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Outline

• NAMD and message-driven programming
• Adapting NAMD to GPU-accelerated clusters
• Old NCSA QP cluster performance results
• New NCSA Lincoln cluster performance results
• Does CUDA like to share?
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• Spatially decompose 
data and communication.
• Separate but related 
work decomposition.
• “Compute objects” 
facilitate iterative, 
measurement-based load 
balancing system.

NAMD Hybrid Decomposition
Kale et al., J. Comp. Phys. 151:283-312, 1999.
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Message-Driven Programming

• No receive calls as in “message passing”
• Messages sent to object “entry points”
• Incoming messages placed in queue

– Priorities are necessary for performance
• Execution generates new messages
• Implemented in Charm++ on top of MPI

– Can be emulated in MPI alone
– Charm++ provides tools and idioms
– Parallel Programming Lab: http://charm.cs.uiuc.edu/
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System Noise Example
Timeline from Charm++ tool “Projections”
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847 objects 100,000

NAMD Overlapping Execution

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU
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Message-Driven CUDA?

• No, CUDA is too coarse-grained.
– CPU needs fine-grained work to interleave and pipeline.
– GPU needs large numbers of tasks submitted all at once.

• No, CUDA lacks priorities.
– FIFO isn’t enough.

• Perhaps in a future interface:
– Stream data to GPU.
– Append blocks to a running kernel invocation.
– Stream data out as blocks complete.
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“Remote Forces”

• Forces on atoms in a local 
patch are “local”

• Forces on atoms in a remote
patch are “remote”

• Calculate remote forces first to 
overlap force communication 
with local force calculation

• Not enough work to overlap 
with position communication

Local
Patch

Remote
Patch

Local
Patch

Remote
Patch

Remote
Patch

Remote
Patch

Work done by one processor



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Overlapping GPU and CPU
with Communication
Remote Force Local ForceGPU
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Actual Timelines from NAMD
Generated using Charm++ tool “Projections”
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NCSA “4+4” QP Cluster
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GPU Cluster Observations

• Tools needed to control GPU allocation
– Simplest solution is rank % devicesPerNode
– Doesn’t work with multiple independent jobs

• CUDA and MPI can’t share pinned memory
– Either user copies data or disable MPI RDMA
– Need interoperable user-mode DMA standard

• Speaking of extra copies…
– Why not DMA GPU to GPU?
– Even better, why not RDMA over InfiniBand?
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New NCSA “8+2” Lincoln Cluster

• CPU: 2 Intel E5410 Quad-Core 2.33 GHz
• GPU: 2 NVIDIA C1060

– Actually S1070 shared by two nodes
• How to share a GPU among 4 CPU cores?

– Send all GPU work to one process?
– Coordinate via messages to avoid conflict?
– Or just hope for the best?
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NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node, very early results)
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No GPU Sharing (Ideal World)
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GPU Sharing (Desired)
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GPU Sharing (Feared)
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GPU Sharing (Observed)
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GPU Sharing (Explained)

• CUDA is behaving reasonably, but
• Force calculation is actually two kernels

– Longer kernel writes to multiple arrays
– Shorter kernel combines output

• Possible solutions:
– Use locks (atomics) to merge kernels (not G80)
– Explicit inter-client coordination
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Conclusions and Outlook

• CUDA today is sufficient for
– Single-GPU acceleration (the mass market)
– Coarse-grained multi-GPU parallelism

• Enough work per call to spin up all multiprocessors

• Improvements in CUDA are needed for
– Assigning GPUs to processes
– Sharing GPUs between processes
– Fine-grained multi-GPU parallelism

• Fewer blocks per call than chip has multiprocessors
– Moving data between GPUs (same or different node)

• Faster processors will need a faster network!
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