
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Intro: Using CUDA on
Multiple GPUs Concurrently

John Stone
IACAT Brown Bag 2/24/2009

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Overview

• Some use case examples
• Brief overview of CUDA architecture
• Selecting GPU devices
• Creating multiple host threads/processes to

manage GPUs
• Managing work on multiple GPUs
• Handling exceptions

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU 1 GPU N…

Multi-GPU Direct
Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex)
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200) 241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Architecture Basics
• A single host thread can attach to and

communicate with a single GPU
• A single GPU can be shared by multiple

threads/processes, but only one such context
is active at a time

• In order to use more than one GPU,
multiple host threads or processes must be
created

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

One Host Thread Per GPU

CPU Thread 0 CPU Thread 1 CPU Thread N

GPU 0 GPU 1 GPU N

…

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multiple Host Threads Per GPU

CPU Thread 0 CPU Thread 1 CPU Thread N

GPU 0

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Data Exchange Between GPUs

• Limitations with current version of CUDA:
– No way to directly exchange data between

multiple GPUs using CUDA
– Exchanges must be done on the host side

outside of CUDA
– Involves host thread/process responsible for

each device

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Host Thread Contexts Cannot Directly Share GPU
Memory, Must Communicate on Host Side

CPU Thread 0 CPU Thread 1

GPU 0

CPU Thread 3

GPU 1

Even threads sharing the same GPU cannot exchange
data by reading each other’s GPU memory

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Runtime APIs for Enumerating
and Selecting GPU Devices

• Query available hardware:
– cudaGetDeviceCount()
– cudaGetDeviceProperties()

• Attach a GPU device to a host thread:
– cudaSetDevice()
– This is a permanent binding, once set it cannot be

subsequently changed
– Binding a GPU device to a host thread has overhead:

• 1st CUDA call after binding takes ~100 milliseconds

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Data-parallel Decomposition

• Many independent coarse-grain
computations farmed out to
pool of GPUs

• Work assignment can be
explicit in the code, or
controlled with a dynamic work
scheduler of some sort

• May need to handle load
imbalance, GPUs with varying
capabilities, runtime errors, etc.

GPU 1 GPU N…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Launching Host Threads (POSIX Threads)
void *cudaworkerthread(void *voidparms); // worker function

…
/* spawn child threads to do the work */
for (i=0; i<numprocs; i++) {
pthread_create(&threads[i], cudaworkerthread, &parms[i]);

}

/* “join” the threads after work is done */
for (i=0; i<numprocs; i++)
pthread_join(threads[i], NULL);

}

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Static Load Balance,
Static Work Decomposition

• Static round-robin load
balance:
– Easy to code, explicit round

robin decomposition
– Low overhead, works well

for short calculation runs
– No ability to automatically

reschedule work on
error/exception

– Easy to port to multiple OSs

GPU 1 GPU 3…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU
Static Work Decomposition

// Each GPU worker thread loops over
// subset of 2-D planes in a 3-D cube…
for (k=thrID; k<numplane; k+=thrCount) {
// Process one plane of work…
// Launch one CUDA kernel for each
// loop iteration taken…
// Simple scheme, works well when GPUs
// and work units are nearly identical…
// No provision for in-flight error handling

}

GPU 1 GPU 3…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Load Balance
• Many independent coarse-grain

computations farmed out to pool of
GPUs

• Many early CUDA codes assumed
all GPUs were identical (nearly so)

• Now all new NV cards support
CUDA, so a machine may have a
diversity of GPUs of varying
capability

• Static decomposition works poorly if
you have diverse GPUs, e.g. 2 SM,
30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Dynamic Load Balance,
Shared Work Iterator

• Dynamic load balance, single
shared iterator assigns slices to
workers:
– Replaces the for loop in static

decomposition example
– Added overhead from mutex

locks:
– Can reschedule/retry on

error/exception by re-adding to
the shared queue

– Still easy to port to multiple OSs

GPU 1 GPU 3…

Shared work iterator

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Shared Work Iterator

// Each GPU worker thread loops over
// subset 2-D planes in a 3-D cube…
while (!iterator_next(&parms, &k) {
// Process one plane of work…
// Launch one CUDA kernel for each
// loop iteration taken…
// Shared iterator automatically
// balances load on GPUs
// No provision for complex error handling
// or “retry” of a work unit on a different GPU

}

GPU 1 GPU 3…

Shared work iterator

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Runtime
Error/Exception Handling

• Competition for resources from
other applications or the
windowing system can cause
runtime failures (e.g. GPU out
of memory half way through an
algorithm)

• Handling of algorithm
exceptions (e.g. convergence
failure, NaN result, etc)

• Need a way to handle and/or
reschedule failed tiles of work

GPU 1
SM 1.0
128MB

GPU 3
SM 1.3

4096MB

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Load Balance,
Shared Work Queue

• Dynamic load balance, single shared
work queue:
– Added overhead from loading/draining

queue
– Potential for mutex contention in fast

running kernels or fine-grained work
decomposition

– Can reschedule/retry on error/exception
by re-adding to the shared queue

– Still relatively easy to port to multiple
OSs

– Harder to make fastest implementations
portable since they ideally use lock-free
algorithms (e.g. STM)

GPU 1 GPU 3…

Shared work queue

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Load Balance,
Multiple Deques, Work Stealing…

• Dynamic load balance, multiple
work deques, “work stealing”
– Added overhead from loading/draining

managing multiple double-ended queues
– Reduced mutex contention in fast

running kernels since mutexes only
contended during “work stealing”

– Can reschedule/retry on error/exception
by re-adding to the shared queue

– Harder to make portable, fastest
implementations attempt to use lock-free
algorithms

GPU 1
2 SMs

GPU 3
30 SMs

…

Steal Work From

Slower Running GPU

	Intro: Using CUDA on �Multiple GPUs Concurrently
	Overview
	Multi-GPU Direct Coulomb Summation
	CUDA Architecture Basics
	One Host Thread Per GPU
	Multiple Host Threads Per GPU
	Data Exchange Between GPUs
	Host Thread Contexts Cannot Directly Share GPU Memory, Must Communicate on Host Side
	CUDA Runtime APIs for Enumerating and Selecting GPU Devices
	Multi-GPU Data-parallel Decomposition
	Launching Host Threads (POSIX Threads)
	Multi-GPU Static Load Balance,�Static Work Decomposition
	Multi-GPU �Static Work Decomposition
	Multi-GPU Load Balance
	Multi-GPU Dynamic Load Balance,�Shared Work Iterator
	Multi-GPU Shared Work Iterator
	Multi-GPU Runtime �Error/Exception Handling
	Multi-GPU Load Balance,�Shared Work Queue
	Multi-GPU Load Balance,�Multiple Deques, Work Stealing…

