
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Adapting a Message-Driven Parallel 
Application to GPU-Accelerated Clusters

James Phillips
John Stone
Klaus Schulten
http://www.ks.uiuc.edu/Research/gpu/



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Outline

• NAMD and message-driven programming
• Adapting NAMD to GPU-accelerated clusters
• Old NCSA QP cluster performance results
• New NCSA Lincoln cluster performance results
• Does CUDA like to share?



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

• Spatially decompose 
data and communication.
• Separate but related 
work decomposition.
• “Compute objects” 
facilitate iterative, 
measurement-based load 
balancing system.

NAMD Hybrid Decomposition
Kale et al., J. Comp. Phys. 151:283-312, 1999.



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Message-Driven Programming

• No receive calls as in “message passing”
• Messages sent to object “entry points”
• Incoming messages placed in queue

– Priorities are necessary for performance
• Execution generates new messages
• Implemented in Charm++ on top of MPI

– Can be emulated in MPI alone
– Charm++ provides tools and idioms
– Parallel Programming Lab: http://charm.cs.uiuc.edu/



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

System Noise Example
Timeline from Charm++ tool “Projections”



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

847 objects 100,000

NAMD Overlapping Execution

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Message-Driven CUDA?

• No, CUDA is too coarse-grained.
– CPU needs fine-grained work to interleave and pipeline.
– GPU needs large numbers of tasks submitted all at once.

• No, CUDA lacks priorities.
– FIFO isn’t enough.

• Perhaps in a future interface:
– Stream data to GPU.
– Append blocks to a running kernel invocation.
– Stream data out as blocks complete.



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

“Remote Forces”

• Forces on atoms in a local 
patch are “local”

• Forces on atoms in a remote
patch are “remote”

• Calculate remote forces first to 
overlap force communication 
with local force calculation

• Not enough work to overlap 
with position communication

Local
Patch

Remote
Patch

Local
Patch

Remote
Patch

Remote
Patch

Remote
Patch

Work done by one processor



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Overlapping GPU and CPU
with Communication
Remote Force Local ForceGPU

CPU

Other Nodes/Processes

LocalRemote

x
f f

f

f

Local x

x

Update

One Timestep

x



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Actual Timelines from NAMD
Generated using Charm++ tool “Projections”

Remote Force Local Force

x
f f

x

GPU

CPU

f

f

x

x



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NCSA “4+4” QP Cluster

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

4 8 16 32 60

se
co

nd
s p

er
 st

ep

CPU only
with GPU
GPU

2.4 GHz Opteron + Quadro FX 5600

fa
st

er

6.76 3.33



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Cluster Observations

• Tools needed to control GPU allocation
– Simplest solution is rank % devicesPerNode
– Doesn’t work with multiple independent jobs

• CUDA and MPI can’t share pinned memory
– Either user copies data or disable MPI RDMA
– Need interoperable user-mode DMA standard

• Speaking of extra copies…
– Why not DMA GPU to GPU?
– Even better, why not RDMA over InfiniBand?



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

New NCSA “8+2” Lincoln Cluster

• CPU: 2 Intel E5410 Quad-Core 2.33 GHz
• GPU: 2 NVIDIA C1060

– Actually S1070 shared by two nodes
• How to share a GPU among 4 CPU cores?

– Send all GPU work to one process?
– Coordinate via messages to avoid conflict?
– Or just hope for the best?



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node, very early results)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4 8 16 32 64 128

CPU (8ppn)
CPU (4ppn)
CPU (2ppn)
GPU (8ppn)
GPU (4ppn)
GPU (2ppn)

2 GPUs = 24 cores
4 GPUs

8 GPUs
16 GPUs

CPU cores

STMV s/step

8 GPUs =
96 CPU cores

~5.6 ~2.8



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

No GPU Sharing (Ideal World)

Remote Force Local ForceGPU 1

x
f f

x

Remote Force Local ForceGPU 2

x
f f

x



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Desired)

Remote Force Local Force

Client 2

x
f f

x

Remote Force Local Force

Client 1

x
f f

x



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Feared)

Remote 
Force

Local
Force

Client 2

x
f f

x

Remote 
Force

Local
Force

Client 1

x
f f

x



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Observed)

Remote 
Force

Local
Force

Client 2

x
f f

x

Remote 
Force

Local
Force

Client 1

x
f f

x



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Explained)

• CUDA is behaving reasonably, but
• Force calculation is actually two kernels

– Longer kernel writes to multiple arrays
– Shorter kernel combines output

• Possible solutions:
– Use locks (atomics) to merge kernels (not G80)
– Explicit inter-client coordination



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Conclusions and Outlook

• CUDA today is sufficient for
– Single-GPU acceleration (the mass market)
– Coarse-grained multi-GPU parallelism

• Enough work per call to spin up all multiprocessors

• Improvements in CUDA are needed for
– Assigning GPUs to processes
– Sharing GPUs between processes
– Fine-grained multi-GPU parallelism

• Fewer blocks per call than chip has multiprocessors
– Moving data between GPUs (same or different node)

• Faster processors will need a faster network!



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Theoretical and Computational Biophysics Group, 

University of Illinois at Urbana-Champaign
• Prof. Wen-mei Hwu, Chris Rodrigues, IMPACT Group, 

University of Illinois at Urbana-Champaign
• Mike Showerman, Jeremy Enos, NCSA
• David Kirk, Massimiliano Fatica, NVIDIA
• NIH support: P41-RR05969

http://www.ks.uiuc.edu/Research/gpu/


	Adapting a Message-Driven Parallel Application to GPU-Accelerated Clusters
	Outline
	 
	Message-Driven Programming
	System Noise Example�Timeline from Charm++ tool “Projections”
	Message-Driven CUDA?
	“Remote Forces”
	Overlapping GPU and CPU with Communication
	Actual Timelines from NAMD�Generated using Charm++ tool “Projections”
	NCSA “4+4” QP Cluster
	GPU Cluster Observations
	New NCSA “8+2” Lincoln Cluster
	NCSA Lincoln Cluster Performance�(8 cores and 2 GPUs per node, very early results)
	No GPU Sharing (Ideal World)
	GPU Sharing (Desired)
	GPU Sharing (Feared)
	GPU Sharing (Observed)
	GPU Sharing (Explained)
	Conclusions and Outlook
	Acknowledgements

