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NAMD Hybrid Decomposition

Kale et al., J. Comp. Phys. 151:283-312, 1999.

e Spatially decompose
data and communication.

 Separate but related
work decomposition.

 “Compute objects”
facilitate iterative,
measurement-based load
balancing system.
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Message-Driven Programming

No receive calls as in “message passing”
Messages sent to object “entry points”

Incoming messages placed in queue
— Priorities are necessary for performance

Execution generates new messages

Implemented in Charm++ on top of MPI

— Can be emulated in MPI alone

— Charm++ provides tools and idioms

— Parallel Programming Lab: http://charm.cs.uiuc.edu/
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System Noise Example

Timeline from Charm++ tool “Projections”
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NAMD Overlapping Execution

Phillips et al., SC2002.

Patches : Integration
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Objects are assigned to processors and queued as data arrives.
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Message-Driven CUDA?

 No, CUDA is too coarse-grained.
— CPU needs fine-grained work to interleave and pipeline.
— GPU needs large numbers of tasks submitted all at once.

 No, CUDA lacks priorities.
— FIFO isn’t enough.

e Perhaps in a future interface:
— Stream data to GPU.
— Append blocks to a running kernel invocation.
— Stream data out as blocks complete.
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“Remote Forces”

Forces on atoms in a local

patch are “local” @

Forces on atoms in a remote
y ., Local
patch are “remote Patch

Calculate remote forces first to

overlap force communication @ﬁ
with local force calculation

Not enough work to overlap Local
with position communication Patch

Work done by one processor
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Overlapping GPU and CPU
with Communication

GPU Hmcal Force va

CPU -Local ! Local Update

Other Nodes/Processes

One Timestep
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Actual Timelines from NAMD

Generated using Charm++ tool “Projections”
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NCSA “4+4” QP Cluster
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TABLE I

GPU-ACCELERATED NAMD PERFORMANCE ON 1.06M-ATOM “STMV”
BENCHMARK (12 A cuTOFF WITH PME EVERY 4 STEPS).

CPU Cores & GPUs 4 8 16 32 60
GPU-accelerated performance

Local blocks/GPU 13186 5798 2564 1174 577
Remote blocks/GPU 1644 1617 1144 680 411
GPU s/step 0.544 0274 0.139 0.071 0.040
Total s/step 0.960 0483 0.261 0.154 0.085
Unaccelerated performance

Total s/step 6.76 3.33 1.737 0980 0471
Speedup from GPU acceleration

Factor 7.0 6.9 6.7 6.4 5.5

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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GPU-ACCELERATED NAMD PERFORMANCE ON 92K-ATOM “APOAL”

TABLE II

BENCHMARK (12 A cuToFF WITH PME EVERY 4 STEPS).

Beckman Institute, UIUC

CPU Cores & GPUs 4 8 16 32 60
GPU-accelerated performance

Local blocks/GPU 2802 1131 492 216 98
Remote blocks/GPU 708 624 386 223 136
GPU s/step 0.051 0.027 0.015 0.008 0.005
Total s/step 0.087 0.048 0.027 0018 0.013
Unaccelerated performance

Total s/step 0.561 0284 0.146 0.077 0.044
Speedup from GPU acceleration

Factor 6.4 5.9 54 4.3 3.4

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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Time per Step (seconds)

GPU-Accelerated NAMD Performance
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GPU Cluster Observations

» Tools needed to control GPU allocation
— Simplest solution is rank % devicesPerNode
— Doesn’t work with multiple independent jobs

« CUDA and MPI can’t share pinned memory
— Either user copies data or disable MPI RDMA
— Need interoperable user-mode DMA standard

e Speaking of extra copies...

— Why not DMA GPU to GPU?
— Even better, why not RDMA over InfiniBand?
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New NCSA “8+2” Lincoln Cluster

e CPU: 2 Intel E5410 Quad-Core 2.33 GHz
« GPU: 2 NVIDIA C1060
— Actually S1070 shared by two nodes

 How to share a GPU among 4 CPU cores?
— Send all GPU work to one process?
— Coordinate via messages to avoid conflict?
— Or just hope for the best?
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NCSA Lincoln Cluster Performance

(8 cores and 2 GPUs per node, very early results)
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No GPU Sharing (ldeal World)

H Local Force va
GPU 2 H Local Force va
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GPU Sharing (Desired)

Local Force

Client 1

.

Local Force

Client 2
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GPU Sharing (Feared)
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GPU Sharing (Observed)

Remote | Local
Force Force

Client 2
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GPU Sharing (Explained)

 CUDA is behaving reasonably, but

» Force calculation is actually two kernels
— Longer kernel writes to multiple arrays
— Shorter kernel combines output
 Possible solutions:
— Use locks (atomics) to merge kernels (not G80)
— Explicit inter-client coordination
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Conclusions and Outlook

 CUDA today Is sufficient for
— Single-GPU acceleration (the mass market)
— Coarse-grained multi-GPU parallelism
» Enough work per call to spin up all multiprocessors
* Improvements in CUDA are needed for
— Assigning GPUSs to processes
— Sharing GPUs between processes

— Fine-grained multi-GPU parallelism
» Fewer blocks per call than chip has multiprocessors

— Moving data between GPUs (same or different node)
 Faster processors will need a faster network!
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