High Performance Computation and
Interactive Display of Molecular Orbitals on
GPUs and Multi-core CPUs

John E. Stone
Beckman Institute
University of lllinois at
Urbana-Champaign

_ Urbana, IL 61801
johns@ks.uiuc.edu

Kirby L. Vandivort
Beckman Institute
University of lllinois at
Urbana-Champaign
Urbana, IL 61801
kvandivo@ks.uiuc.edu

Jan Saam
Beckman Institute
University of lllinois at
Urbana-Champaign
Urbana, IL 61801
saam@ks.uiuc.edu

Wen-mei W. Hwu
Department of Electrical and
Computer Engineering
University of lllinois at
Urbana-Champaign
Urbana, IL 61801

David J. Hardy
Beckman Institute
University of lllinois at
Urbana-Champaign
Urbana, IL 61801
dhardy@ks.uiuc.edu

*
Klaus Schulten
Department of Physics
University of lllinois at
Urbana-Champaign
Urbana, IL 61801
kschulte@ks.uiuc.edu

w-hwu@uiuc.edu

ABSTRACT

The visualization of molecular orbitals (MOs) is important
for analyzing the results of quantum chemistry simulations.
The functions describing the MOs are computed on a three-
dimensional lattice, and the resulting data can then be used
for plotting isocontours or isosurfaces for visualization as
well as for other types of analyses. Existing software pack-
ages that render MOs perform calculations on the CPU and
require runtimes of tens to hundreds of seconds depending
on the complexity of the molecular system.

We present novel data-parallel algorithms for computing
lattices of MOs on modern graphics processing units (GPUs)
and multi-core CPUs. The fastest GPU algorithm achieves
up to a 125-fold speedup over an optimized CPU implemen-
tation running on one CPU core. We also demonstrate pos-
sible benefits of dynamic GPU kernel generation and just-in-
time compilation for MO calculation. We have implemented
these algorithms within the popular molecular visualization
program VMD, which can now produce high quality MO ren-
derings for large systems in less than a second, and achieves
the first-ever interactive animations of quantum chemistry
simulation trajectories using only on-the-fly calculation.

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GPGPU ’09 March 8, 2009 Washington, DC

Copyright (©) 2009 ACM 978-1-60558-517-8/09/03 ...$5.00.

Categories and Subject Descriptors

J.2 [Computer Applications]: Physical Sciences and En-
gineering— Chemistry; D.1.3 [Programming Techniques]:
Concurrent Programming—parallel programming

General Terms

Algorithms, Design, Performance

Keywords
GPU computing, GPGPU, CUDA, molecular orbital

1. INTRODUCTION

A molecular orbital (MO) represents a stationary state in
which an electron can be found in a molecule, where the
MO’s spatial distribution is correlated to the probability
density for the electron. Visualization of MOs is an im-
portant task for understanding the chemistry of molecular
systems. MOs appeal to the chemist’s intuition, and inspec-
tion of the MOs aids in explaining chemical reactivities. For
instance, showing the orbital dynamics of a system along
a reaction coordinate provides insight into the mechanism
of a chemical reaction. Some existing software tools with
these capabilities include MacMolPlt [2], Molden [17], and
Molekel [15].

The calculations required for visualizing MOs are compu-
tationally demanding, and existing quantum chemistry vi-
sualization programs are only fast enough to interactively
compute MOs for small molecules on a relatively coarse lat-
tice. Existing visualization tools perform molecular orbital
calculations on the CPU and require runtimes of tens to hun-
dreds of seconds, depending on the complexity of the molec-
ular system and spatial resolution of the MO discretization
and subsequent surface plots. Few of these packages are
parallelized for multi-core CPUs, and none for graphics pro-
cessing units (GPUs), so a great opportunity exists to im-

prove upon their capabilities in terms of interactivity, visual
display quality, and scalability to larger and more complex
molecular systems.

The advent of classical molecular dynamics (MD) simu-
lations marked a fundamental change in the understanding
of the function of complex biomolecular systems, providing
the ability to view atomic motions hitherto unavailable to
experimental techniques. A key to this understanding has
been the ability to interactively animate MD trajectories at
rates of 10 frames per second or faster, providing a lively
view of their dynamical behavior. After decades of classical
simulations and movies of classical motions, we are now en-
tering the era of visualizing quantum mechanical dynamics
behavior. With the new capability to interactively animate
MOs, researchers will have a much better intuition for what
the electrons are “doing” during a reaction. In combined
quantum mechanics/molecular mechanics (QM/MM) sim-
ulations, the orbital dynamics can now be computed and
displayed at the same rate as the motion of the atomic nu-
clei.

The recent shift of computer architecture away from high
speed serial processors toward multi-core CPUs and mas-
sively parallel devices such as GPUs has led researchers to
begin redesigning key computational kernels to exploit the
performance of modern hardware. GPUs have emerged as a
revolutionary technological opportunity due to their tremen-
dous floating point capability, low cost, and ubiquitous pres-
ence in commodity computer systems. In particular, the
fields of computational chemistry and biology have enjoyed
early successes in exploiting GPUs to accelerate computa-
tionally demanding tasks [20} (14} [1,[21]. The CUDA GPU
programming toolkit enabled many of these prior efforts and
is the basis of the work described in this paper. Nickolls
et al. provide a detailed discussion of the CUDA program-
ming model [13]. In this paper we present high performance
data-parallel algorithms for computing MOs on multi-core
CPUs and GPUs and details of their implementation within
the molecular visualization program VMD [9]. We evaluate
our algorithms on several representative test cases, compare
their performance with two popular quantum chemistry vi-
sualization tools, and describe opportunities for further im-
provement.

2. BACKGROUND

We can offer here only a brief introduction to MOs and
basis sets; more details can be found in computational chem-
istry textbooks and reviews [4,/5]. MOs are solutions of the
Schrodinger equation. Numerous quantum chemistry pack-
ages exist (e.g., GAMESS [18], Gaussian [7] or NWChem [3])
that solve the electronic Schrodinger equation HV = EV for
a given system; this text discusses the visualization of these
solutions. Examples are shown in Fig./[1. MOs are the eigen-
functions W, of the molecular wavefunction ¥, with H the
Hamiltonian operator and E the system energy. The wave-
function determines molecular properties. For instance, the
one-electron density is p(r) = |¥(r)|>. The scheme to eval-
uate the wavefunction presented here can be used with only
minor modifications to compute other molecular properties
like the charge density, the molecular electrostatic potential,
or multipole moments.

Each MO W, can be expressed as a linear combination

shell | l | m | basis function ®; ,, |

S 0 0 cDoo INooeXp(—CRQ)
o 0 | ®10= Nioexp(—CRY)x
P, 11 | @11 = Ni1exp(—CR?)y
P, 2 | ®12=DNizexp(—(R?)z
das 0 ®20 = Najoexp(— §R2) z?
day 1 | @21 = Nojexp(—CR?) zy
doz | 5| 2 | P22 =Nogexp(— CR?) 2z
dyy 3 | o = Nogexp(—CR)y’
dy. 4 | @94 = Nogexp(—CR?) yz
dzz 5 ¢2,5 = N2 ,5 eXp(CR2) 22
Table 1: Basis functions for s, p and d shells. Each

shell has a certain number of components (such as
P.s Py p,) associated with functions representing
different angular momenta.

over a set of K basis functions ®,,

K
U= by, (1)
k=1

where c,,, are coefficients provided in the output of the QM
package and used as input to our calculation. The basis
functions used by the vast majority of quantum chemical
calculations are atom-centered functions that approximate
the solution of the Schrodinger equation for a single hydro-
gen atom with one electron, hence they are called “atomic
orbitals.” Fig.[2|depicts the shapes of a few common atomic
orbitals.

Because they are not suitable for fast computation, func-
tions representing the ezact solutions of the Schrédinger
equation for the hydrogen atom are not used as basis func-
tions in modern quantum chemistry packages. Instead, they
are modeled with more computationally efficient, so-called
Gaussian type orbitals (GTOs):

OFTOR, ¢) = Neea' y? 2Fexp(—CRY). (2)

1,5,k
Here, the exponential factor (is a part of the basis set defi-
nition, and 4, j, and k, are used to modulate the functional
shape. N¢ijr is a normalization factor deduced from the
basis set definition, as presented in the next section. The
vector R = {x,y, z} of length R = |R| connects the nucleus
on which this basis function is centered to the current point
in space.

The exponential term in Eq. (2) produces the radial decay
of the function. To accurately describe the radial behavior
of the atomic orbital (e.g., higher shells have radial nodes),
linear combinations of GTOs are used as basis functions.
These composite basis functions are called contracted GTOs
(CGTOs), and the P individual GTOs are referred to as
primitives,

OO, {ep} {6} Zcp<1>?f;? R, (). (3)

The set of contraction coefficients {c,} and the set of ex-
ponents {(p} defining the CGTO are output from the QM
package.

CGTOs are classified into different shells based on the
sum [= ¢ 4+ j + k of the exponents of the x, y, and z fac-

Figure 1: Examples of MO isovalue surfaces resulting from the lattice of wavefunction amplitudes computed
for each molecule: Carbon-60, the amino acid threonine, and the element krypton. Isosurfaces of positive
values are shown in blue, and negative valued isosurfaces are shown in orange.

COEYL

Figure 2: Shape of 1s, 2p., 3p, and 3d., atomic orbitals.

tors. The shells are designated by letters s, p, d, f, and
g for | = 0,1,2,3,4, respectively, where we explicitly list
here the most common shell types but note that higher-
numbered shells are occasionally used. The set of indices
for a shell are also referred to as the different angular mo-
menta of that shell. We establish an alternative index-
ing of the angular momenta based on the shell number [
and a systematic indexing m over the possible number of

sums | = i+ j + k, where M; = (l+l2) counts the num-
ber of combinations and m = 0,..., M; — 1 references the
set {(i,7,k) : i +j+ k = l}. For example, the angular

momenta for the [= 2 shell can be listed by (i,7,k) —
(2,0,0), (1,1,0), (1,0,1), (0,2,0), (0,1,1), (0,0,2). The an-
gular momenta of the s, p, and d shells are listed in Table|1!

The linear combination defining the MO ¥, must also sum
contributions by each of the N atoms of the molecule and
the L, shells of each atom n. The entire expression, now
described in terms of the data output from a QM package,
for an MO wavefunction evaluated at a point r in space then
becomes

K
U, (r) = Z Cor®r

s

¥

= m=0

s
g

1—

Cunlmcbs,?,?no (Rna {C}v {C})v (4)

3
Il
—

where we have replaced ¢, by cunim, with the vectors R,, =
r — r, connecting the position r,, of the nucleus of atom n
to the desired spatial coordinate r. We have dropped the
subscript p from the set of contraction factors {c¢} and expo-
nents {¢} with the understanding that each CGTO requires
an additional summation over the primitives, as expressed

in Eq. (3).

3. ALGORITHMIC DETAILS

For the purpose of visualization, an MO is essentially the
3-D scalar field of the wavefunction amplitude. There are
several ways to depict such a field. For a single planar slice
through the scalar field, one can display a height field or
contour lines on a plane. In three dimensions, MOs may
be depicted through isosurfaces or direct volume rendering
of the scalar field. Isosurfaces are the most popular visu-
alization choice among quantum chemists, presumably due
to the comparatively low computational cost. Common to
all visualization techniques used is the computation of the
wavefunction amplitude on a lattice, which is a discretiza-
tion of Eq. (4). Since the wavefunction has diminished to
zero beyond a few Angstroms from the molecule, the lat-
tice size is determined by the boundaries of the molecule
plus some margin. We have developed a series of multi-core
CPU and GPU algorithms for computing MOs on regularly
spaced lattices. The strategies for achieving high perfor-
mance on CPUs and GPUs are quite different due to their
unique architectural strengths, and we highlight the differ-
ences between our solutions.

3.1 Preparing and optimizing the computation

Two sets of data are needed for the evaluation of MOs:
the basis set, comprised of the contraction coefficients and
exponents for each primitive, and the wavefunction coeffi-
cients. The number of shells can vary between atoms and
the number of primitives and angular momenta can be dif-
ferent for each shell. Hence, the basis set and wavefunction
would be most conveniently stored in the form of hierar-
chical data structures. However, for increased locality of
reference and peak traversal performance on the GPU (due
to global memory coalescing requirements), we craft packed
coefficient arrays and then compose indexing arrays with the
number of shells per atom and with the number of primitives

per shell.

The output of a QM package typically lists the basis set
for each atom independently, even though the basis func-
tions for atoms of the same chemical element are identical.
Our implementation preprocesses the loaded data, resulting
in a unique basis set with only one entry for each chemical
element type. The elimination of redundant basis set data
boosts CPU performance by increasing cache hit rates, but
it particularly benefits the GPU by conserving scarce on-
chip memory. By sorting atoms according to their chemical
element type and processing them in sorted order, the basis
set data can be reused multiple times without the need to
re-fetch it from (slow) main memory. This provides a per-
formance benefit on both the CPU and GPU in cases where
molecules contain many atoms of the same chemical element
type.

The normalization factor N¢;jx appearing in Eq. can
be factored into a first part n¢; that depends on both the
exponent ¢ and shell type [= i+ j+k and a second part n;;
(= mm in terms of our alternative indexing) that depends
only on the angular momentum,

20\ 1 il k!
Neigh = (7) V(8¢ m = ¢t Mijk- (5)

The separation of the normalization factor allows us to fac-
tor the summation over the primitives from the summation
over the wavefunction array. Combining Egs. (2)—(4) and
rearranging terms gives

N Lp—1 /M;—1
U, (r) = Z Z < Z CunlmMim wlm) X
= /

n=1 m=0

vnlm

Py
< el exp(chi>> - (6)
p=1 \,’J
P

We define wym = @'y’ 2* using our alternative indexing
over | and m explained in the previous section. We re-
duce both data storage and operation count by defining
Cratm = CvalmMim and ¢, = ¢pn¢r. The number of primitives
P,; depends on both the atom n and the shell number [.
Fig.[3 shows the organization of the basis set and wavefunc-
tion coefficient arrays listed for a small example molecule.

Pseudo-code for the evaluation of Eq. (6) is shown in Al-
gorithm [1] providing the foundation for both the CPU and
GPU kernels described below. For high performance, wave-
function coefficients for the angular momenta are sorted in
a preprocessing step and stored in the order they will be
referenced within the loop over shell types. Since basis sets
may involve arbitrarily high shell types, a looping construct
is required to evaluate the angular momenta. The algorithm
shows how we eliminate a loop over the third index by ex-
ploiting k =l — ¢ — j. Extra evaluations of the pow() library
function to compute powers of x, y, and z are avoided by
using successive multiplications that follow the increments
to the 4, j, and k indexes. One significant performance opti-
mization not shown in the algorithm is the use of switch case
statements to augment the loop body that processes the an-
gular momenta for the most commonly occurring shell types.
Each shell type up to g is evaluated with a hand-coded un-
rolling of the angular momenta loops, such as in Table[1. By
unrolling these loops and precomputing the most frequently

Algorithm 1 Calculate MO value W, (r) at lattice point r
for given wavefunction and basis set coeflicient arrays.

1: ¥, <=0.0

2: ifunc < 0 {index array of wavefunction coefficients}

3: shell_counter <= 0 {index array of shell numbers}

4: for n =1 to N do {loop over atoms}

5. (z,y,%) <r —r, {r, is position of atom n}

6

7

R <2 +y* + 27
prim_counter < atom_basis|n] {index arrays of basis

set data}
8: for | = 0 to num_shells_per_atom|n] — 1 do {loop over
shells}
9: PETO < 0.0
10: for p = 0 to num_prim_per_shell[shell_counter] — 1
do {loop over primitives}

11: ¢, < basis_c[prim_counter]

12: Cp < basis_zeta[prim_counter]

13: POCTO = §OCTO 4 ¢ x exp(—(p * R?)

14: prim_counter <= prim_counter + 1

15: end for

16: for all ¢ such that 0 < ¢ < shell_type[shell_counter]

do {loop over angular momenta}

17: Jmazx < shell_type[shell_counter] — i

18: for all j such that 0 < 5 < jmaz do

19: k < jmax — j
20: ¢ < wavefunction|ifunc]
21: U, <= U, + ¢« PCCTO s g% 5 y7 5 2*
22: ifunc < ifunc + 1
23: end for
24: end for
25: shell_counter <= shell_counter + 1
26: end for
27: end for

28: return WV,

used powers of x, y, and z in the outermost loop over atoms,
a 20% to 50% overall performance increase is achieved versus
the loop-based implementation shown here.

Visualization of an MO is accomplished by repeated eval-
uations of Algorithm[1 to compute a three-dimensional map
of U, on a finely spaced lattice. Letting pu be the number
of lattice points, we see that the overall computational com-
plexity for calculating this map is O (/_LNL(M—FP)), increas-
ing quadratically as the product of the number of lattice
points and number of atoms N, with a significant opera-
tion constant bounded by L(M + P), where L = max{Ly},
M = My _1), and P = max{Pp}.

3.2 Fast approximation of Gaussians

Due to the computational expense of evaluating e® by
calling expf (x) on the CPU, we have investigated the pos-
sibility of accelerating the overall calculation by replacing
expf () with a less costly approximation. The demands of
visualizing MOs permit reduced precision if we maintain the
general shape and smoothness of the Gaussians.

For the approximation of Gaussians, we take advantage
of the domain restriction of e” to < 0. Since floating
point powers of 2 are cheap to calculate by directly manip-
ulating the bits of the exponent, we convert the exponential
employing e® = 2"~% whence n — d = xlog, e, with n an
integer and 0 < d < 1. We exactly calculate 2™ as the scal-
ing factor for an interpolation of 27¢. Sufficient accuracy

I H I CGTO (6 primitives)

basis set

@O

wavefunction

| (o
T DO DI TOT D00 a

‘W_J
1s 1s2s 2p

CII]CIX y ZI I IX ‘ y ‘ ZIX ‘ y ‘ ZIXZ‘Xy‘XZ‘yZ‘yz‘ZZ) vnim
=

3p 3d array element

Figure 3: Structure of the basis set and the wavefunction coefficient arrays for HCI using the 6-31G* basis [6].
Each rounded box symbolizes the data pertaining to a shell. In the basis set array, an element in a box denotes
both the exponent ¢, and contraction coefficient ¢, for one primitive. In the wavefunction array the elements
signify linear combination coefficients c,,,,;,, for the basis functions. Despite the differing angular momenta,
all basis functions of a shell (marked by z, y, and z) use the same linear combination of primitives (see lines
relating the two arrays). For example, the 2p shell in Cl is associated with 3 angular momenta that all
share the exponents and contraction coefficients of the same 6 primitives. There can be more than one basis

function for a given shell type (brackets below array).

is obtained by using a linear blending of third degree Tay-
lor polynomials of 2¥ expanded about y = —1 and y = 0,
providing a continuously differentiable interpolation. The
maximum relative error per interval is 0.131%, with a max-
imum absolute error of —0.000716. The entire calculation
requires just six multiplies, six adds/subtracts, one bit shift,
and one floorf() evaluation. We also accelerate the overall
computation by using a cutoff value of —10, beyond which
we truncate the approximation to 0 to avoid extra calcula-
tion. Manual testing indicates that our fast approximation
works fine in practice for isosurface values larger than 10™%,
below which artifacts appear. The algorithm is amenable
to Streaming SIMD Extensions (SSE) instructions that per-
form four evaluations simultaneously, and both standard and
SSE kernels are tested in the following section and show
marked speedup compared to the use of expf().

Beyond the approximation of e for calculating Gaussians,
an even greater performance improvement may be available
through interpolating the entire linear combination of GTO
primitives for each contracted GTO, shown in Eq. (3). Un-
like our approximation of e®, this would require interpola-
tion from a lookup table of precomputed values, but with
the benefit of eliminating an inner loop of the calculation.

3.3 CPU algorithm details

It is a straightforward task to implement a sequential
algorithm for computing MOs on the CPU. Modern CPU
caches are large enough that, for many small molecules, the
MO coefficient data will fit in the largest L3 or L2 cache.
Since MO lattice values can be computed completely inde-
pendently, the series of nested loops for processing the lattice
points can be easily decomposed into separate planes, slabs,
or blocks for parallel computation on multiple CPU cores.
The preprocessing optimizations described above make the
algorithm cache-friendly, so each CPU core spends most of
its time working from local cache, and main memory band-
width is not a significant bottleneck, even for a multi-core
kernel.

With the previously described preprocessing and arith-
metic optimizations in place, the dominant component of
CPU runtime is the exponential computation for each basis
set primitive. Most CPUs do not include dedicated instruc-
tions for computing exponentials, so they are provided by

an external math library. The cost of calling an external
C math library expf () function can be hundreds to over a
thousand clock cycles, depending on the quality of the im-
plementation and the processor hardware architecture. The
use of an inlined function or a fast compiler intrinsic can of-
ten provide a substantial performance boost by eliminating
function call overhead. For the CPU kernel, we use an in-
lined expf () function based on the Cephes math library by
Steven Moshier [11]. Further performance gains are achieved
by replacing the use of expf () with an approximation specif-
ically tailored to the MO computation, as described above.

Further performance gains can be achieved by computing
multiple lattice values at a time using SIMD instructions
such as SSE. In theory, the use of 4-way SSE instructions
would yield a 4x performance increase, but this comes at
the cost of hand-coding the MO processing loop using SSE
compiler intrinsics or direct assembly language, as existing
compilers are incapable of automatically vectorizing the ex-
ponential function. The 4-way SSE kernels required careful
design since the SSE instruction set does not allow diver-
gent branching or scatter-gather memory operations. Due
to SSE restrictions on memory alignment and partial loads
and stores, the lattice is padded to an even multiple of four
elements in the x-dimension. The innermost loop over lat-
tice points in the x-dimension is then modified to process
groups of four lattice points at a time.

3.4 GPU algorithm details

The authors have previously explored several GPU al-
gorithms for computing Coulomb potentials on regularly
spaced lattices, which is a problem with similarities to the
MO computation presently of interest. In our previous work,
we demonstrated GPU-accelerated algorithms capable of out-
performing a single CPU core by factors of 26x to 44x for
a single GPU and approximately linear scaling on multiple
GPUs [20, 14,16,[8]. One of the unique attributes of the MO
algorithm, as compared with our past work with other spa-
tially evaluated functions, is the comparatively large operand
and operation count per lattice point and the increased com-
plexity of control flow. Since the GPU provides dedicated
exponential arithmetic instructions, the relative cost of eval-
uating e” by calling expf () or __expf (), or evaluating 2°
via exp2f (), is much lower than on the CPU. According

Array tile loaded in GPU shared memory.
Tile is a multiple of coalescing block size.

Surrounding data,
unreferenced
by current
loop iteration

N

64-Byte memory
coalescing block boundaries

N

Full tile padding

777

Coefficient array in GPU global memory

Figure 4: Schematic representation of the tiling
strategy used to load subsets of large arrays, stored
in GPU global memory, into small regions of the
high performance on-chip shared memory.

to the CUDA documentation, the exp2f () function takes
only 32 clock cycles and has a maximum of 2 ulp error over
the full range of output values. Due to the high performance
and bounded worst case error, our GPU kernels pre-multiply
the incoming basis function exponent coefficients by log, e
so that exp2f () may be used. Compared to CPU kernels,
the use of CUDA’s exp2f () provides a very high level of
performance, even before taking into account the massive
parallelism available on the GPU. The main algorithmic con-
sideration becomes the effective use of GPU on-chip caches
and shared memory to keep the arithmetic units supplied
with operands.

The MO algorithm accesses several variably-sized arrays
of operands, any one of which could exceed the capacity of
on-chip caches and shared memory. We follow two strategies
to achieve high performance. In cases where all operands
will fit within the 64-kB constant memory, we use a direct
implementation of the basic MO algorithm, broadcasting
operands from constant memory to all threads in the thread
block (at near register speed). In cases where operands will
not fit entirely in constant memory, we use an algorithm
that collectively loads blocks or tiles of operands into shared
memory prior to entering performance critical loops. The co-
efficients in a shared memory tile are accessed by all threads
within a thread block, reducing global memory accesses by
a factor of 64 (the number of threads in a thread block). In-
frequently accessed coefficients in outer loops are loaded in a
simple blocked structure which packs groups of operands to-
gether (with appropriate padding) in a single 64-byte mem-
ory block, guaranteeing coalesced global memory access. By
packing multiple disparate operands into the same memory
block, the number of global memory reads is significantly
reduced. This simple blocking strategy is used for the atom
coordinates, basis set indices, and number of shells per atom
in the outermost atom loop, and for the primitive count
and shell type data in the loop over shells. In the case of
the innermost loops, global memory reads are minimized by
loading large tiles immediately prior to the loop over basis
set primitives and the loop over angular momenta, respec-
tively. For high performance, tiles must be a multiple of the
64-byte read/write size required for coalesced global mem-

ory transactions. Power-of-two tile sizes are preferable, as
they simplify addressing arithmetic. Since the number of
elements referenced within the two key inner loops is vari-
able, tiles must be large enough to guarantee that all of the
data required for execution of the entire loop will be resident
in shared memory. Figure [4]illustrates the relationship be-
tween coalesced memory block sizes, the portion of a loaded
array that will be referenced during the next pass of the
innermost loops, and global memory padding and unrefer-
enced data that exist to simplify addressing arithmetic and
to guarantee coalesced global memory accesses.

Since the highest performance memory systems on the
GPU have very limited capacity and because the MO com-
putation requires many memory references in the innermost
loops, our algorithms are optimized by constraining the size
of two key arrays referenced in the innermost loops, the basis
set and wavefunction coefficient arrays. The size of the basis
set array is limited by the maximum degree-of-contraction
(number of Gaussian primitives per shell) supported by ex-
isting quantum chemistry packages, and in practice is lim-
ited to that found in existing basis sets. The program Gaus-
sian [7] supports a maximum degree-of-contraction of 100.
The basis set with the largest degree of contraction found in
the Basis Set Exchange Library (EMSL) [19] is WTBS [10]
with 30 primitives per shell for cesium and some of the lan-
thanoids. Commonly used basis sets typically contain fewer
than 15 primitives per shell. We selected a maximum degree-
of-contraction limit of 64 for our CUDA kernels, double that
of the largest published basis set. The program GAMESS
supports shell types up to and including g, NWChem goes
one shell type further to h shells, and Gaussian supports
shells of arbitrary angular momenta. The tiled-shared ker-
nel is limited to I shells due to practical limitations in shared
memory tile size. Though very rarely used in practice, shell
types higher than 1 could be handled with slightly reduced
performance by creating a new kernel variation with angu-
lar momenta tile loading tests relocated to the inside of the
angular momenta loop. This would add a small amount of
additional overhead to each loop iteration, but would handle
arbitrary shell types (more precisely, an unlimited number
of angular momenta for a single shell).

We have just started to explore a significant optimization
opportunity that dynamically generates a molecule-specific
GPU kernel when a molecule is initially loaded, and the
kernel may be reused from then on. Since Algorithm [1 is
very data-dependent, we observe that instructions for loop
control and conditional execution can be eliminated for a
given molecule. The generation and just-in-time (JIT) com-
pilation of kernels at runtime has associated overhead that
must be considered when determining how much code to
convert from data-dependent form into a fixed sequence of
operations. The GPU MO kernel is dynamically generated
by emitting the complete arithmetic sequence normally per-
formed by looping over shells, primitives, and angular mo-
menta for each atom type. This on-demand kernel gener-
ation scheme eliminates the overhead associated with loop
control instructions (greatly increasing the arithmetic den-
sity of the resulting kernel) and allows the GPU to per-
form much closer to its peak floating point arithmetic rate.
At present, CUDA lacks a mechanism for runtime compila-
tion of C-language source code, but provides a mechanism
for runtime compilation of the PTX intermediate pseudo-
assembly language through a driver-level interface. We could

not evaluate the current implementation of the CUDA dy-
namic compilation feature since our target application VMD
uses the CUDA runtime API, and intermixing of driver and
runtime APIs is not presently allowed. To evaluate the
technique, we implemented a code generator within VMD
and saved the dynamically generated kernel source code to
a text file. The standard batch mode CUDA compilers
were then used to recompile VMD incorporating the gen-
erated CUDA kernel. While not a viable solution for actual
use, this methodology allowed us to run performance tests
and verify the correctness of the results produced by the
dynamically generated kernel. We expect future versions
of CUDA to make the dynamic compilation functionality
available through the runtime API, possibly also supporting
compilation from C source code. The OpenCL [12] stan-
dards document indicates support for runtime compilation
of kernels written in C, ideally providing a vendor-neutral
mechanism for dynamic generation and execution of opti-
mized MO kernels.

4. PERFORMANCE EVALUATION

The performance of the MO algorithm implementations
was evaluated on several hardware platforms with multiple
compilers, using several datasets. The test datasets were
selected to be representative of the range of quantum chem-
istry simulation data that researchers often work with, and
to exercise the limits of our algorithms, particularly in the
case of the GPU. The benchmarks were run on a Sun Ul-
tra 24 workstation containing a 2.4 GHz Intel Core 2 Q6600
quad core CPU running 64-bit Red Hat Enterprise Linux
version 4 update 6. The CPU code was compiled using the
GNU C compiler (gec) version 3.4.6 or Intel C/C++ Com-
piler (icc) version 9.0. GPU benchmarks were performed
using the NVIDIA CUDA programming toolkit version 2.0,
running on GeForce 8300 GTX (G80) and GeForce GTX 280
(GT200) GPUs.

4.1 Comparison of CPU and GPU performance

for carbon-60

All of the MO kernels presented have been implemented
in an experimental version of the molecular visualization
program VMD [9]. For comparison of the CPU and GPU
implementations, a computationally demanding carbon-60
test case was selected. The Cgp system was simulated with
GAMESS, resulting in a log file containing all of the wave-
function coefficients, basis set, and atomic element data,
which was then loaded into VMD. The MO was computed
on a lattice with a 0.075 A spacing, with lattice sample di-
mensions of 172 x 173 x 169. The Cgo test system contained
60 atoms, 900 wavefunction coefficients, 15 unique basis set
primitives, and 360 elements in the per-shell primitive count
and shell type arrays. The performance results listed in Ta-
ble[2]compare the runtime for computing the MO lattice on
both single and multiple CPU cores, and on two generations
of GPUs using a variety of kernels. The CPU kernels labeled
with “gcc” and “icc” were compiled using GNU C/C++ and
Intel C/C++, respectively.

The “cephes” labeled tests used an inlined implementation
of the expf () routine derived from the Cephes [11] mathe-
matical library. The “icc-sse-cephes” test cases benchmark a
SIMD-vectorized SSE adaptation of the scalar Cephes expf ()
routine, hand-coded using compiler intrinsics that are trans-
lated directly into x86 SSE machine instructions. The “ap-

prox” test cases replace the use of expf() with a fast ex-
ponential approximation algorithm tailored for the domain
of values encountered in the MO computation, with error
acceptable for the purposes of MO visualization. The “icc-
sse-approx” test case refers to a SIMD-vectorized SSE imple-
mentation of the same algorithm, hand-coded using compiler
intrinsics.

The CUDA “const-cache” test cases store all of the MO
coefficients entirely within the small 64-kB GPU constant
memory. The “const-cache” kernel is only applicable to data
sets that fit within the fixed-size arrays on constant memory,
as defined at compile-time, so it represents a best-case per-
formance scenario for the GPU. The “const-cache-jit” test
case evaluates the performance of a dynamically generated
CUDA kernel resulting from completely unrolling the loops
over shells, primitives, and angular momenta for each atom
type, and storing all coefficients in constant memory. The
dynamic kernel generation greatly increases the arithmetic
intensity of the resulting kernel compared to the fully gen-
eral loop-based kernels. The CUDA “tiled-shared” test cases
perform coalesced global memory reads of tiled data blocks
into high-speed on-chip shared memory, capable of process-
ing problems of arbitrary size. All of the benchmark test
cases were small enough to reside within the GPU constant
memory after preprocessing removed duplicate basis sets, so
the “tiled-shared” test cases were conducted by overriding
the runtime dispatch heuristic, forcing execution using the
tiled-shared CUDA kernel.

The results listed in Table [2] illustrate the tremendous
speedups achievable by computing MOs with the use of a
GPU, or multi-core SSE SIMD kernels on the CPU. The “icc-
sse-cephes” kernel running on a single CPU core was selected
as the basis for normalizing performance results because it
represents the best-case single-core CPU performance, with
a full-precision kernel based on the Cephes expf () routine.
By benchmarking on a single core, there is no competition
for limited CPU cache and main memory bandwidth, and
one can more easily extrapolate performance for an arbi-
trary number of cores. Most computers used for scientific
visualization and analysis tasks now contain at least four
cores, so the four-core CPU results for each kernel are rep-
resentative of a typical use-case today. The “gcc-approx”
kernel performs very well despite the fact that it does not
take advantage of SSE SIMD vectorization. The four-core
CPU timings indicated scaling results of 3.97 for “icc-sse-
cephes” and 3.90 for “icc-sse-approx” versus their respective
single-core runs.

The CUDA kernels achieve excellent performance results,
due to the massive array of floating point units and high-
bandwidth memory systems on the GPU. The full-precision
kernels achieve 10% to 15% higher performance than the
“approx” variants because the GPU has dedicated hardware
for evaluation of special functions like expf () and exp2f ().
The “const-cache” CUDA kernels take full advantage of the
64-kB constant memory on the GPU and bring it to good ef-
fect in keeping the floating point units supplied with operands.
The “const-cache-jit” test cases demonstrate that a customized
kernel can improve performance by a significant margin. In
the case of the carbon-60 test case, the elimination of loop
control overhead yields a 40% performance increase over the
fastest loop-based implementation. The speedup for a dy-
namically generated CUDA kernel depends on the molecular
system, where the largest performance boost occurs in cases

Kernel

| cores/GPUs | Runtime (s) | Speedup |

Intel Q6600, gce-cephes
Intel Q6600, gce-cephes
Intel Q6600, icc-sse-cephes
Intel Q6600, icc-sse-approx
Intel Q6600, icc-approx
Intel Q6600, icc-sse-cephes
Intel Q6600, gcc-approx
Intel Q6600, icc-sse-approx

CUDA 8800 GTX (G80), tiled-shared

CUDA 8800 GTX (G80), const-cache
CUDA 8800 GTX (G80), const-cache-jit

CUDA GTX 280 (GT200), tiled-shared

CUDA GTX 280 (GT200), const-cache
CUDA GTX 280 (GT200), const-cache-jit

CUDA 8800 GTX (G80), tiled-shared-approx

(
CUDA 8800 GTX (G80), const-cache-approx
(

CUDA GTX 280 (GT200), tiled-shared-approx

%

CUDA GTX 280 (GT200), const-cache-approx
)
)

1 200.22 0.23
4 51.52 0.90
1 46.58 1.00
1 14.82 3.14
4 13.13 3.55
4 11.74 3.97
4 10.21 4.56
4 3.76 12.4
1 1.05 44.4
1 0.89 52.0
1 0.63 73.9
1 0.57 81.7
1 0.41 114.

1 0.54 85.6
1 0.46 100.

1 0.41 114.

1 0.37 126.

1 0.27 173.

Table 2: Comparison of MO kernels and hardware performance for the carbon-60 test case.

where the loops over primitives and angular momenta have
a very low trip count, with the loop control contributing
a greater percentage to the total cost. For the carbon-60
test case, we see that the loop control and array indexing
instructions were responsible for approximately 28% of the
runtime on both the G80- and GT200-based GPUs. These
early results illustrate the benefits of dynamic code genera-
tion, motivating further investigations into the application
of this technique.

The “tiled-shared” kernel performs competitively given the
amount of additional control logic and barrier synchroniza-
tions that must be executed in each pass through the MO
shell loop. The cost of the additional control logic and the
need for global memory references in all of the outermost
loops slow the performance of the tiled-shared kernel, in-
creasing its runtime by 57% compared to the const-cache
kernel on the GeForce 8800 GTX GPU and by 24% on
GeForce GTX 280. The GeForce GTX 280 gains a 54% in-
crease in performance for the const-cache kernel but a 62%
increase in memory bandwidth (140 GB/sec vs. 86 GB/sec)
relative to the GeForce 8800 GTX. The increased mem-
ory bandwidth of the GeForce GTX 280 is likely one of
the dominant factors explaining the disparity in the perfor-
mance drop observed for the tiled-shared kernel on GeForce
8800 GTX as compared to the GeForce GTX 280. The 57%
performance loss on G80 may also be partially attributed
to inadequate hiding of global memory latency. The G&80
GPUs have half the number of registers of GT200, making
it more difficult for GPU kernels with large register counts
to fully hide global memory latency due to limitations in
the number of thread blocks that can be scheduled simulta-
neously (known as occupancy). The low GPU occupancy is
the result of the large number of registers (28) and the large
amount of shared memory consumed by the tiled-shared ker-
nel. The tiled-shared kernel achieves only 33.3% occupancy
on G80 (8 co-scheduled warps of a possible 24), compared
with 37.5% (12 warps of a possible 32) on GT200.

The approximation-based algorithms tested here, although
slower for CUDA kernels, will still prove useful in construct-
ing cutoff distance algorithms for calculating an MO. The
exponents ¢ that describe the width of the GTOs in Eq. (2)
can vary widely in magnitude for an MO. Replacing expf ()

with an approximation that decreases smoothly to zero will
guarantee the truncation of the Gaussian terms beyond fixed
spheres of lattice points about each atom without introduc-
ing visual artifacts. This idea suggests investigation of a
new set of faster algorithms that employ cutoff distances and
have computational complexity that is linear in the number
of atoms. The performance benefit to CPU implementations
could be substantial, and the design of suitable GPU ker-
nels would be based on our prior work [16]. These faster
algorithms would enable the visualization of MOs for much
larger systems of atoms than is presently feasible.

4.2 Comparison with other software packages

To evaluate the practical merits of our approach we com-
pared the performance of VMD using CPU and GPU im-
plementations of our algorithms with that of the popular
quantum chemistry visualization packages MacMolPlt and
Molekel. In order to gain a broad perspective of performance
characteristics of each package/kernel, performance was as-
sessed over a range of test structures listed in Table (3, and
shown in Fig./1l It was impractical to benchmark exactly
the same calculation for each package/kernel combination
since each package places limits on the size and spacing of
the MO lattice, and performance levels ranged over two or-
ders of magnitude. We measured performance in terms of
lattice points computed per second, selecting a large enough
lattice in each case to provide execution timings accurate
to 5% or better. All of the CPU tests were allowed to use
all four cores except Molekel, which is a sequential code.
The GPU tests were performed using a single CPU core and
a single GPU. All of the test molecules were small enough
to fit within the GPU constant memory; accordingly, the
constant-cache kernel was used in all of these benchmarks.

The performance results presented in Table [4 show the
practical merit of the algorithms in this paper in actual use.
In all but one case, VMD outperformed the other two pack-
ages. The exceptional “Kr-a” test case is noteworthy as a
very small single-atom Krypton model with only 19 unique
basis functions. In this test, MacMolPlt outperformed VMD
by a very small margin. We attribute this to the added
cost of basis set indirection used as part of the elimination
of redundant basis functions in our implementation. For

| | system | atoms | basis set | basis functions (unique) |
C60-a | carbon-60 60 STO-3G 300 (5)
C60-b | carbon-60 60 6-31Gd 900 (15)
Thr-a | threonine 17 STO-3G 49 (16)
Thr-b | threonine 17 6-314+-Gd 170 (59)
Kr-a krypton 1 STO-3G 19 (19)
Kr-b krypton 1 cc-pVQZ 84 (84)

Table 3: List of test systems and their respective attributes. Three test systems were selected, each with two
variants containing the same number of atoms, but using a basis set with a smaller (a) and larger (b) number

of unique basis functions.

[Program/Kernel [cores [C60-a | C60-b | Thr-a | Thr-b [Kr-a | Kr-b |
Molekel CPU 1 39 25 175 108 617 138
MacMolPlt CPU 4 97 66 361 265 2668 632
VMD gcc-cephes 4 126 100 518 374 2655 892
VMD icc-sse-cephes 4 658 429 2428 1366 10684 2968
VMD gcc-approx 4 841 501 2641 1828 11055 4060
VMD icc-sse-approx 4 2314 1336 8829 5319 33818 9631
VMD CUDA 8800 GTX 1 14166 8565 | 45015 | 32614 | 104576 | 61358
VMD CUDA GTX 280 1 21540 | 13338 | 62277 | 45498 | 119167 | 78884

Table 4: Comparison of MO computation performance for MacMolPlt, Molekel, and VMD. The performance
values are given in units of 10® lattice points per second. Higher numbers indicate better performance.

all of the larger test cases, VMD outperformed the other
packages even with the non-SSE kernel compiled with GNU
C/C++. The performance differences among the VMD ker-
nels mirror the results in Table 2, but with two noteworthy
exceptions. The “Kr-a” test case showed an unusually small
difference in performance between the GeForce 8800 GTX
(G80) and the GeForce GTX 280. It seems likely that the
high cache locality occurring for the Kr-a model neutral-
izes the benefit of some architectural improvements of the
GT200-based GPU versus the G80-based GPU. The “C60-b”
test case (with the largest number of basis functions) shows
the largest performance gap between G80 and GT200, likely
indicating that GT200 cache performs better on large data
than G80. The performance levels obtained for VMD using
the CUDA kernels enable on-the-fly computation and ani-
mation of molecules up to the size of the Cgo test cases, with
typical lattice sizes.

S. CONCLUSION

We have presented new molecular orbital electron density
algorithms that exploit the unique architectural strengths of
GPUs to achieve performance levels far beyond those achiev-
able with conventional CPUs, enabling for the first time fully
interactive visualization and animation of quantum chem-
istry simulation trajectories. The early results presented for
dynamic GPU kernel generation and just-in-time compila-
tion demonstrate the potential benefits of this technique,
motivating further work in this area. We have implemented
these algorithms within the popular molecular visualization
tool VMD [9] and expect to apply our computational tech-
niques to all of the related, spatially evaluated functions
used for visualization of quantum chemistry data.

Acknowledgments

This work was supported by the National Institutes of Health
under grant P41-RR05969. Performance experiments were
made possible by a generous hardware donation by NVIDIA.

6. REFERENCES

[1] J. A. Anderson, C. D. Lorenz, and A. Travesset.
General purpose molecular dynamics simulations fully
implemented on graphics processing units. J. Chem.
Phys., 227(10):5342-5359, 2008.

[2] B. M. Bode and M. S. Gordon. MacMolPlt: a
graphical user interface for GAMESS. J. Mol. Graph.
Model., 16(3):133-138, June 1998.

[3] E. J. Bylaska et al. NWChem, A Computational
Chemistry Package for Parallel Computers, Version
5.1. Pacific Northwest National Laboratory, Richland,
Washington 99352-0999, USA, 2007.

[4] C. J. Cramer. Essentials of Computational Chemistry.
John Wiley & Sons, Ltd., Chichester, England, 2004.

[5] E. R. Davidson and D. Feller. Basis set selection for
molecular calculations. Chem. Rev., 86:681-696, 1986.

[6] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S.
Binkley, M. S. Gordon, D. J. DeFrees, and J. A.
Pople. Self-consistent molecular orbital methods.
XXIII. A polarization-type basis set for second-row
elements. J Chem Phys, 77:3654-3665, 1982.

[7] M. J. Frisch et al. Gaussian 03 (Revision B.05).
Gaussian, Inc., Pittsburgh, PA, 2003.

[8] D. J. Hardy, J. E. Stone, and K. Schulten. Multilevel
summation of electrostatic potentials using graphics
processing units. J. Paral. Comp., 2009. In press.

[9] W. Humphrey, A. Dalke, and K. Schulten. VMD —
Visual Molecular Dynamics. J. Mol. Graphics,
14:33-38, 1996.

[10] S. Huzinaga and M. Klobukowski. Well-tempered
Gaussian basis sets for the calculation of matrix
Hartree-Fock wavefunctions. Chem. Phys. Lett.,
212:260-264, 1993.

[11] S. L. Moshier. Cephes Mathematical Library Version
2.8, June 2000. http://www.moshier.net/#Cephes.

[12]

[13]

A. Munschi. OpenCL Specification Version 1.0, Dec.
2008. http://www.khronos.org/registry/cl/.

J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with CUDA. ACM
Queue, 6(2):40-53, 2008.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. GPU computing. Proc.
IEEE, 96:879-899, 2008.

S. Portmann and H. P. Liithi. Molekel: An interactive
molecular graphics tool. CHIMIA, 54:766-770, 2000.
C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten,
and W.-M. W. Hwu. GPU acceleration of cutoff pair
potentials for molecular modeling applications. In
CF’08: Proceedings of the 2008 conference on
Computing Frontiers, pages 273—282, New York, NY,
USA, 2008. ACM.

G. Schaftenaar and J. H. Nooordik. Molden: a pre-
and post-processing program for molecular and
electronic structures. J. Comp.-Aided Mol. Design,
14(2):123-134, 2000.

(18]

(19]

20]

(21]

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T.
Elbert, M. S. Gordon, J. J. Jensen, S. Koseki,

N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus,
M. Dupuis, and J. A. Montgomery. General atomic
and molecular electronic structure system. J. Comp.
Chem., 14:1347-1363, 1993.

K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun,
V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus.
Basis set exchange: A community database for
computational sciences. J. Chem. Inf. Model.,
47:1045-1052, 2007.

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J.
Hardy, L. G. Trabuco, and K. Schulten. Accelerating
molecular modeling applications with graphics
processors. J. Comp. Chem., 28:2618-2640, 2007.

I. Ufimtsev and T. Martinez. Quantum chemistry on
graphical processing units. 1. strategies for
two-electron integral evaluation. J. Chem. Theor.
Comp., 4(2):222-231, 2008.

	Introduction
	Background
	Algorithmic Details
	Preparing and optimizing the computation
	Fast approximation of Gaussians
	CPU algorithm details
	GPU algorithm details

	Performance Evaluation
	Comparison of CPU and GPU performance for carbon-60
	Comparison with other software packages

	Conclusion
	References

