One of the primary sources of energy to earth life is the sun energy and photosynthesis is the first fundamental step in the ecosystem to make this energy available to other life forms. It is therefore crucial to study photosynthesis in various scale to understand the archecture and process of this robust energy supply method. Researchers in the Theoretical and Computational Biophysics Group are particularly interested in studying this bioenergetic process with atomic details, including the archecture of pigment-protein units in the membrane level, the overall functioning process from exciation to ATP in PSU of purple bacteria and short-time dynamics of excitation migration under various protein environments.

Spotlight: Bacteria Harvest Light Efficiently (Sep 2016)

pressure-jump

image size: 955.8KB
made with VMD

Most life on Earth is powered directly or indirectly by harvesting the energy of sunlight. Plants and bacteria convert solar energy into chemical energy, which is used, ultimately, for producing food. Compared to the complicated energy harvesting apparatus of plants, the primitive purple bacteria display a far simpler instance of photosynthesis. In purple bacteria, the energy harvesting processes are performed by a spherical vesicle, called the chromatophore, featuring hundreds of cooperating proteins assembled together on a membrane. A team of experimental and computational scientists have recently reported the overall efficiency of this energy conversion process based on a structural model. The energy conversion process in the chromatophore shows that the bacteria adapted to efficiently harvest light at the dim light conditions typical of their habitat. At bright light conditions, the bacteria instead dissipate the harvested energy to protect against damage. A step-by-step summary of the energy conversion processes in the chromatophore can be viewed in a video produced by high performance computing (YouTube video; discussed further in article 1 and article 2.) More on energy harvesting by bacteria can be found on our photosynthesis page and the chromatophore page.

Related Spotlights

Related Publications
Related Research
Investigators
Publications Database
  • Overall energy conversion efficiency of a photosynthetic vesicle. Melih Sener, Johan Strümpfer, Abhishek Singharoy, C. Neil Hunter, and Klaus Schulten. eLife, 10.7554/eLife.09541, 2016. (30 pages).
  • Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing. John E. Stone, Melih Sener, Kirby L. Vandivort, Angela Barragan, Abhishek Singharoy, Ivan Teo, Joao V. Ribeiro, Barry Isralewitz, Bo Liu, Boon Chong Goh, James C. Phillips, Craig MacGregor-Chatwin, Matthew P. Johnson, Lena F. Kourkoutis, C. Neil Hunter, and Klaus Schulten. Parallel Computing, 55:17-27, 2016.
  • Identification of ubiquinol binding motifs at the Qo-site of the cytochrome bc1 complex. Angela M. Barragan, Antony R. Crofts, Klaus Schulten, and Ilia A. Solov'yov. Journal of Physical Chemistry B, 119:433-447, 2015.
  • Visualization of energy conversion processes in a light harvesting organelle at atomic detail. Melih Sener, John E. Stone, Angela Barragan, Abhishek Singharoy, Ivan Teo, Kirby L. Vandivort, Barry Isralewitz, Bo Liu, Boon Chong Goh, James C. Phillips, Lena F. Kourkoutis, C. Neil Hunter, and Klaus Schulten. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC '14. IEEE Press, 2014. (4 pages).
  • Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Michaël L. Cartron, John D. Olsen, Melih Sener, Philip J. Jackson, Amanda A. Brindley, Pu Qian, Mark J. Dickman, Graham J. Leggett, Klaus Schulten, and C. Neil Hunter. Biochimica et Biophysica Acta - Bioenergetics, 1837:1769-1780, 2014.
  • Light harvesting by lamellar chromatophores in Rhodospirillum photometricum. Danielle Chandler, Johan Strümpfer, Melih Sener, Simon Scheuring, and Klaus Schulten. Biophysical Journal, 106:2503-2510, 2014.
  • Excited state dynamics in photosynthetic reaction center and light harvesting complex 1. Johan Strümpfer and Klaus Schulten. Journal of Chemical Physics, 137:065101, 2012. (8 pages).
  • Open quantum dynamics calculations with the hierarchy equations of motion on parallel computers. Johan Strümpfer and Klaus Schulten. Journal of Chemical Theory and Computation, 8:2808-2816, 2012.
  • Juxtaposing density matrix and classical path-based wave packet dynamics. Mortaza Aghtar, Jörg Liebers, Johan Strümpfer, Klaus Schulten, and Ulrich Kleinekathöfer. Journal of Chemical Physics, 136:214101, 2012. (9 pages).
  • How quantum coherence assists photosynthetic light harvesting. Johan Strumpfer, Melih Sener, and Klaus Schulten. Journal of Physical Chemistry Letters, 3:536-542, 2012.
  • The effect of correlated bath fluctuations on exciton transfer. Johan Strümpfer and Klaus Schulten. Journal of Chemical Physics, 134:095102, 2011. (9 pages).
  • Förster energy transfer theory as reflected in the structures of photosynthetic light harvesting systems. Melih Sener, Johan Strümpfer, Jen Hsin, Danielle Chandler, Simon Scheuring, C. Neil Hunter, and Klaus Schulten. ChemPhysChem, 12:518-531, 2011.
  • The light-harvesting apparatus in purple photosynthetic bacteria, introduction to a quantum biological device. Johan Strümpfer, Jen Hsin, Melih Sener, Danielle Chandler, and Klaus Schulten. In Benoit Roux, editor, Molecular Machines, chapter 2, pp. 19-48. World Scientific Press, 2011.
  • Photosynthetic vesicle architecture and constraints on efficient energy harvesting. Melih Sener, Johan Strumpfer, John A. Timney, Arvi Freiberg, C. Neil Hunter, and Klaus Schulten. Biophysical Journal, 99:67-75, 2010.
  • Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane. Jen Hsin, Johan Strümpfer, Melih Sener, Pu Qian, C. Neil Hunter, and Klaus Schulten. New Journal of Physics, 12:085005, 2010. (19 pages).
  • Self-assembly of photosynthetic membranes. Jen Hsin, Danielle E. Chandler, James Gumbart, Christopher B. Harrison, Melih Sener, Johan Strumpfer, and Klaus Schulten. ChemPhysChem, 11:1154-1159, 2010.
  • Membrane curvature induced by aggregates of LH2s and monomeric LH1s. Danielle E. Chandler, James Gumbart, John D. Stack, Christophe Chipot, and Klaus Schulten. Biophysical Journal, 97:2978-2984, 2009.
  • Protein-induced membrane curvature investigated through molecular dynamics flexible fitting. Jen Hsin, James Gumbart, Leonardo G. Trabuco, Elizabeth Villa, Pu Qian, C. Neil Hunter, and Klaus Schulten. Biophysical Journal, 97:321-329, 2009.
  • Intrinsic curvature properties of photosynthetic proteins in chromatophores. Danielle Chandler, Jen Hsin, Christopher B. Harrison, James Gumbart, and Klaus Schulten. Biophysical Journal, 95:2822-2836, 2008.
  • From atomic-level structure to supramolecular organization in the photosynthetic unit of purple bacteria. Melih K. Sener and Klaus Schulten. In C. Neil Hunter, Fevzi Daldal, Marion C. Thurnauer, and J. Thomas Beatty, editors, The Purple Phototrophic Bacteria, volume 28 of Advances in Photosynthesis and Respiration, pp. 275-294. Springer, 2008.
  • Atomic level structural and functional model of a bacterial photosynthetic membrane vesicle. Melih K. Sener, John D. Olsen, C. Neil Hunter, and Klaus Schulten. Proceedings of the National Academy of Sciences, USA, 104:15723-15728, 2007.
  • Molecular dynamics simulation of bacteriorhodopsin's photoisomerization using ab initio forces for the excited chromophore. Shigehiko Hayashi, Emad Tajkhorshid, and Klaus Schulten. Biophysical Journal, 85:1440-1449, 2003.
  • Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. Jan Saam, Emad Tajkhorshid, Shigehiko Hayashi, and Klaus Schulten. Biophysical Journal, 83:3097-3112, 2002.
  • Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Shigehiko Hayashi, Emad Tajkhorshid, and Klaus Schulten. Biophysical Journal, 83:1281-1297, 2002.
  • Structural determinants of spectral tuning in retinal proteins - bacteriorhodopsin vs sensory rhodopsin II. Shigehiko Hayashi, Emad Tajkhorshid, Eva Pebay-Peyroula, Antoine Royant, Ehud M. Landau, Javier Navarro, and Klaus Schulten. Journal of Physical Chemistry B, 105:10124-10131, 2001.
  • Molecular dynamics study of bacteriorhodopsin and the purple membrane. Jerome Baudry, Emad Tajkhorshid, Ferenc Molnar, James Phillips, and Klaus Schulten. Journal of Physical Chemistry B, 105:905-918, 2001.
  • Molecular dynamics study of bacteriorhodopsin and the purple membrane. Jerome Baudry, Emad Tajkhorshid, Ferenc Molnar, James Phillips, and Klaus Schulten. Journal of Physical Chemistry B, 105:905-918, 2001.
  • Characterization of a conical intersection between the ground and first excited state for a retinal analog. Ferenc Molnar, Michal Ben-Nun, Todd J. Martínez, and Klaus Schulten. Journal of Molecular Structure (THEOCHEM), WATOC special issue, 506:169-178, 2000.
  • Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Emad Tajkhorshid, Jerome Baudry, Klaus Schulten, and Sandor Suhai. Biophysical Journal, 78:683-693, 2000.
  • Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc1 complex. Sergei Izrailev, Antony R. Crofts, Edward A. Berry, and Klaus Schulten. Biophysical Journal, 77:1753-1768, 1999.
  • A chemical compass for bird navigation. Ilia A. Solov'yov, P. J. Hore, Thorsten Ritz, and Klaus Schulten. In Masoud Mohseni, Yasser Omar, Greg Engel, and Martin B. Plenio, editors, Quantum Effects in Biology, chapter 10, pp. 218-236. Cambridge University Press, 2014.
  • Separation of photo-induced radical pair in cryptochrome to a functionally critical distance. Ilia Solov'yov, Tatiana Domratcheva, and Klaus Schulten. Scientific Reports, 4:3845, 2014. (8 pages).
  • Decrypting cryptochrome: Revealing the molecular identity of the photoactivation reaction. Ilia A. Solov'yov, Tatiana Domratcheva, Abdul R. M. Shahi, and Klaus Schulten. Journal of the American Chemical Society, 134:18046-18052, 2012.
  • Reaction kinetics and mechanism of magnetic field effects in cryptochrome. Ilia A. Solov'yov and Klaus Schulten. Journal of Physical Chemistry B, 116:1089-1099, 2012.
  • Acuity of a cryptochrome and vision based magnetoreception system in birds. Ilia A. Solov'yov, Henrik Mouritsen, and Klaus Schulten. Biophysical Journal, 99:40-49, 2010.
  • How birds and other animals orient in the Earth magnetic field. Ilia A. Solov'yov, Klaus Schulten, and Walter Greiner. Physik Journal, 9:23-28, 2010. (article in German only).
  • Magnetoreception through cryptochrome may involve superoxide. Ilia A. Solov'yov and Klaus Schulten. Biophysical Journal, 96:4804-4813, 2009.
  • Exploring the possibilities for radical pair effects in cryptochrome. Ilia A. Solov'yov, Danielle Chandler, and Klaus Schulten. Plant Signaling and Behavior, 3:676-677, 2008.
  • Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Ilia A. Solov'yov, Danielle E. Chandler, and Klaus Schulten. Biophysical Journal, 92:2711-2726, 2007.