable Values: boolean
Default Value: no
Description: If this is set to yes, the total force is measured along a vector field (see
equation (61) in section 9.5.2) that only involves atoms of groupl. This option is only useful
for ABF, or custom biases that compute total forces. See section 9.5.2 for details.

130

The value returned is a positive number (in A), ranging from 0 to the largest possible interatomic
distance within the chosen boundary conditions (with PBCs, the minimum image convention is used
unless the forceNoPBC option is set).

distanceZ: projection of a distance vector on an axis. The distanceZ {...} block defines
a distance projection component, which can be seen as measuring the distance between two groups
projected onto an axis, or the position of a group along such an axis. The axis can be defined using
either one reference group and a constant vector, or dynamically based on two reference groups.
One of the groups can be set to a dummy atom to allow the use of an absolute Cartesian coordinate.
List of keywords (see also 9.3.15 for additional options):

e main < Main group of atoms >
Context: distanceZ
Acceptable Values: Block main {...}
Description: Group of atoms whose position r is measured.

e ref < Reference group of atoms >
Context: distanceZ
Acceptable Values: Block ref {...}
Description: Reference group of atoms. The position of its center of mass is noted
below.

e ref2 < Secondary reference group >
Context: distanceZ
Acceptable Values: Block ref2 {...}
Default Value: none
Description: Optional group of reference atoms, whose position 7o can be used to define
a dynamic projection axis: e = (||ro — 71|)™! x (r2 — r1). In this case, the origin is 7, =
1/2(r1 + 7r2), and the value of the component is e - (7 — 7p,).

e axis < Projection axis (A) >
Context: distanceZ
Acceptable Values: (x, y, z) triplet
Default Value: (0.0, 0.0, 1.0)
Description: The three components of this vector define a projection axis e for the distance
vector r — 71 joining the centers of groups ref and main. The value of the component is then
e - (r —r1). The vector should be written as three components separated by commas and
enclosed in parentheses.

e forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

e oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

This component returns a number (in A) whose range is determined by the chosen boundary
conditions. For instance, if the z axis is used in a simulation with periodic boundaries, the returned
value ranges between —b,/2 and b, /2, where b, is the box length along z (this behavior is disabled
if forceNoPBC is set).

131

distanceXY: modulus of the projection of a distance vector on a plane. The
distanceXY {...} block defines a distance projected on a plane, and accepts the same keywords
as the component distanceZ, i.e. main, ref, either ref2 or axis, and oneSiteTotalForce. It
returns the norm of the projection of the distance vector between main and ref onto the plane
orthogonal to the axis. The axis is defined using the axis parameter or as the vector joining ref
and ref2 (see distanceZ above).

List of keywords (see also 9.3.15 for additional options):

e main: see definition of main in sec. 9.3.2 (distanceZ component)

e ref: see definition of ref in sec. 9.3.2 (distanceZ component)

o ref2: see definition of ref2 in sec. 9.3.2 (distanceZ component)

e axis: see definition of axis in sec. 9.3.2 (distanceZ component)

e forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

e oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

distanceVec: distance vector between two groups. The distanceVec {...} block defines a
distance vector component, which accepts the same keywords as the component distance: groupl,
group2, and forceNoPBC. Its value is the 3-vector joining the centers of mass of group1 and group2.
List of keywords (see also 9.3.15 for additional options):

e groupl: see definition of groupl in sec. 9.3.2 (distance component)

group2: analogous to groupl

forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

distanceDir: distance unit vector between two groups. The distanceDir {...} block
defines a distance unit vector component, which accepts the same keywords as the component
distance: groupl, group2, and forceNoPBC. It returns a 3-dimensional unit vector d = (dy, dy, d>),
with |d| = 1.

List of keywords (see also 9.3.15 for additional options):

e groupl: see definition of groupl in sec. 9.3.2 (distance component)
e group2: analogous to groupl
e forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

e oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

132

distanceInv: mean distance between two groups of atoms. The distancelInv {...} block

defines a generalized mean distance between two groups of atoms 1 and 2, weighted with exponent
1/n:
—1/n

n] 1 1 "
2 = NNy Z <’d”H> (36)

1,

where ||d¥|| is the distance between atoms i and j in groups 1 and 2 respectively, and n is an even
integer.
List of keywords (see also 9.3.15 for additional options):

e groupl: see definition of groupl in sec. 9.3.2 (distance component)
e group2: analogous to groupl

e oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

e exponent < Exponent n in equation 36 >
Context: distancelnv
Acceptable Values: positive even integer
Default Value: 6
Description: Defines the exponent to which the individual distances are elevated before
averaging. The default value of 6 is useful for example to applying restraints based on NOE-
measured distances.

This component returns a number in A, ranging from 0 to the largest possible distance within the
chosen boundary conditions.

9.3.3 Angles

angle: angle between three groups. The angle {...} block defines an angle, and contains
the three blocks groupl, group2 and group3, defining the three groups. It returns an angle (in
degrees) within the interval [0 : 180].

List of keywords (see also 9.3.15 for additional options):

e groupl: see definition of groupl in sec. 9.3.2 (distance component)

e group2: analogous to groupl

group3d: analogous to groupl

forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

133

dipoleAngle: angle between two groups and dipole of a third group. The
dipoleAngle {...} block defines an angle, and contains the three blocks groupl, group2 and
group3, defining the three groups, being groupl the group where dipole is calculated. It returns
an angle (in degrees) within the interval [0 : 180].

List of keywords (see also 9.3.15 for additional options):

e groupl: see definition of groupl in sec. 9.3.2 (distance component)
e group2: analogous to groupl

e group3: analogous to groupl

forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

dihedral: torsional angle between four groups. The dihedral {...} block defines a tor-
sional angle, and contains the blocks group1, group2, group3 and group4, defining the four groups.
It returns an angle (in degrees) within the interval [—180 : 180]. The Colvars module calculates all
the distances between two angles taking into account periodicity. For instance, reference values for
restraints or range boundaries can be defined by using any real number of choice.

List of keywords (see also 9.3.15 for additional options):

e groupl: see definition of groupl in sec. 9.3.2 (distance component)

e group2: analogous to groupl

e group3: analogous to groupl

e group4: analogous to groupl

e forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

e oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

polarTheta: polar angle in spherical coordinates. The polarTheta {...} block defines the
polar angle in spherical coordinates, for the center of mass of a group of atoms described by the
block atoms. It returns an angle (in degrees) within the interval [0 : 180]. To obtain spherical
coordinates in a frame of reference tied to another group of atoms, use the fittingGroup (9.4.2)
option within the atoms block. An example is provided in file examples/11 polar_angles.in of
the Colvars public repository.

List of keywords (see also 9.3.15 for additional options):

e atoms < Atom group >
Context: polarPhi
Acceptable Values: atoms {...} block
Description: Defines the group of atoms for the COM of which the angle should be
calculated.

134

polarPhi: azimuthal angle in spherical coordinates. The polarPhi {...} block defines
the azimuthal angle in spherical coordinates, for the center of mass of a group of atoms described
by the block atoms. It returns an angle (in degrees) within the interval [—180 : 180]. The Colvars
module calculates all the distances between two angles taking into account periodicity. For instance,
reference values for restraints or range boundaries can be defined by using any real number of
choice. To obtain spherical coordinates in a frame of reference tied to another group of atoms,
use the fittingGroup (9.4.2) option within the atoms block. An example is provided in file
examples/11 _polar_angles.in of the Colvars public repository.

List of keywords (see also 9.3.15 for additional options):

e atoms < Atom group >
Context: polarPhi
Acceptable Values: atoms {...} block
Description: Defines the group of atoms for the COM of which the angle should be
calculated.

9.3.4 Contacts

coordNum: coordination number between two groups. The coordNum {...} block defines
a coordination number (or number of contacts), which calculates the function (1 — (d/dp)™)/(1 —
(d/dp)™), where dy is the “cutoff” distance, and n and m are exponents that can control its long
range behavior and stiffness [49]. This function is summed over all pairs of atoms in groupl and
group2:

C(groupl, group2) = Z Z ||:: —));]||//;l§))” (37)

i€groupl j Egroup2

List of keywords (see also 9.3.15 for additional options):
e groupl: see definition of groupl in sec. 9.3.2 (distance component)
e group2: analogous to groupl

e cutoff < “Interaction” distance (A) >
Context: coordNum
Acceptable Values: positive decimal
Default Value: 4.0
Description: This number defines the switching distance to define an interatomic contact:
for d < dyp, the switching function (1 — (d/dp)"™)/(1 — (d/dp)™) is close to 1, at d = dp it has
a value of n/m (1/2 with the default n and m), and at d > dj it goes to zero approximately
like d™~". Hence, for a proper behavior, m must be larger than n.

e cutoff3 < Reference distance vector (A) >
Context: coordNum
Acceptable Values: “(x, y, z)” triplet of positive decimals
Default Value: (4.0, 4.0, 4.0)
Description: The three components of this vector define three different cutoffs dy for each
direction. This option is mutually exclusive with cutoff.

e expNumer < Numerator exponent >
Context: coordNum

135

Acceptable Values: positive even integer
Default Value: 6
Description: This number defines the n exponent for the switching function.

expDenom < Denominator exponent >

Context: coordNum

Acceptable Values: positive even integer

Default Value: 12

Description: This number defines the m exponent for the switching function.

group2CenterOnly < Use only group2’s center of mass >

Context: coordNum

Acceptable Values: boolean

Default Value: off

Description: If this option is on, only contacts between each atoms in groupl and the
center of mass of group2 are calculated (by default, the sum extends over all pairs of atoms
in groupl and group2). If group2 is a dummyAtom, this option is set to yes by default.

tolerance < Pairlist control >

Context: coordNum

Acceptable Values: decimal

Default Value: 0.0

Description: This controls the pairlist feature, dictating the minimum value for each
summation element in Eq. 37 such that the pair that contributed the summation element is
included in subsequent simulation timesteps until the next pairlist recalculation. For most
applications, this value should be small (eg. 0.001) to avoid missing important contributions
to the overall sum. Higher values will improve performance by reducing the number of
pairs that contribute to the sum. Values above 1 will exclude all possible pair interactions.
Similarly, values below 0 will never exclude a pair from consideration. To ensure continuous
forces, Eq. 37 is further modified by subtracting the tolerance and then rescaling so that each
pair covers the range [0, 1].

pairListFrequency < Pairlist regeneration frequency >

Context: coordNum

Acceptable Values: positive integer

Default Value: 100

Description: This controls the pairlist feature, dictating how many steps are taken between
regenerating pairlists if the tolerance is greater than 0.

This component returns a dimensionless number, which ranges from approximately 0 (all in-

teratomic distances are much larger than the cutoff) to Ngroupt X Ngroup2 (all distances are less
than the cutoff), or Ngroup1 if group2CenterOnly is used. For performance reasons, at least one
of groupl and group2 should be of limited size or group2CenterOnly should be used: the cost of
the loop over all pairs grows as Ngroup1 X Ngroup2- Setting tolerance > 0 ameliorates this to some
degree, although every pair is still checked to regenerate the pairlist.

selfCoordNum: coordination number between atoms within a group. The selfCoordNum
{...} block defines a coordination number similarly to the component coordNum, but the function

136

is summed over atom pairs within groupi:

Clgrouwpt) = 3 le: ”xz—x;\/do (38)

i€groupl j>1i XZ o XJ‘/dO)

The keywords accepted by selfCoordNum are a subset of those accepted by coordNum, namely
groupl (here defining all of the atoms to be considered), cutoff, expNumer, and expDenom.
List of keywords (see also 9.3.15 for additional options):

e groupl: see definition of groupl in sec. 9.3.4 (coordNum component)

e cutoff: see definition of cutoff in sec. 9.3.4 (coordNum component)

e cutoff3: see definition of cutoff3 in sec. 9.3.4 (coordNum component)

e expNumer: see definition of expNumer in sec. 9.3.4 (coordNum component)

e expDenom: see definition of expDenom in sec. 9.3.4 (coordNum component)

e tolerance: see definition of tolerance in sec. 9.3.4 (coordNum component)

e pairListFrequency: see definition of pairListFrequency in sec. 9.3.4 (coordNum compo-
nent)

This component returns a dimensionless number, which ranges from approximately 0 (all inter-
atomic distances much larger than the cutoff) to Ngroupt X (Ngroupt — 1)/2 (all distances within the
cutoff). For performance reasons, groupl should be of limited size, because the cost of the loop
over all pairs grows as Ngroupl
hBond: hydrogen bond between two atoms. The hBond {...} block defines a hydrogen
bond, implemented as a coordination number (eq. 37) between the donor and the acceptor atoms.
Therefore, it accepts the same options cutoff (with a different default value of 3.3 A), expNumer
(with a default value of 6) and expDenom (with a default value of 8). Unlike coordNum, it requires
two atom numbers, acceptor and donor, to be defined. It returns an adimensional number, with
values between 0 (acceptor and donor far outside the cutoff distance) and 1 (acceptor and donor
much closer than the cutoff).

List of keywords (see also 9.3.15 for additional options):

e acceptor < Number of the acceptor atom >
Context: hBond
Acceptable Values: positive integer
Description: Number that uses the same convention as atomNumbers.

e donor: analogous to acceptor

e cutoff: see definition of cutoff in sec. 9.3.4 (coordNum component)
Note: default value is 3.3 A.

e expNumer: see definition of expNumer in sec. 9.3.4 (coordNum component)
Note: default value is 6.

e expDenom: see definition of expDenom in sec. 9.3.4 (coordNum component)
Note: default value is 8.

137

9.3.5 Collective metrics

rmsd: root mean square displacement (RMSD) from reference positions. The block
rmsd {...} defines the root mean square replacement (RMSD) of a group of atoms with respect

to a reference structure. For each set of coordinates {x1(t),x2(t),...xn(t)}, the colvar component
rmsd calculates the optimal rotation U B0} that best superimposes the coordinates {x;(¢)}
onto a set of reference coordinates {Xl(-ref)}. Both the current and the reference coordinates are
centered on their centers of geometry, Xcoq(t) and ngg). The root mean square displacement is
then defined as:

N
RMSD({xi(0)}, 5 0)) = 4| D [0 xal0) — xeosl0) — (0~ [30)
=1

The optimal rotation U {x:(")} =) is calculated within the formalism developed in reference [26],

(ref)
which guarantees a continuous dependence of U ()} —{x; } with respect to {x;(t)}.
List of keywords (see also 9.3.15 for additional options):

e atoms < Atom group >
Context: rmsd
Acceptable Values: atoms {...} block
Description: Defines the group of atoms of which the RMSD should be calculated. Optimal
fit options (such as refPositions and rotateReference) should typically NOT be set within
this block. Exceptions to this rule are the special cases discussed in the Advanced usage
paragraph below.

e refPositions < Reference coordinates >
Context: rmsd
Acceptable Values: space-separated list of (x, y, z) triplets
Description: This option (mutually exclusive with refPositionsFile) sets the reference
coordinates for RMSD calculation, and uses these to compute the roto-translational fit. It is
functionally equivalent to the option refPositions (see 9.4.2) in the atom group definition,
which also supports more advanced fitting options.

e refPositionsFile < Reference coordinates file >
Context: rmsd
Acceptable Values: UNIX filename
Description: This option (mutually exclusive with refPositions) sets the reference co-
ordinates for RMSD calculation, and uses these to compute the roto-translational fit. It
is functionally equivalent to the option refPositionsFile (see 9.4.2) in the atom group
definition, which also supports more advanced fitting options.

e refPositionsCol < PDB column containing atom flags >
Context: rmsd
Acceptable Values: 0, B, X, Y, or Z
Description: If refPositionsFile is a PDB file that contains all the atoms in the topology,
this option may be provided to set which PDB field is used to flag the reference coordinates
for atoms.

138

e refPositionsColValue < Atom selection flag in the PDB column >
Context: rmsd
Acceptable Values: positive decimal
Description: If defined, this value identifies in the PDB column refPositionsCol of the
file refPositionsFile which atom positions are to be read. Otherwise, all positions with a
non-zero value are read.

e atomPermutation < Alternate ordering of atoms for RMSD computation >
Context: rmsd
Acceptable Values: List of atom numbers
Description: If defined, this parameter defines a re-ordering (permutation) of the 1-based
atom numbers that can be used to compute the RMSD, typically due to molecular symmetry.
This parameter can be specified multiple times, each one defining a new permutation: the
returned RMSD value is the minimum over the set of permutations. For example, if the atoms
making up the group are 6, 7, 8, 9, and atoms 7, 8, and 9 are invariant by circular permutation
(as the hydrogens in a CH3 group), a symmetry-adapted RMSD would be obtained by adding:
atomPermutation 6 8 9 7
atomPermutation 6 9 7 8
Note that this does not affect the least-squares roto-translational fit, which is done using the
topology ordering of atoms, and the reference positions in the order provided. Therefore, this
feature is mostly useful when using custom fitting parameters within the atom group, such
as fittingGroup (see 9.4.2), or when fitting is disabled altogether.

This component returns a positive real number (in A).

Advanced usage of the rmsd component. In the standard usage as described above, the rmsd
component calculates a minimum RMSD, that is, current coordinates are optimally fitted onto the
same reference coordinates that are used to compute the RMSD value. The fit itself is handled
by the atom group object, whose parameters are automatically set by the rmsd component. For
very specific applications, however, it may be useful to control the fitting process separately from
the definition of the reference coordinates, to evaluate various types of non-minimal RMSD values.
This can be achieved by setting the related options (refPositions, etc.) explicitly in the atom
group block. This allows for the following non-standard cases:

1. applying the optimal translation, but no rotation (rotateReference off), to bias or restrain
the shape and orientation, but not the position of the atom group;

2. applying the optimal rotation, but no translation (centerReference off), to bias or restrain
the shape and position, but not the orientation of the atom group;

3. disabling the application of optimal roto-translations, which lets the RMSD component de-
scribe the deviation of atoms from fixed positions in the laboratory frame: this allows for
custom positional restraints within the Colvars module;

4. fitting the atomic positions to different reference coordinates than those used in the RMSD
calculation itself (by specifying refPositions (see 9.4.2) or refPositionsFile (see 9.4.2)
within the atom group as well as within the rmsd block);

139

5. applying the optimal rotation and/or translation from a separate atom group, defined through
fittingGroup: the RMSD then reflects the deviation from reference coordinates in a separate,
moving reference frame (see example in the section on fittingGroup (see 9.4.2)).

eigenvector: projection of the atomic coordinates on a vector. The block
eigenvector {...} defines the projection of the coordinates of a group of atoms (or more pre-
cisely, their deviations from the reference coordinates) onto a vector in R3*, where n is the number
of atoms in the group. The computed quantity is the total projection:

p{x (0} D) = 3o v (UG(1) = xeog (1) = (3 = x5, (40)
=1

where, as in the rmsd component, U is the optimal rotation matrix, Xc.g(t) and chg) are the

centers of geometry of the current and reference positions respectively, and v; are the components
of the vector for each atom. Example choices for (v;) are an eigenvector of the covariance matrix
(essential mode), or a normal mode of the system. It is assumed that), v; = 0: otherwise, the
Colvars module centers the v; automatically when reading them from the configuration.

List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

e refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

e refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)
e refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

e refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

e vector < Vector components >
Context: eigenvector
Acceptable Values: space-separated list of (x, y, z) triplets
Description: This option (mutually exclusive with vectorFile) sets the values of the
vector components.

e vectorFile < file containing vector components >
Context: eigenvector
Acceptable Values: UNIX filename
Description: This option (mutually exclusive with vector) sets the name of a coordinate
file containing the vector components; the file is read according to the same format used for
refPositionsFile. For a PDB file specifically, the components are read from the X, Y and
7Z fields. Note: The PDB file has limited precision and fized-point numbers: in some cases,
the vector components may not be accurately represented; a XYZ file should be used instead,
containing floating-point numbers.

e vectorCol < PDB column used to flag participating atoms >
Context: eigenvector
Acceptable Values: 0 or B
Description: Analogous to atomsCol.

140

e vectorColValue < Value used to flag participating atoms in the PDB file >
Context: eigenvector
Acceptable Values: positive decimal
Description: Analogous to atomsColValue.

e differenceVector < The 3n-dimensional vector is the difference between vector and
refPositions >
Context: eigenvector
Acceptable Values: boolean
Default Value: off

Description: If this option is on, the numbers provided by vector or vectorFile are

/

interpreted as another set of positions, x}: the vector v; is then defined as v; = <xi — XZ(-ref)>.

This allows to conveniently define a colvar £ as a projection on the linear transformation
between two sets of positions, “A” and “B”. For convenience, the vector is also normalized so
that £ = 0 when the atoms are at the set of positions “A” and £ = 1 at the set of positions
“B?’ .

This component returns a number (in A), whose value ranges between the smallest and largest abso-
lute positions in the unit cell during the simulations (see also distanceZ). Due to the normalization
in eq. 40, this range does not depend on the number of atoms involved.

gyration: radius of gyration of a group of atoms. The block gyration {...} defines the pa-
rameters for calculating the radius of gyration of a group of atomic positions {x1(t),x2(t),...xn(t)}
with respect to their center of geometry, Xcog(%):

1 &)
ngr = N Z |Xi (t) - Xcog(t)| (41)
=1

This component must contain one atoms {...} block to define the atom group, and returns a
positive number, expressed in A.
List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

inertia: total moment of inertia of a group of atoms. The block inertia {...} de-
fines the parameters for calculating the total moment of inertia of a group of atomic positions
{x1(t),x2(t),...xn(t)} with respect to their center of geometry, Xcog(t):

1= 3 [xilt) — Xeog(1)] (42)

Note that all atomic masses are set to 1 for simplicity. This component must contain one
atoms {...} block to define the atom group, and returns a positive number, expressed in A2,
List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

141

dipoleMagnitude: dipole magnitude of a group of atoms. The dipoleMagnitude {...}
block defines the dipole magnitude of a group of atoms (norm of the dipole moment’s vector),
being atoms the group where dipole magnitude is calculated. It returns the magnitude in elementary
charge e times A.

List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

inertiaZ: total moment of inertia of a group of atoms around a chosen axis. The
block inertiaZ {...} defines the parameters for calculating the component along the axis e of
the moment of inertia of a group of atomic positions {xj(t),x2(t),...xn(¢)} with respect to their
center of geometry, Xcog(t):

N
Ie = Y ((xi(t) = Xeog(t)) -) (43)
=1

Note that all atomic masses are set to 1 for simplicity. This component must contain one
atoms {...} block to define the atom group, and returns a positive number, expressed in A2,
List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

e axis < Projection axis (A) >
Context: inertiaZ
Acceptable Values: (x, y, z) triplet
Default Value: (0.0, 0.0, 1.0)
Description: The three components of this vector define (when normalized) the projection
axis e.

9.3.6 Rotations

orientation: orientation from reference coordinates. The block orientation {...} re-
turns the same optimal rotation used in the rmsd component to superimpose the coordinates {x;(t)}

. ref . .
onto a set of reference coordinates {x§)}. Such component returns a four dimensional vector

q = (40, q1, G2, g3), With >_; g2 = 1; this quaternion expresses the optimal rotation {x;(t)} — {Xgref)}
according to the formalism in reference [26]. The quaternion (qo, q1, 42, ¢3) can also be written as
(cos(0/2), sin(6/2)u), where 0 is the angle and u the normalized axis of rotation; for example,
a rotation of 90° around the z axis is expressed as “(0.707, 0.0, 0.0, 0.707)”. The script
quaternion2rmatrix.tcl provides Tcl functions for converting to and from a 4 x 4 rotation ma-
trix in a format suitable for usage in VMD.

As for the component rmsd, the available options are atoms, refPositionsFile,
refPositionsCol and refPositionsColValue, and refPositions.

Note: refPositionsand refPositionsFile define the set of positions from which the optimal
rotation is calculated, but this rotation is not applied to the coordinates of the atoms involved: it
is used instead to define the variable itself.

List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

e refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

142

refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)

refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

closestToQuaternion < Reference rotation >

Context: orientation

Acceptable Values: “(q0, g1, g2, g3)” quadruplet

Default Value: (1.0, 0.0, 0.0, 0.0) (“null” rotation)

Description: Between the two equivalent quaternions (qo,q1,92,93) and
(—qo, —q1, —q2,—q3), the closer to (1.0, 0.0, 0.0, 0.0) is chosen. This simplifies
the visualization of the colvar trajectory when sampled values are a smaller subset of all
possible rotations. Note: this only affects the output, never the dynamics.

Tip: stopping the rotation of a protein. To stop the rotation of an elongated macro-
molecule in solution (and use an anisotropic box to save water molecules), it is possible to define
a colvar with an orientation component, and restrain it through the harmonic bias around the
identity rotation, (1.0, 0.0, 0.0, 0.0). Only the overall orientation of the macromolecule is
affected, and not its internal degrees of freedom. The user should also take care that the macro-
molecule is composed by a single chain, or disable wrapAll otherwise.

orientationAngle: angle of rotation from reference coordinates. The block
orientationAngle {...} accepts the same base options as the component orientation: atoms,
refPositions, refPositionsFile, refPositionsCol and refPositionsColValue. The returned
value is the angle of rotation 6 between the current and the reference positions. This angle is
expressed in degrees within the range [0°:180°].

List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

e refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

e refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)

e refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

e refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-

ponent)

orientationProj: cosine of the angle of rotation from reference coordinates. The block
orientationProj { . } accepts the same base options as the component orientation: atoms,
refPositions, refPositionsFile, refPositionsCol and refPositionsColValue. The returned
value is the cosine of the angle of rotation 6 between the current and the reference positions. The
range of values is [-1:1].

List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

e refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

143

e refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)
e refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

e refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

spinAngle: angle of rotation around a given axis. The complete rotation described by
orientation can optionally be decomposed into two sub-rotations: one is a “spin” rotation around
e, and the other a “#ilt” rotation around an axis orthogonal to e. The component spinAngle
measures the angle of the “spin” sub-rotation around e.

List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

e refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

e refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)
e refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

e refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

e axis < Special rotation axis (A) >
Context: tilt
Acceptable Values: (x, y, z) triplet
Default Value: (0.0, 0.0, 1.0)
Description: The three components of this vector define (when normalized) the special
rotation axis used to calculate the tilt and spinAngle components.

The component spinAngle returns an angle (in degrees) within the periodic interval [—180 : 180].
Note: the value of spinAngle is a continuous function almost everywhere, with the exception
of configurations with the corresponding “tilt” angle equal to 180° (i.e. the tilt component is
equal to —1): in those cases, spinAngle is undefined. If such configurations are expected, consider
defining a tilt colvar using the same axis e, and restraining it with a lower wall away from —1.

tilt: cosine of the rotation orthogonal to a given axis. The component tilt measures
the cosine of the angle of the “tilt” sub-rotation, which combined with the “spin” sub-rotation
provides the complete rotation of a group of atoms. The cosine of the tilt angle rather than the tilt
angle itself is implemented, because the latter is unevenly distributed even for an isotropic system:
consider as an analogy the angle # in the spherical coordinate system. The component tilt relies
on the same options as spinAngle, including the definition of the axis e. The values of tilt are
real numbers in the interval [—1 : 1]: the value 1 represents an orientation fully parallel to e (tilt
angle = 0°), and the value —1 represents an anti-parallel orientation.

List of keywords (see also 9.3.15 for additional options):

e atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

e refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

144

e refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)
e refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

e refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

e axis: see definition of axis in sec. 9.3.6 (spinAngle component)

9.3.7 Protein structure descriptors

alpha: a-helix content of a protein segment. The block alpha {...} defines the parameters
to calculate the helical content of a segment of protein residues. The a-helical content across the
N + 1 residues Ny to Ng + N is calculated by the formula:

a (C&NO)’ O(No)7 C&NO+1), O(NoJrl)7 o N(No+5), CgNO+5), O(NO+5), o 1\](1\70+N)7 CgN0+N)) _ (44)
1 No+N-2 1 No+N—-4
s (n) (n+1) (n+2) s (n) (n+4)
T > angf (CU, 4, C) 4 =5 > f (00, N,
n=DNp n=~Ny
(45)

where the score function for the C, — C, — C, angle is defined as:

2
1= (0(C,), el —6y) "/ (Abio)?

angf (C&"), C) (46)

4
1= (6(CE”, 8D, cl*) — 05) / (A0ha)’

and the score function for the O™ « N4 hydrogen bond is defined through a hBond colvar
component on the same atoms.
List of keywords (see also 9.3.15 for additional options):

e residueRange < Potential a-helical residues >
Context: alpha
Acceptable Values: “<Initial residue number>-<Final residue number>"
Description: This option specifies the range of residues on which this component should
be defined. The Colvars module looks for the atoms within these residues named “CA”, “N”
and “0”, and raises an error if any of those atoms is not found.

e psfSegID < PSF segment identifier >
Context: alpha
Acceptable Values: string (max 4 characters)
Description: This option sets the PSF segment identifier for the residues specified in
residueRange. This option is only required when PSF topologies are used.

e hBondCoeff < Coefficient for the hydrogen bond term >
Context: alpha
Acceptable Values: positive between 0 and 1
Default Value: 0.5
Description: This number specifies the contribution to the total value from the hydrogen
bond terms. 0 disables the hydrogen bond terms, 1 disables the angle terms.

145

e angleRef < Reference C, — C, — C, angle >
Context: alpha
Acceptable Values: positive decimal
Default Value: 88°
Description: This option sets the reference angle used in the score function (46).

e angleTol < Tolerance in the C, — C, — C, angle >
Context: alpha
Acceptable Values: positive decimal
Default Value: 15°
Description: This option sets the angle tolerance used in the score function (46).

e hBondCutoff < Hydrogen bond cutoff >
Context: alpha
Acceptable Values: positive decimal
Default Value: 3.3 A
Description: Equivalent to the cutoff option in the hBond component.

e hBondExpNumer < Hydrogen bond numerator exponent >
Context: alpha
Acceptable Values: positive integer
Default Value: 6
Description: Equivalent to the expNumer option in the hBond component.

e hBondExpDenom < Hydrogen bond denominator exponent >
Context: alpha
Acceptable Values: positive integer

Default Value: 8
Description: Equivalent to the expDenom option in the hBond component.

This component returns positive values, always comprised between 0 (lowest a-helical score)
and 1 (highest a-helical score).

dihedralPC: protein dihedral principal component The block dihedralPC {...} de-
fines the parameters to calculate the projection of backbone dihedral angles within a pro-
tein segment onto a dihedral principal component, following the formalism of dihedral princi-
pal component analysis (dPCA) proposed by Mu et al.[79] and documented in detail by Al-
tis et al.[2]. Given a peptide or protein segment of N residues, each with Ramachandran
angles ¢; and v;, dPCA rests on a variance/covariance analysis of the 4(N — 1) variables
cos(1n), sin()1), cos(p2), sin(pe) - - - cos(pn), sin(¢pn). Note that angles ¢1 and ¢ have little impact
on chain conformation, and are therefore discarded, following the implementation of dPCA in the
analysis software Carma.[39]

For a given principal component (eigenvector) of coefficients (ki)1§i§4(N-1), the projection of
the current backbone conformation is:

N-1
5 = Z k4n—3 COS(ﬂ)n) + k4n—2 Sin(d]n) + k4n—l COS(an—&-l) + k4n Sin(¢n+1) (47)

n=1

146

dihedralPC expects the same parameters as the alpha component for defining the relevant
residues (residueRange and psfSegID) in addition to the following:
List of keywords (see also 9.3.15 for additional options):

e residueRange: see definition of residueRange in sec. 9.3.7 (alpha component)
e psfSegID: see definition of psfSegID in sec. 9.3.7 (alpha component)

e vectorFile < File containing dihedral PCA eigenvector(s) >
Context: dihedralPC
Acceptable Values: file name
Description: A text file containing the coefficients of dihedral PCA eigenvectors on the
cosine and sine coordinates. The vectors should be arranged in columns, as in the files output
by Carma.[39]

e vectorNumber < File containing dihedralPCA eigenvector(s) >
Context: dihedralPC
Acceptable Values: positive integer
Description: Number of the eigenvector to be used for this component.

9.3.8 Raw data: building blocks for custom functions

cartesian: vector of atomic Cartesian coordinates. The cartesian {...} block defines a
component returning a flat vector containing the Cartesian coordinates of all participating atoms,
in the order (z1,y1,21,"* ,Tn, Yn, 2n)-

List of keywords (see also 9.3.15 for additional options):

e atoms < Group of atoms >
Context: cartesian
Acceptable Values: Block atoms {...}
Description: Defines the atoms whose coordinates make up the value of the component.
If rotateReference or centerReference are defined, coordinates are evaluated within the
moving frame of reference.

distancePairs: set of pairwise distances between two groups. The distancePairs {...}
block defines a N7 x No-dimensional variable that includes all mutual distances between the atoms
of two groups. This can be useful, for example, to develop a new variable defined over two groups,
by using the scriptedFunction feature.

List of keywords (see also 9.3.15 for additional options):

e groupl: see definition of groupl in sec. 9.3.2 (distance component)
e group2: analogous to groupl
e forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

This component returns a N7 X Ns-dimensional vector of numbers, each ranging from 0 to the
largest possible distance within the chosen boundary conditions.

147

9.3.9 Geometric path collective variables

The geometric path collective variables define the progress along a path, s, and the distance from
the path, z. These CVs are proposed by Leines and Ensing[63] , which differ from that[12] proposed
by Branduardi et al., and utilize a set of geometric algorithms. The path is defined as a series of
frames in the atomic Cartesian coordinate space or the CV space. s and z are computed as

m 1 (wvl v3)? — [valP(viP2 = [va]>) = (vi-vs) 1) (48)

- 4
T M T oM Vs 2

2 |vs|?

where vi = s, — z is the vector connecting the current position to the closest frame, vo =
Z — Sp;,—1 is the vector connecting the second closest frame to the current position, vy = s, 11 — Sp,
is the vector connecting the closest frame to the third closest frame, and v4 = s, — 8,1 is the
vector connecting the second closest frame to the closest frame. m and M are the current index
of the closest frame and the total number of frames, respectively. If the current position is on the
left of the closest reference frame, the + in s turns to the positive sign. Otherwise it turns to the
negative sign.

The equations above assume: (i) the frames are equidistant and (ii) the second and the third
closest frames are neighbouring to the closest frame. When these assumptions are not satisfied,
this set of path CV should be used carefully.

gspath: progress along a path defined in atomic Cartesian coordinate space. In the
gspath {...} and the gzpath {...} block all vectors, namely z and s; are defined in atomic
Cartesian coordinate space. More specifically, z = [r1, - ,r,], where r; is the i-th atom specified
in the atoms block. sy = [ry 1, , T ,], where ry; means the i-th atom of the k-th reference frame.
List of keywords (see also 9.3.15 for additional options):

e atoms < Group of atoms >
Context: gspath and gzpath
Acceptable Values: Block atoms {...}
Description: Defines the atoms whose coordinates make up the value of the component.

e refPositionsCol < PDB column containing atom flags >
Context: gspath and gzpath
Acceptable Values: 0, B, X, Y, or Z
Description: If refPositionsFileN is a PDB file that contains all the atoms in the
topology, this option may be provided to set which PDB field is used to flag the reference
coordinates for atoms.

e refPositionsFileN < File containing the reference positions for fitting >
Context: gspath and gzpath
Acceptable Values: UNIX filename
Description: The path is defined by multiple refPositionsFiles which are similiar to
refPositionsFile in the rmsd CV. If your path consists of 10 nodes, you can list the coor-
dinate file (in PDB or XYZ format) from refPositionsFilel to refPositionsFile10.

148

e useSecondClosestFrame < Define s,,_1 as the second closest frame? >
Context: gspath and gzpath
Acceptable Values: boolean
Default Value: on
Description: The definition assumes the second closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on (default), s,,—; is defined as the second closest frame. If this option is set to off, s,,_1 is
defined as the left or right neighbouring frame of the closest frame.

e useThirdClosestFrame < Define s,,4+1 as the third closest frame? >
Context: gspath and gzpath
Acceptable Values: boolean
Default Value: off
Description: The definition assumes the third closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on, Sy,+1 is defined as the third closest frame. If this option is set to off (default), sp,4+1 is
defined as the left or right neighbouring frame of the closest frame.

e fittingAtoms < The atoms that are used for alignment >
Context: gspath and gspath
Acceptable Values: Group of atoms
Description: Before calculating vy, va, vs and vy, the current frame need to be aligned
to the corresponding reference frames. This option specifies which atoms are used to do
alignment.

gzpath: distance from a path defined in atomic Cartesian coordinate space. List of
keywords (see also 9.3.15 for additional options):

e useZsquare < Compute 22 instead of z >
Context: gzpath
Acceptable Values: boolean
Default Value: off
Description: z is not differentiable when it is zero. This implementation workarounds it
by setting the derivative of z to zero when z = 0. Another workaround is set this option to
on, which computes 22 instead of z, and then 22 is differentiable when it is zero.

The usage of gzpath and gspath is illustrated below:

colvar {
Progress along the path
name gs
The path is defined by 5 reference frames (from string-00.pdb to
string-04.pdb)
Use atomic coordinate from atoms 1, 2 and 3 to compute the path
gspath {
atoms {atomnumbers { 1 2 3 }}
refPositionsFilel string-00.pdb
refPositionsFile2 string-01.pdb

149

refPositionsFile3 string-02.pdb
refPositionsFile4 string-03.pdb
refPositionsFileb string-04.pdb

}
}

colvar {
Distance from the path
name gz
The path is defined by 5 reference frames (from string-00.pdb to
string-04.pdb)
Use atomic coordinate from atoms 1, 2 and 3 to compute the path
gzpath {
atoms {atomnumbers { 1 2 3 }}
refPositionsFilel string-00.pdb
refPositionsFile2 string-01.pdb
refPositionsFile3 string-02.pdb
refPositionsFile4 string-03.pdb
refPositionsFileb string-04.pdb

linearCombination: Helper CV to define a linear combination of other CVs This is a
helper CV which can be defined as a linear combination of other CVs. It maybe useful when you
want to define the gspathCV {...} and the gzpathCV {...} as combinations of other CVs.

gspathCV: progress along a path defined in CV space. In the gspathCV {...} and the
gzpathCV {...} block all vectors, namely z and s; are defined in CV space. More specifically,
z = &, , &), where & is the i-th CV. s = [{41,- -+ , &k nl, Where &, ; means the i-th CV of the
k-th reference frame. It should be note that these two CVs requires the pathFile option, which
specifies a path file. Each line in the path file contains a set of space-seperated CV value of the
reference frame. The sequence of reference frames matches the sequence of the lines.

List of keywords (see also 9.3.15 for additional options):

e useSecondClosestFrame < Define s,,_1 as the second closest frame? >
Context: gspathCV and gzpathCV
Acceptable Values: boolean
Default Value: on
Description: The definition assumes the second closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on (default), s,,,—1 is defined as the second closest frame. If this option is set to off, s,,_1 is
defined as the left or right neighbouring frame of the closest frame.

e useThirdClosestFrame < Define s,,41 as the third closest frame? >
Context: gspathCV and gzpathCV
Acceptable Values: boolean
Default Value: off
Description: The definition assumes the third closest frame is neighbouring to the closest

150

frame. This is not always true especially when the path is crooked. If this option is set to
on, S;,+1 is defined as the third closest frame. If this option is set to off (default), s,,+1 is
defined as the left or right neighbouring frame of the closest frame.

e pathFile < The file name of the path file. >

Context: gspathCV and gzpathCV

Acceptable Values: UNIX filename

Description: Defines the nodes or images that constitutes the path in CV space. The CVs
of an image are listed in a line of pathFile using space-seperated format. Lines from top to
button in pathFile corresponds images from initial to last.

gzpathCV: distance from a path defined in CV space. List of keywords (see also 9.3.15
for additional options):

e useZsquare < Compute z? instead of z >

Context: gzpathCV

Acceptable Values: boolean

Default Value: off

Description: =z is not differentiable when it is zero. This implementation workarounds it
by setting the derivative of z to zero when z = 0. Another workaround is set this option to
on, which computes 22 instead of z, and then z? is differentiable when it is zero.

The usage of gzpathCV and gspathCV is illustrated below:

colvar {
Progress along the path
name gs
Path defined by the CV space of two dihedral angles
gspathCV {
pathFile ./path.txt
dihedral {

}

name 001

groupl {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

dihedral {

}
}
}

name 002

groupl {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

colvar {
Distance from the path

151

name gz
gzpathCV {
pathFile ./path.txt
dihedral {
name 001
groupl {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}
}
dihedral {
name 002
groupl {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

9.3.10 Arithmetic path collective variables

The arithmetic path collective variable in CV space uses the same formula as the one proposed by
Branduardi[12] et al., except that it computes s and z in CV space instead of RMSDs in Cartesian
space. Moreover, this implementation allows different coefficients for each CV components as
described in [59]. Assuming a path is composed of N reference frames and defined in an M-
dimensional CV space, then the equations of s and z of the path are

S viexp (<A ¢ (@) - 2i,)°)
Z 1exp(AZ] 1 J(xw)Q)

N

z = —iln Zexp)\Zc — % j) (51)

i=1

S =

(50)

where ¢; is the coefficient(weight) of the j-th CV, x; ; is the value of j-th CV of i-th reference frame
and z; is the value of j-th CV of current frame. A is a parameter to smooth the variation of s and
z.

aspathCV: progress along a path defined in CV space. This colvar component computes
the s variable.
List of keywords (see also 9.3.15 for additional options):

e weights < Coefficients of the collective variables >
Context: aspathCV and azpathCV
Acceptable Values: space-separated numbers in a {. ..} block
Default Value: {1.0 ...}

152

Description: Define the coefficients. The j-th value in the {...} block corresponds the c;
in the equations.

e lambda < Smoothness of the variation of s and z >
Context: aspathCV and azpathCV
Acceptable Values: decimal
Default Value: inverse of the mean square displacements of successive reference frames
Description: The value of X in the equations.

e pathFile < The file name of the path file. >
Context: aspathCV and azpathCV
Acceptable Values: UNIX filename
Description: Defines the nodes or images that constitutes the path in CV space. The CVs
of an image are listed in a line of pathFile using space-seperated format. Lines from top to
button in pathFile corresponds images from initial to last.

azpathCV: distance from a path defined in CV space. This colvar component computes the
z variable. Options are the same as in 9.3.10.
The usage of azpathCV and aspathCV is illustrated below:

colvar {
Progress along the path
name as
Path defined by the CV space of two dihedral angles
aspathCV {

pathFile ./path.txt
weights {1.0 1.0}
lambda 0.005
dihedral {
name 001
groupl {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}
}
dihedral {
name 002
groupl {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}
}

colvar {
Distance from the path
name az

153

azpathCV {

pathFile ./path.txt

weights {1.0 1.0}

lambda 0.005

dihedral {
name 001
groupl {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}

dihedral {
name 002
groupl {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

Path collective variables in Cartesian coordinates The path collective variables defined by
Branduardi et al. [12] are based on RMSDs in Cartesian coordinates. Noting d; the RMSD between
the current set of Cartesian coordinates and those of image number ¢ of the path:

s — 1 Zz]il(z —1)exp (_/\d%) (52)

N-1 Zij\il exp (_)‘dzz)

1 N
2= In (Z exp(—Ad?)) (53)
i=1

where) is the smoothing parameter.

These coordinates are implemented as Tcl-scripted combinations of rmsd components. The
implementation is available as file colvartools/pathCV.tcl, and an example is provided in file
examples/10_pathCV.namd of the Colvars public repository. It implements an optimization pro-
cedure, whereby the distance to a given image is only calculated if its contribution to the sum is
larger than a user-defined tolerance parameter. All distances are calculated every freq timesteps
to update the list of nearby images.

9.3.11 Volumetric map-based variables

Volumetric maps of the Cartesian coordinates, typically defined as mesh grid along the three Carte-
sian axes, may be used to define collective variables. This feature is currently available in NAMD,
implemented as an interface between Colvars and GridForces (see section 8). Please cite [34] when
using this implementation of collective variables based on volumetric maps.

154

mapTotal: total value of a volumetric map Given a function of the Cartesian coordinates
o(x) = ¢(x,y,z), a mapTotal collective variable component ®(X) is defined as the sum of the
values of the function ¢(x) evaluated at the coordinates of each atom, x;:

N
O(X) = o(xi) (54)
=1

This formulation allows, for example, to “count” the number of atoms within a region of space
by using a positive-valued function ¢(x), such as for example the number of water molecules in a
hydrophobic cavity [34].

Because the volumetric map itself and the atoms affected by it are defined externally to Colvars,
this component has a very limited number of keywords. List of keywords (see also 9.3.15 for
additional options):

e mapName < Specify the name of the volumetric map to use as a colvar >
Context: mapTotal
Acceptable Values: string
Description: The value of this option specifies the label of the volumetric map to use for
this collective variable component. This label must identify a map already loaded in NAMD
via mGridForcePotFile, and its value of mGridForceScale needs to be set to (0, 0, 0), so
that its collective force can be computed dynamically.

Example: biasing the number of molecules inside a cavity using a volumetric map.

Firstly, a volumetric map that has a value of 1 inside the cavity and 0 outside should be
prepared. A reasonable starting point may be obtained, for example, with VMD: using an
existing trajectory where the cavity is occupied by solvent and a spatial selection that identifies
all the molecules within the cavity, volmap occupancy -allframes -combine max computes
the occupancy map as a step function (values 1 or 0), and volutil -smooth ... makes it a
continuous map, suitable for use as a MD simulation bias. A PDB file defining the selection
(for example, where all water oxygens and ions have an occupancy of 1 and other atoms 0) is
also prepared using VMD. Both the map file and the atom selection file are then loaded via the
mGridForcePotFile and related NAMD commands:

mGridForce yes
mGridForcePotFile Cavity cavity.dx # OpenDX map file
mGridForceFile Cavity water-sel.pdb # PDB file used for atom selection

mGridForceCol Cavity O # Use the occupancy column of the PDB file
mGridForceChargeCol Cavity O # Use occ. again (default: electrostatic
charge)

mGridForceScale Cavity 0.0 0.0 0.0 # Do not use GridForces for this map

The value of mGridForceScale is particularly important, because it determines the GridForces
force constant for the “Cavity” map. A non-zero value enables a conventional GridForces
calculation, where the force constant remains fixed within each run command and the forces on
the atoms depend only on their positions in space. However, setting mGridForceScale to zero
signals to NAMD that the force acting through the volumetric map may be computed dynamically,
as part of a collective-variable biasing scheme. To do so, the map labeled “Cavity” needs to be

155

referred to in the Colvars configuration:

cv config "
colvar {
name n_waters
mapTotal {
mapName Cavity # Same label as the GridForce map

}
}n

The variable “n_waters” may then be used with any of the enhanced sampling methods available
(9.5): new forces applied to it at each simulation step will be transmitted to the corresponding
atoms within the same step.

Multiple volumetric maps collective variables To study processes that involve changes in
shape of a macromolecular aggregate (for example, deformations of lipid membranes) it is useful to
define collective variables based on more than one volumetric map at a time, measuring the relative
similarity with each map while still achieving correct thermodynamic sampling of each state.

This is achieved by combining multiple mapTotal components, each based on a differently-
shaped volumetric map, into a single collective variable £. To track transitions between states, the
contribution of each map to £ should be discriminated from the others, for example by assigning to it
a different weight. The “Multi-Map” progress variable [34] uses a weight sum of these components,
using linearly-increasing weights:

=

K N

EX) =) Bp(X) =D k> drlxi) (55)
k=1 =1

k=1

where K is the number of maps employed and each @y, is a mapTotal component.

Example: transitions between macromolecular shapes using volumetric maps.
A series of map files, each representing a different shape, is loaded into NAMD:
mGridForce yes
for { set k1 } { $k <= $K } { incr k } {

mGridForcePotFile Shape _$k map_$k.dx # Density map of the k-th state

}

and these are then used to define a multiple-map collective variable:
Collect the definition of all components into one string
set components "'
for { set k1 } { $k <= $K } { incr k } {
set components "${components}
mapTotal {
mapName Shape_$k
componentCoeff $k

}

}

156

Use this string to define the variable
cv config "
colvar {

name shapes

${components}

}n

The above example illustrates a use case where a weighted sum (i.e. a linear combination)
is used to define a single variable from multiple components. Depending on the problem under
study, non-linear functions may be more appropriate. These may be defined a custom functions if
implemented (see 9.3.16), or scripted functions (see 9.3.17).

9.3.12 Shared keywords for all components

The following options can be used for any of the above colvar components in order to obtain a
polynomial combination or any user-supplied function provided by scriptedFunction (see 9.3.15).

e name < Name of this component >
Context: any component
Acceptable Values: string
Default Value: type of component + numeric id
Description: The name is an unique case-sensitive string which allows the Colvars module
to identify this component. This is useful, for example, when combining multiple components
via a scriptedFunction. It also defines the variable name representing the component’s
value in a customFunction (see 9.3.16) expression.

e scalable < Attempt to calculate this component in parallel? >
Context: any component
Acceptable Values: boolean
Default Value: on, if available
Description: If set to on (default), the Colvars module will attempt to calculate this com-
ponent in parallel to reduce overhead. Whether this option is available depends on the type
of component: currently supported are distance, distanceZ, distanceXY, distanceVec,
distanceDir, angle and dihedral. This flag influences computational cost, but does not
affect numerical results: therefore, it should only be turned off for debugging or testing pur-
poses.

9.3.13 Periodic components

The following components returns real numbers that lie in a periodic interval:
e dihedral: torsional angle between four groups;

e spinAngle: angle of rotation around a predefined axis in the best-fit from a set of reference
coordinates.

In certain conditions, distanceZ can also be periodic, namely when periodic boundary conditions
(PBCs) are defined in the simulation and distanceZ’s axis is parallel to a unit cell vector.

157

In addition, a custom or scripted scalar colvar may be periodic depending on its user-defined
expression. It will only be treated as such by the Colvars module if the period is specified using
the period keyword, while wrapAround is optional.

The following keywords can be used within periodic components, or within custom variables
(9.3.16), or wthin scripted variables 9.3.17).

e period < Period of the component >
Context: distanceZ, custom colvars
Acceptable Values: positive decimal
Default Value: 0.0
Description: Setting this number enables the treatment of distanceZ as a periodic com-
ponent: by default, distanceZ is not considered periodic. The keyword is supported, but
irrelevant within dihedral or spinAngle, because their period is always 360 degrees.

e wrapAround < Center of the wrapping interval for periodic variables >
Context: distanceZ, dihedral, spinAngle, custom colvars
Acceptable Values: decimal
Default Value: 0.0
Description: By default, values of the periodic components are centered around zero,
ranging from —P/2 to P/2, where P is the period. Setting this number centers the interval
around this value. This can be useful for convenience of output, or to set the walls for a
harmonicWalls in an order that would not otherwise be allowed.

Internally, all differences between two values of a periodic colvar follow the minimum image
convention: they are calculated based on the two periodic images that are closest to each other.

Note: linear or polynomial combinations of periodic components (see 9.3.15) may become mean-
ingless when components cross the periodic boundary. Use such combinations carefully: estimate
the range of possible values of each component in a given simulation, and make use of wrapAround
to limit this problem whenever possible.

9.3.14 Non-scalar components

When one of the following components are used, the defined colvar returns a value that is not a
scalar number:

e distanceVec: 3-dimensional vector of the distance between two groups;
e distanceDir: 3-dimensional unit vector of the distance between two groups;

e orientation: 4-dimensional unit quaternion representing the best-fit rotation from a set of
reference coordinates.

The distance between two 3-dimensional unit vectors is computed as the angle between them. The

distance between two quaternions is computed as the angle between the two 4-dimensional unit

vectors: because the orientation represented by q is the same as the one represented by —q, distances

between two quaternions are computed considering the closest of the two symmetric images.
Non-scalar components carry the following restrictions:

e Calculation of total forces (outputTotalForce option) is currently not implemented.

158

e Each colvar can only contain one non-scalar component.

e Binning on a grid (abf, histogram and metadynamics with useGrids enabled) is currently
not implemented for colvars based on such components.

Note: while these restrictions apply to individual colvars based on non-scalar components, no
limit is set to the number of scalar colvars. To compute multi-dimensional histograms and PMFs,
use sets of scalar colvars of arbitrary size.

Calculating total forces In addition to the restrictions due to the type of value computed (scalar
or non-scalar), a final restriction can arise when calculating total force (outputTotalForce option
or application of a abf bias). total forces are available currently only for the following components:
distance, distanceZ, distanceXY, angle, dihedral, rmsd, eigenvector and gyration.

9.3.15 Linear and polynomial combinations of components

To extend the set of possible definitions of colvars £(r), multiple components ¢;(r) can be summed

with the formula:
(r) = eilai(r)]™ (56)
K3
where each component appears with a unique coefficient ¢; (1.0 by default) the positive integer
exponent n; (1 by default).

Any set of components can be combined within a colvar, provided that they return the same
type of values (scalar, unit vector, vector, or quaternion). By default, the colvar is the sum of
its components. Linear or polynomial combinations (following equation (56)) can be obtained by
setting the following parameters, which are common to all components:

e componentCoeff < Coefficient of this component in the colvar >
Context: any component
Acceptable Values: decimal
Default Value: 1.0
Description: Defines the coefficient by which this component is multiplied (after being
raised to componentExp) before being added to the sum.

e componentExp < Exponent of this component in the colvar >
Context: any component
Acceptable Values: integer
Default Value: 1
Description: Defines the power at which the value of this component is raised before being
added to the sum. When this exponent is different than 1 (non-linear sum), total forces and
the Jacobian force are not available, making the colvar unsuitable for ABF calculations.

Example: To define the average of a colvar across different parts of the system, simply define
within the same colvar block a series of components of the same type (applied to different atom
groups), and assign to each component a componentCoeff of 1/N.

159

9.3.16 Custom functions

Collective variables may be defined by specifying a custom function as an analytical expression.
The expression is parsed by Lepton, the lightweight expression parser written by Peter Eastman
(https://simtk.org/projects/lepton). Lepton produces efficient evaluation routines for the
function and its derivatives.

e customFunction < Compute colvar as a custom function of its components >
Context: colvar
Acceptable Values: string
Description: Mathematical expression to define the colvar as a closed-form function of
its colvar components. See below for the detailed syntax of Lepton expressions. Multiple
mentions of this keyword can be used to define a vector variable (as in the example below).

e customFunctionType < Type of value returned by the scripted colvar >
Context: colvar
Acceptable Values: string
Default Value: scalar
Description: With this flag, the user may specify whether the colvar is a scalar or one of
the following vector types: vector3 (a 3D vector), unit_vector3 (a normalized 3D vector),
or unit_quaternion (a normalized quaternion), or vector. Note that the scalar and vector
cases are not necessary, as they are detected automatically.

The expression may use the collective variable components as variables, referred to by their
user-defined name. Scalar elements of vector components may be accessed by appending a 1-
based index to their name, as in the example below. When implementing generic functions of
Cartesian coordinates rather than functions of existing components, the cartesian component
may be particularly useful. A scalar-valued custom variable may be manually defined as periodic
by providing the keyword period, and the optional keyword wrapAround, with the same meaning
as in periodic components (see 9.3.13 for details). A vector variable may be defined by specifying
the customFunction parameter several times: each expression defines one scalar element of the
vector colvar, as in this example:

colvar {
name custom

A 2-dimensional vector function of a scalar x and a 3-vector r
customFunction cos(x) * (rl + r2 + r3)
customFunction sqrt(rl * r2)

distance {
name x
groupl { atomNumbers 1 }
group2 { atomNumbers 50 }
}
distanceVec {
name r
groupl { atomNumbers 10 11 12 }

160

https://simtk.org/projects/lepton

group2 { atomNumbers 20 21 22 }

}
}

Numeric constants may be given in either decimal or exponential form (e.g. 3.12e-2).

An

expression may be followed by definitions for intermediate values that appear in the expression,
separated by semicolons. For example, the expression:
a"2 + axb + b"2; a = al + a2; b = bl + b2

is exactly equivalent to:

(a1l + a2)7"2 + (a1l + a2) * (bl + b2) + (bl + b2)"2.
The definition of an intermediate value may itself involve other intermediate values. All uses of a
value must appear before that value’s definition.

Lepton supports the usual arithmetic operators +, -, *, /, and "~ (power), as well as the following

functions:

sqrt
exp
log
erf
erfc

Square root

Exponential

Natural logarithm

Error function
Complementary error function

sin
cos
sec
csc
tan
cot
asin
acos
atan
atan2

Sine (angle in radians)

Cosine (angle in radians)

Secant (angle in radians)

Cosecant (angle in radians)

Tangent (angle in radians)

Cotangent (angle in radians)

Inverse sine (in radians)

Inverse cosine (in radians)

Inverse tangent (in radians)
Two-argument inverse tangent (in radians)

sinh
cosh
tanh

Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent

abs
floor
ceil
min
max
delta
step
select

Absolute value

Floor

Ceiling

Minimum of two values

Maximum of two values

delta(z) = 1 if z = 0, 0 otherwise
step(z) =0if 2 <0, 1if z >=0
select(z,y, z) = z if x = 0, y otherwise

9.3.17 Scripted functions

When scripting is supported (default in NAMD), a colvar may be defined as a scripted function
of its components, rather than a linear or polynomial combination. When implementing generic
functions of Cartesian coordinates rather than functions of existing components, the cartesian
component may be particularly useful. A scalar-valued scripted variable may be manually defined

161

as periodic by providing the keyword period, and the optional keyword wrapAround, with the same
meaning as in periodic components (see 9.3.13 for details).

An example of elaborate scripted colvar is given in example 10, in the form of path-based
collective variables as defined by Branduardi et al[12] (Section 9.3.10).

e scriptedFunction < Compute colvar as a scripted function of its components >

Context: colvar

Acceptable Values: string

Description: If this option is specified, the colvar will be computed as a scripted function
of the values of its components. To that effect, the user should define two Tcl procedures:
calc_<scriptedFunction> and calc_<scriptedFunction>_gradient, both accepting as
many parameters as the colvar has components. Values of the components will be passed to
those procedures in the order defined by their sorted name strings. Note that if all components
are of the same type, their default names are sorted in the order in which they are defined,
so that names need only be specified for combinations of components of different types.
calc_<scriptedFunction> should return one value of type <scriptedFunctionType>, cor-
responding to the colvar value. calc_<scriptedFunction>_gradient should return a Tcl
list containing the derivatives of the function with respect to each component. If both the
function and some of the components are vectors, the gradient is really a Jacobian ma-
trix that should be passed as a linear vector in row-major order, i.e. for a function f;(z;):

V:vflvxf2 Tt

e scriptedFunctionType < Type of value returned by the scripted colvar >
Context: colvar
Acceptable Values: string
Default Value: scalar
Description: If a colvar is defined as a scripted function, its type is not constrained by the
types of its components. With this flag, the user may specify whether the colvar is a scalar
or one of the following vector types: vector3 (a 3D vector), unit_vector3 (a normalized 3D
vector), or unit_quaternion (a normalized quaternion), or vector (a vector whose size is
specified by scriptedFunctionVectorSize). Non-scalar values should be passed as space-
separated lists.

e scriptedFunctionVectorSize < Dimension of the vector value of a scripted colvar >
Context: colvar
Acceptable Values: positive integer
Description: This parameter is only valid when scriptedFunctionType is set to vector.
It defines the vector length of the colvar value returned by the function.

9.3.18 Defining grid parameters

Many algorithms require the definition of boundaries and/or characteristic spacings that can be
used to define discrete “states” in the collective variable, or to combine variables with very different
units. The parameters described below offer a way to specify these parameters only once for each
variable, while using them multiple times in restraints, time-dependent biases or analysis methods.

e width < Unit of the variable, or grid spacing >
Context: colvar

162

Acceptable Values: positive decimal

Default Value: 1.0

Description: This number defines the effective unit of measurement for the collective
variable, and is used by the biasing methods for the following purposes. Harmonic (9.5.5),
harmonic walls (9.5.7) and linear restraints (9.5.8) use it to set the physical unit of the force
constant, which is useful for multidimensional restraints involving multiple variables with
very different units (for examples, A or degrees °) with a single, scaled force constant. The
values of the scaled force constant in the units of each variable are printed at initialization
time. Histograms (9.5.10), ABF (9.5.2) and metadynamics (9.5.4) all use this number as the
initial choice for the grid spacing along this variable: for this reason, width should generally
be no larger than the standard deviation of the colvar in an unbiased simulation. Unless it is
required to control the spacing, it is usually simplest to keep the default value of 1, so that
restraint force constants are provided with their full physical unit.

lowerBoundary < Lower boundary of the colvar >

Context: colvar

Acceptable Values: decimal

Default Value: natural boundary of the function

Description: Defines the lowest end of the interval of “relevant” values for the variable.
This number can be, for example, a true physical boundary imposed by the choice of function
(e.g. the distance function is always larger than zero): if this is the case, and only one
function is used to define the variable, the default value of this number is set to the lowest
end of the range of values of that function, if available (see Section 9.3.1). Alternatively, this
value may be provided by the user, to represent for example the left-most point of a PMF
calculation along this variable. In the latter case, it is the user’s responsibility to either (a)
ensure the variable does not go significantly beyond the boundary (for example by adding a
harmonicWalls restraint, 9.5.7), or (b) instruct the code that this is a true physical boundary
by setting hardLowerBoundary (see 9.3.18).

upperBoundary < Upper boundary of the colvar >

Context: colvar

Acceptable Values: decimal

Default Value: natural boundary of the function

Description: Similarly to lowerBoundary, defines the highest of the “relevant” values of
the variable.

hardLowerBoundary < Whether the lower boundary is the physical lower limit >
Context: colvar

Acceptable Values: boolean

Default Value: provided by the component

Description: When the colvar has a “natural” boundary (for example, a distance colvar
cannot go below 0) this flag is automatically enabled. For more complex variable definitions,
or when lowerBoundary (see 9.3.18) is provided directly by the user, it may be useful to set
this flag explicitly. This option does not affect simulation results, but enables some internal
optimizations by letting the code know that the variable is unable to cross the lower boundary;,
regardless of whether restraints are applied to it.

163

e hardUpperBoundary < Whether the upper boundary is the physical upper limit of the
colvar’s values >
Context: colvar
Acceptable Values: boolean
Default Value: provided by the component
Description: Analogous to hardLowerBoundary.

e ecxpandBoundaries < Allow to expand the two boundaries if needed >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If defined, lowerBoundary and upperBoundary may be automatically ex-
panded to accommodate colvar values that do not fit in the initial range. Currently, this
option is used by the metadynamics bias (9.5.4) to keep all of its hills fully within the grid.
This option cannot be used when the initial boundaries already span the full period of a
periodic colvar.

Grid files: multicolumn text format Many simulation methods and analysis tools write files
that contain functions of the collective variables tabulated on a grid (e.g. potentials of mean force
or multidimentional histograms) for the purpose of analyzing results. Such files are produced by
ABF (9.5.2), metadynamics (9.5.4), multidimensional histograms (9.5.10), as well as any restraint
with optional thermodynamic integration support (9.5.1).

In some cases, these files may also be read as input of a new simulation. Suitable input files
for this purpose are typically generated as output files of previous simulations, or directly by
the user in the specific case of ensemble-biased metadynamics (9.5.4). This section explains the
“multicolumn” format used by these files. For a multidimensional function f(&;, &2, ...) the
multicolumn grid format is defined as follows:

NCV
min(&) width(&y) npoints(&;) periodic(&y)
min(&) width(&2) npoints(&2) periodic(&s)
min(¢y,,) width({y.,) npoints({y,) periodic({n.,)
& & - €N feh &, -0)

& & - R f(eh, €4, ..o, 63

Lines beginning with the character “#” are the header of the file. N., is the number of collective
variables sampled by the grid. For each variable &;, min(§;) is the lowest value sampled by the grid
(i.e. the left-most boundary of the grid along &;), width(&;) is the width of each grid step along &;,
npoints(;) is the number of points and periodic(¢;) is a flag whose value is 1 or 0 depending on
whether the grid is periodic along &;. In most situations:

e min(¢;) is given by the lowerBoundary (see 9.3.18) keyword of the variable ;

e width(&;) is given by the width (see 9.3.18) keyword,;

164

e npoints(¢;) is calculated from the two above numbers and the upperBoundary (see 9.3.18)
keyword;

e periodic(&;) is set to 1 if and only if §; is periodic and the grids’ boundaries cover its period.

Exception: there is a slightly different header in PMF files computed by ABF (9.5.2) or by other
biases with an optional thermodynamic integration (TI) estimator (9.5.1). In this case, free-energy
gradients are accumulated on an (npoints)-long grid along each variable £: after these gradients are
integrated, the resulting PMF is discretized on a grid with (npoints+1) points along £. Therefore,
the edges of the PMF’s grid extend width/2 above and below the original boundaries (unless these
are periodic). The format of the file’s header is otherwise unchanged.

After the header, the rest of the file contains values of the tabulated function f(&1, &2, ... &N,),
one for each line. The first N., columns contain values of &, &, ...&n., and the last column
contains the value of the function f. Points are sorted in ascending order with the fastest-changing
values at the right (“C-style” order). Each sweep of the right-most variable ., is terminated by
an empty line. For two dimensional grid files, this allows quick visualization by programs such as
GNUplot.

Example 1: multicolumn text file for a one-dimensional histogram with lowerBoundary = 15,
upperBoundary = 48 and width = 0.1.

1
15 0.1 330 0

15.05 6.14012e-07
15.15 7.47644e-07

47.85 1.65944e-06
47.95 1.46712e-06

Example 2: multicolumn text file for a two-dimensional histogram of two dihedral angles (periodic
interval with 6° bins):

2
-180.0 6.0 30 1
-180.0 6.0 30 1

-177.0 -177.0 8.97117e-06
-177.0 -171.0 1.53525e-06

-177.0 177.0 2.442956-06

-171.0 -177.0 2.04702e-05

9.3.19 Trajectory output

e outputValue < Output a trajectory for this colvar >

165

Context: colvar

Acceptable Values: boolean

Default Value: on

Description: If colvarsTrajFrequency is non-zero, the value of this colvar is written to
the trajectory file every colvarsTrajFrequency steps in the column labeled “<name>".

e outputVelocity < Output a velocity trajectory for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, the finite-difference calculated velocity
of this colvar are written to the trajectory file under the label “v_<name>".

e outputEnergy < Output an energy trajectory for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: This option applies only to extended Lagrangian colvars. If
colvarsTrajFrequency is defined, the kinetic energy of the extended degree and freedom
and the potential energy of the restraining spring are are written to the trajectory file under
the labels “Ek_<name>” and “Ep_<name>".

e outputTotalForce < Output a total force trajectory for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, the total force on this colvar (i.e. the
projection of all atomic total forces onto this colvar — see equation (61) in section 9.5.2)
are written to the trajectory file under the label “fs_<name>". For extended Lagrangian
colvars, the “total force” felt by the extended degree of freedom is simply the force from the
harmonic spring. Due to design constraints, the total force reported by NAMD to Colvars
was computed at the previous simulation step. Note: not all components support this
option. The physical unit for this force is kcal/mol, divided by the colvar unit U.

e outputAppliedForce < Output an applied force trajectory for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, the total force applied on this colvar
by Colvars biases are written to the trajectory under the label “fa_<name>". For extended
Lagrangian colvars, this force is actually applied to the extended degree of freedom rather
than the geometric colvar itself. The physical unit for this force is kcal/mol divided by the
colvar unit.

9.3.20 Extended Lagrangian

The following options enable extended-system dynamics, where a colvar is coupled to an additional
degree of freedom (fictitious particle) by a harmonic spring. This extended coordinate masks the

166

colvar and replaces it transparently from the perspective of biasing and analysis methods. Biasing
forces are then applied to the extended degree of freedom, and the actual geometric colvar (function
of Cartesian coordinates) only feels the force from the harmonic spring. This is particularly useful
when combined with an abf (see 9.5.2) bias to perform eABF simulations (9.5.3).

Note that for some biases (harmonicWalls (see 9.5.7), histogram (see 9.5.10)), this mask-
ing behavior is controlled by the keyword bypassExtendedLagrangian (see 9.5). Specifically for
harmonicWalls, the default behavior is to bypass extended Lagrangian coordinates and act directly
on the actual colvars.

e extendedLagrangian < Add extended degree of freedom >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: Adds a fictitious particle to be coupled to the colvar by a harmonic spring.
The fictitious mass and the force constant of the coupling potential are derived from the
parameters extendedTimeConstant and extendedFluctuation, described below. Biasing
forces on the colvar are applied to this fictitious particle, rather than to the atoms directly.
This implements the extended Lagrangian formalism used in some metadynamics simula-
tions [49]. The energy associated with the extended degree of freedom is reported along with
bias energies under the MISC title in NAMD’s energy output.

e extendedFluctuation < Standard deviation between the colvar and the fictitious particle
(colvar unit) >
Context: colvar
Acceptable Values: positive decimal
Description: Defines the spring stiffness for the extendedLagrangian mode, by setting
the typical deviation between the colvar and the extended degree of freedom due to thermal
fluctuation. The spring force constant is calculated internally as kT /o2, where o is the value
of extendedFluctuation.

e extendedTimeConstant < Oscillation period of the fictitious particle (fs) >
Context: colvar
Acceptable Values: positive decimal
Default Value: 200
Description: Defines the inertial mass of the fictitious particle, by setting the oscillation
period of the harmonic oscillator formed by the fictitious particle and the spring. The period
should be much larger than the MD time step to ensure accurate integration of the extended
particle’s equation of motion. The fictitious mass is calculated internally as kpT(7/270)?,
where 7 is the period and o is the typical fluctuation (see above).

e extendedTemp < Temperature for the extended degree of freedom (K) >
Context: colvar
Acceptable Values: positive decimal
Default Value: thermostat temperature
Description: Temperature used for calculating the coupling force constant of the extended
variable (see extendedFluctuation) and, if needed, as a target temperature for extended
Langevin dynamics (see extendedLangevinDamping). This should normally be left at its
default value.

167

e extendedLangevinDamping < Damping factor for extended Langevin dynamics (ps~!) >
Context: colvar
Acceptable Values: positive decimal
Default Value: 1.0
Description: If this is non-zero, the extended degree of freedom undergoes Langevin dy-
namics at temperature extendedTemp. The friction force is minus extendedLangevinDamping
times the velocity. This is useful because the extended dynamics coordinate may heat up in
the transient non-equilibrium regime of ABF. Use moderate damping values, to limit viscous
friction (potentially slowing down diffusive sampling) and stochastic noise (increasing the
variance of statistical measurements). In doubt, use the default value.

9.3.21 Multiple time-step variables

e timeStepFactor < Compute this colvar once in a certain number of timesteps >
Context: colvar
Acceptable Values: positive integer
Default Value: 1
Description: Instructs this colvar to activate at a time interval equal to the base (MD)
timestep times timeStepFactor.[32] At other time steps, the value of the variable is not
updated, and no biasing forces are applied. Any forces exerted by biases are accumulated
over the given time interval, then applied as an impulse at the next update.

9.3.22 Backward-compatibility

e subtractAppliedForce < Do not include biasing forces in the total force for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If the colvar supports total force calculation (see 9.3.14), all forces applied to
this colvar by biases will be removed from the total force. This keyword allows to recover some
of the “system force” calculation available in the Colvars module before version 2016-08-10.
Please note that removal of all other external forces (including biasing forces applied to a
different colvar) is no longer supported, due to changes in the underlying simulation engines
(primarily NAMD). This option may be useful when continuing a previous simulation where
the removal of external/applied forces is essential. For all new simulations, the use of this
option is not recommended.

9.3.23 Statistical analysis

Run-time calculations of statistical properties that depend explicitly on time can be performed for
individual collective variables. Currently, several types of time correlation functions, running aver-
ages and running standard deviations are implemented. For run-time computation of histograms,
please see the histogram bias (9.5.10).

e corrFunc < Calculate a time correlation function? >
Context: colvar
Acceptable Values: boolean
Default Value: off

168

Description: Whether or not a time correlaction function should be calculated for this
colvar.

corrFuncWithColvar < Colvar name for the correlation function >

Context: colvar

Acceptable Values: string

Description: By default, the auto-correlation function (ACF) of this colvar, &;, is cal-
culated. When this option is specified, the correlation function is calculated instead with
another colvar, &;, which must be of the same type (scalar, vector, or quaternion) as &;.

corrFuncType < Type of the correlation function >

Context: colvar

Acceptable Values: velocity, coordinate or coordinate_p2

Default Value: velocity

Description: With coordinate or velocity, the correlation function Cj;(t) =
(IT (&(t0), & (to + t))) is calculated between the variables §; and ¢;, or their velocities. I1(&;, &;)
is the scalar product when calculated between scalar or vector values, whereas for quater-
nions it is the cosine between the two corresponding rotation axes. With coordinate_p2, the
second order Legendre polynomial, (3 cos(6)? — 1)/2, is used instead of the cosine.

corrFuncNormalize < Normalize the time correlation function? >

Context: colvar

Acceptable Values: boolean

Default Value: on

Description: If enabled, the value of the correlation function at ¢ = 0 is normalized to 1;
otherwise, it equals to (O (&;,§;)).

corrFuncLength < Length of the time correlation function >

Context: colvar

Acceptable Values: positive integer

Default Value: 1000

Description: Length (in number of points) of the time correlation function.

corrFuncStride < Stride of the time correlation function >

Context: colvar

Acceptable Values: positive integer

Default Value: 1

Description: Number of steps between two values of the time correlation function.

corrFuncOffset < Offset of the time correlation function >

Context: colvar

Acceptable Values: positive integer

Default Value: 0

Description: The starting time (in number of steps) of the time correlation function
(default: ¢ = 0). Note: the value at t = 0 is always used for the normalization.

corrFuncOutputFile < Output file for the time correlation function >
Context: colvar
Acceptable Values: UNIX filename

169

Default Value: outputName.<name>.corrfunc.dat
Description: The time correlation function is saved in this file.

e runAve < Calculate the running average and standard deviation >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: Whether or not the running average and standard deviation should be cal-
culated for this colvar.

e runAvelength < Length of the running average window >
Context: colvar
Acceptable Values: positive integer
Default Value: 1000
Description: Length (in number of points) of the running average window.

e runAveStride < Stride of the running average window values >
Context: colvar
Acceptable Values: positive integer
Default Value: 1
Description: Number of steps between two values within the running average window.

e runAveQutputFile < Output file for the running average and standard deviation >
Context: colvar
Acceptable Values: UNIX filename
Default Value: outputName.<name>.runave.traj
Description: The running average and standard deviation are saved in this file.

9.4 Selecting atoms

To define collective variables, atoms are usually selected as groups. Each group is defined using
an identifier that is unique in the context of the specific colvar component (e.g. for a distance
component, the two groups are groupl and group2). The identifier is followed by a brace-delimited
block containing selection keywords and other parameters, including an optional name:

e name < Unique name for the atom group >
Context: atom group
Acceptable Values: string
Description: This parameter defines a unique name for this atom group, which can be
referred to in the definition of other atom groups (including in other colvars) by invoking
atomsOfGroup as a selection keyword.

9.4.1 Atom selection keywords

Selection keywords may be used individually or in combination with each other, and each can
be repeated any number of times. Selection is incremental: each keyword adds the corre-
sponding atoms to the selection, so that different sets of atoms can be combined. However,
atoms included by multiple keywords are only counted once. Below is an example configuration
for an atom group called “atoms”. Note: this is an unusually varied combination of selection

170

keywords, demonstrating how they can be combined together: most simulations only use one of them.
atoms {

add atoms 1 and 3 to this group (note: the first atom in the system is 1)
atomNumbers {

13
}

add atoms starting from 20 up to and including 50
atomNumbersRange 20-50

add all the atoms with occupancy 2 in the file atoms.pdb
atomsFile atoms.pdb

atomsCol O

atomsColValue 2.0

add all the C-alphas within residues 11 to 20 of segments "PR1" and "PR2"
psfSegID PR1 PR2

atomNameResidueRange CA 11-20

atomNameResidueRange CA 11-20

add index group (requires a .ndx file to be provided globally)
indexGroup Water

The resulting selection includes atoms 1 and 3, those between 20 and 50, the C, atoms between
residues 11 and 20 of the two segments PR1 and PR2, and those in the index group called “Water”.
The indices of this group are read from the file provided by the global keyword indexFile (see
9.2.5).

The complete list of selection keywords available in NAMD is:

e atomNumbers < List of atom numbers >
Context: atom group
Acceptable Values: space-separated list of positive integers
Description: This option adds to the group all the atoms whose numbers are in the list.
The number of the first atom in the system is 1: to convert from a VMD selection, use
“atomselect get serial”.

e indexGroup < Name of index group to be used (GROMACS format) >
Context: atom group
Acceptable Values: string
Description: If the name of an index file has been provided by indexFile, this option
allows to select one index group from that file: the atoms from that index group will be used
to define the current group.

e atomsOfGroup < Name of group defined previously >
Context: atom group

171

Acceptable Values: string
Description: Refers to a group defined previously using its user-defined name. This adds
all atoms of that named group to the current group.

atomNumbersRange < Atoms within a number range >

Context: atom group

Acceptable Values: <Starting number>-<Ending number>

Description: This option includes in the group all atoms whose numbers are within the
range specified. The number of the first atom in the system is 1.

atomNameResidueRange < Named atoms within a range of residue numbers >

Context: atom group

Acceptable Values: <Atom name> <Starting residue>-<Ending residue>
Description: This option adds to the group all the atoms with the provided name, within
residues in the given range.

psfSegID < PSF segment identifier >

Context: atom group

Acceptable Values: space-separated list of strings (max 4 characters)

Description: This option sets the PSF segment identifier for atomNameResidueRange.
Multiple values may be provided, which correspond to multiple instances of
atomNameResidueRange, in order of their occurrence. This option is only necessary if a
PSF topology file is used.

atomsFile < PDB file name for atom selection >

Context: atom group

Acceptable Values: UNIX filename

Description: This option selects atoms from the PDB file provided and adds them to the
group according to numerical flags in the column atomsCol. Note: the sequence of atoms in
the PDB file provided must match that in the system’s topology.

atomsCol < PDB column to use for atom selection flags >

Context: atom group

Acceptable Values: 0, B, X, Y, or Z

Description: This option specifies which PDB column in atomsFile is used to determine
which atoms are to be included in the group.

atomsColValue < Atom selection flag in the PDB column >

Context: atom group

Acceptable Values: positive decimal

Description: If defined, this value in atomsCol identifies atoms in atomsFile that are
included in the group. If undefined, all atoms with a non-zero value in atomsCol are included.

dummyAtom < Dummy atom position (A) >

Context: atom group

Acceptable Values: (x, y, z) triplet

Description: Instead of selecting any atom, this option makes the group a virtual particle
at a fixed position in space. This is useful e.g. to replace a group’s center of geometry with a
user-defined position.

172

9.4.2 Moving frame of reference.

The following options define an automatic calculation of an optimal translation (centerReference)
or optimal rotation (rotateReference), that superimposes the positions of this group to a provided
set of reference coordinates. This can allow, for example, to effectively remove from certain colvars
the effects of molecular tumbling and of diffusion. Given the set of atomic positions x;, the colvar
¢ can be defined on a set of roto-translated positions x; = R(x; — x©) + x**f. x© is the geometric
center of the x;, R is the optimal rotation matrix to the reference positions and x™f is the geometric
center of the reference positions.

Components that are defined based on pairwise distances are naturally invariant under global
roto-translations. Other components are instead affected by global rotations or translations: how-
ever, they can be made invariant if they are expressed in the frame of reference of a chosen group
of atoms, using the centerReference and rotateReference options. Finally, a few components
are defined by convention using a roto-translated frame (e.g. the minimal RMSD): for these com-
ponents, centerReference and rotateReference are enabled by default. In typical applications,
the default settings result in the expected behavior.

Warning on rotating frames of reference and periodic boundary conditions.
rotateReference affects coordinates that depend on minimum-image distances in periodic bound-
ary conditions (PBC). After rotation of the coordinates, the periodic cell vectors become irrelevant:
the rotated system is effectively non-periodic. A safe way to handle this is to ensure that the rel-
evant inter-group distance vectors remain smaller than the half-size of the periodic cell. If this is
not desirable, one should avoid the rotating frame of reference, and apply orientational restraints
to the reference group instead, in order to keep the orientation of the reference group consistent
with the orientation of the periodic cell.

Warning on rotating frames of reference and ABF. Note that centerReference and
rotateReference may affect the Jacobian derivative of colvar components in a way that is not
taken into account by default. Be careful when using these options in ABF simulations or when
using total force values.

e centerReference < Implicitly remove translations for this group >
Context: atom group
Acceptable Values: boolean
Default Value: off
Description: If this option is on, the center of geometry of the group will be aligned
with that of the reference positions provided by either refPositions or refPositionsFile.
Colvar components will only have access to the aligned positions. Note: unless otherwise
specified, rmsd and eigenvector set this option to on by default.

e rotateReference < Implicitly remove rotations for this group >
Context: atom group
Acceptable Values: boolean
Default Value: off
Description: If this option is on, the coordinates of this group will be optimally super-
imposed to the reference positions provided by either refPositions or refPositionsFile.
The rotation will be performed around the center of geometry if centerReference is on, or

173

around the origin otherwise. The algorithm used is the same employed by the orientation
colvar component [26]. Forces applied to the atoms of this group will also be implicitly ro-
tated back to the original frame. Note: unless otherwise specified, rmsd and eigenvector
set this option to on by default.

refPositions < Reference positions for fitting (A) >

Context: atom group

Acceptable Values: space-separated list of (x, y, z) triplets

Description: This option provides a list of reference coordinates for centerReference
and/or rotateReference, and is mutually exclusive with refPositionsFile. If only
centerReference is on, the list may contain a single (x, y, z) triplet; if also rotateReference
is on, the list should be as long as the atom group, and its order must match the order in
which atoms were defined.

refPositionsFile < File containing the reference positions for fitting >

Context: atom group

Acceptable Values: UNIX filename

Description: This option provides a list of reference coordinates for centerReference
and/or rotateReference, and is mutually exclusive with refPositions. The acceptable
file format is XYZ, which is read in double precision, or PDB; the latter is discouraged if
the precision of the reference coordinates is a concern. Atomic positions are read differently
depending on the following scenarios: (i) the file contains exactly as many records as the
atoms in the group: all positions are read in sequence; (ii) (most common case) the file
contains coordinates for the entire system: only the positions corresponding to the numeric
indices of the atom group are r