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Abstract. We analyse a Markovian algorithm for the
formation of topologically correct feature maps pro-
posed earlier by Kohonen. The maps from a space of
input signals onto an array of formal neurons are
generated by a learning scheme driven by a random
sequence of input samples. The learning is described by
an equivalent Fokker-Planck equation. Convergence
to an equilibrium map can be ensured by a criterion for
the time dependence of the learning step size. We
investigate the stability of the equilibrium map and
calculate the fluctuations around it. We also study an
instability responsible for a phenomenon termed by
Kohonen “automatic selection of feature dimensions”.

1 Introduction

Pattern recognition and sighal processing tasks can be
facilitated considerably by appropriate encodings of
the relevant input signals. Very often the inputs are
elements in a high-dimensional space and encodings
are highly desirable which capture the essential data
interrelationships in a subspace of only few dimen-
sions. Such encoding schemes correspond to maps
which project onto lower-dimensional spaces such
that, to the degree possible, topological (neighbor-
hood) relationships are conserved. Brains of many
higher animals appear to achieve such maps through a
stream of sensory inputs, the target space being two-
dimensional sheets of neural networks (Kaas et al.
1983; Knudsen et al. 1987; Suga and O’Neill 1979).
Several algorithms have been suggested with the
objective to account for the underlying neural pro-
cesses. The algorithms possess the capability of es-

tablishing topology conserving maps from a random -

sequence of input samples by learning (Grossberg
1976a,b; Willshaw and v.d.Malsburg 1976, 1979;
v.d. Malsburg 1979; Takeuchi and Amari 1979; Koh-

onen 1982a—c; Overton and Arbib 1982; Erdi and
Barna 1984).

In this paper we want to focus on a particular
algorithm proposed earlier by Kohonen (Kohonen
1982a~c). The benefit of Kohonen’s algorithm lies in its
simple computational form, which besides providing a
plausible neural model allows its efficient application
to pattern recognition and control tasks, such as
speech recognition (Kohonen 1984a; Kohonen et al.’
1984), image processing (Bertsch and Dengler 1987)
and motor learning for robots (Ritter and Schulten
1986b,1987).

The algorithm’s aim is to generate a mapping of a
higher dimensional space V spanned by the inputs
onto an, usually two-dimensional, array of formal
neurons. The map is generated by establishing a
correspondence between inputs from V and neurons in
the array such that the topological (neighborhood)
relationships among the inputs are reflected as faith-
fully as possible in the arrangement of the correspond-
ing neurons in the array. The correspondence is
obtained iteratively by a sequence of training steps.
Each training step requires the presentation of an input
randomly chosen from the space V. The input activates
a localized subset of neurons in the array, whose
synaptic weights are then adjusted such as to improve
their response to a subsequent reoccurrence of the
activating input. .

The above procedure is represented mathemati-
cally as a Markov process whose states are the synaptic
weights of the formal neurons and whose transit:ons
are triggered by the inputs. Several mathematical
properties of this process have already been inves-
tigated (Kohonen 1982b, 1984, 1986; Ritter and Schul-
ten 1986a; Cottrell and Fort 1986), most notably among
them the dependence of the final weights upon the
statistical distribution of the inputs and proofs of
convergence to a stationary map under different
conditions. Further interesting properties, which so far
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have received less attention and which are the subject
of this paper, are (i) a criterion for the choice of a
suitable decrease of the learning step size with time
guaranteeing convergence to an equilibrium map
during the final phase of the algorithm, (ii) the
. statistical fluctuations of the evolving map brought
about by statistical occurrence of inputs and (i) a
mathematical analysis of the phenomenon called
“automatic selection of feature dimensions” and
studied earlier in simulations by Kohonen (Kohonen
1984a).

Our approach starts with a derivation of a Fokker-
Planck equation describing the learning process in the
vicinity of equilibrium maps and valid in the limit of
small learning step size. This allows to provide a
necessary and sufficient condition which guarantees
convergence of the learning scheme to an asymptotic
equilibrium map in the final convergence phase of the
algorithm. The condition concerns the choice of a
proper time sequence for the learning step sizes. For
the case of inputs chosen uniformly from a space with a
shape of a multi-dimensional parallelepiped, we calcu-
late the statistical fluctuations around the asymptotic
equilibrium map. This shows that for the map to differ
from the asymptotic equilibrium map by the order of
the lattice spacing of the neurons or less, it is necessary
to scale the final learning step size inversely propor-
tional to the number of neurons in the array. We also
analyse the phenomenon of “automatic selection of
feature dimensions” and show that it can be under-
stood as occurrence of an instability, which arises if the
variance of the inputs along one of the dimensions not
well represented in the map exceeds a critical value.
The instability is preceeded by the occurrence of large
fluctuations of a characteristic wavelength. Both, crit-
ical variance and characteristic wavelength, are cal-
culated for the case of a multi-dimensional paral-
lelepiped as input space.

2 The Algorithm

This section gives a brief account of Kohonen’s
algorithm. For more details see, for example, (Koh-
onen 1982a,c, 1984).

The algorithm employs an array A of formal
neurons receiving a random sequence of input samples
from a space V to be mapped onto A. Each inputve V
is represented as a vector of activities v,, v,,...,v,ond
input lines, where d is ithe dimension of the space V.
Each neuron is labelled by its position red and
connected to all input lines [=1...d via “synaptic
strengths” w,, I=1...d. To refer to all synaptic
strengths of a neuron r simultaneously, we use the
vector w,:=(W,;, W, ..., W,o)7. An input v induces an
“excitation” «(v)=h(v-w,) of neuron r, where h(.) is

some “sigmoidal” function between O and 1. This
excitation leads to a modification of the neuron’s
synaptic strengths. Assuming a Hebb-like rule with an
additional memory decay term of equal strength, the
coincidence of presynaptic input v and postsynaptic
excitation h(v-w,) alters w, by

oW, =h(w, - v)(v—w,). (1

In order to incorporate the strong lateral inhibition
acting among real neurons which are some distance
apart, Kohonen suggested to apply (1) only in the
vicinity of the neuron s most vigorously excited by v.
This neuron is determined by

Wy —v[l= min |lw,—v]. ' )
red

In Kohonen’s algorithm (1) is then replaced by
5ﬁ,=a-h?,-(v—w,) forallred, (3)

where 0<h% <1 now is a prespecified adjustment
function of the distance r—s, which, together with the
“step size” ¢, determines how much a weight vector w,
of neuron r in the vicinity of s is modified. The function
h%, has its maximum at r=s and decays to zero as
|r—s|| increases.

The algorithm is summarized as follows:

0. Assign suitable initial values to the weights
w,€V. If no a priori information is available assign
random values.

1. Select a vector (“sensory input”) ve V according
to some prespecified probability distribution P(v).

2. Determine the location s for which |v—w,| is
minimal, i.e.

forallreA. 4)

3. Perform a learning step affecting all neuronsrin
the neighborhood of s (with s included)

WE = Wld 4 gh, (v — we') (5)

and continue with 1.

Mathematically, these steps establish a Markov
process the states of which are the tuples of the weight
vectors w, of the array 4 and the transitions of which,
described by (5), are determined by the probability
distribution P(v) of inputs ve V. By (4) each ve V gets
“mapped” to a location s in the array and this (discrete)
mapping of V onto A, being specified by the set of
weight vectors w, of the neurons, gradually evolves
under this Markov process. Kohonen showed that by
slowly diminishing both the step size ¢ and the width of
RS, the vectors w, asymptotically settle to equilibrium
values which for many tasks represent a useful two-
dimensional mapping of the multi-dimensional
space V onto A (Kohonen 1982a—c, 1984, 1986:

Iv—wyll S llv—w.]



Kohonen et al. 1984). The resulting map has several
remarkable properties: First, it represents most faith-
fully those dimensions of V along which the variance in
the sequence of inputs v is most pronounced. These will
often correspond to the most important features of the
inputs. Second, it tries to preserve continuity, i.e. map
similar inputs v to neighboring locations in A4, thus
preserving neighborhood relationships in the space V.
Finally, it reflects differences in the sampling density
P(v) of the space V in a natural way: regions in V from
which inputs have occurred frequently are mapped
cnto larger domains of 4 and, therefore, with better
resolution than regions in V from which only few
inputs have emerged.

3 Derivation of the Fokker-Planck Equation

In this section we shall derive a Fokker-Planck
equation for the time development of the map valid in
the limit of small step size and in the vicinity of its
stationary state.

Let us assume an array 4 of N formal neurons,
labelled by their discrete positions re4 and let
w=(W,,...,w, ) denote a state of the array (i.e. wis a
tuple of vectors w,, one for each location r € A). For any
given state w and neuron re 4 we call the set

F(w)={veV{|v—w/ [ =|v—w,| forall seA} (6)

the feature set of neuronr. This renders a partition of V
into mutually disjoint feature sets F,. The set F, is
precisely the subset of V, which is mapped to the
location re 4 under the map specified by the state w.

Under the algorithm each selection of an input
vector v transforms the current state of a map, denoted
W', into a new state w according to the rule

W, =(1—eh%)W, -+ eh )]

where s is the locatlon of the feature set F,(w’)
containing the stimulus v, i.e. ve F(w'). The parameter
¢ determines the size of one adaptation step. We will
tacitly assume that it may depend on the step number
or “iteration time” t. For independent random choices
of the successive input vectors v (7) represents a
Markov process. We want to investigate the time
evolution of w in the limit of small .

To this end we could either take the differential
equation obtained from (7) by taking the limit e—0 and
averaging over the random variable v and use tech-
niques from the theory of stochastic approximation to
compare w, with the trajectory of this differential
equation (see e.g. Kushner and Clark 1978). Alterna-
tively, we can study the time development of the
distribution of an ensemble of | lprocesses (7). Here we
will adopt the latter approalch The convergency
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conditions thus obtained [(46) and (47)] turn out to
coincide with the conditions required to prove conver-
gency by the first approach.

For a more compact notation we define a trans-
formation T such that (7) is represented as

w=T(W,v,¢). (8)

The transition probability Q(w,w’) for a transition
from state w’ to state w can be written
Qw,w)=Y (I dvo(w—T(W,v,e)P(v). )
r F(w .
Instead of considering the states of individual systems,
one rather describes an ensemble of arrays whose
states w at iteration time ¢ are distributed according to
a distribution function S(w, ¢). At each time step the
transition probability transforms the distribution
function S(w,t) according to the usual Chapman-
Kolmogoroff equation (see e.g. van Kampen 1981;
Gardiner 1985)

Stw,t+1)
= [d"wQ(w, w)S(w, 1)
=Y fd"w [ dvPMwW—T(W,v,e)SW,t).
r F (w) (10)

To perform the w'-integration, which runs over all N
weight vector variables w,, r € A, we need the Jacobian

ar]!t
J(e)= [det 5;"—] . (11
Assuming ve F (w’) for the moment,. we obtain
Jey= T (1 —ehl)] ~*. (12)

Here d is the dimension of the input vectors v. Since hS,
is assumed to depend only on the difference r—s, J
actually is independent of s and, therefore, depends
only on &.

Performing the w'-integration one obtains

Sw,t+1)=J(e) ¥ Jdvad(T~ Y(w,v,e),v)
x POS(T~\(w, v, ), 1). (13)

Here y,(w, v) denotes the characteristic function for the
feature set F(w), i.e.

. _ )1, if veF(w);
/_,(W,V)-— {0’ else. (14)

T~ ! stands for the inverse of the transformation T. If
ve F(w), T~ !(w,v,¢) is given by
[T7(W,v,8)], =W, +ch, (W, —V), (15)

where we have introduced the new function
hes := hey/(1—eh?,). The difference between h,, and h, is
only of order e.
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For e&<1 and veF (w) we can expand-
S(T~Y(w,v,e),t) as
S(T~Y(w,v,e),t)

a3
=8(w,t)+¢ ,;,, By(Wem— Van) o
+0(%). 16)

Likewise, J(¢) can be expanded as
Je)=1+eJ,+ 42, +..., a7
where
Jl=d-;h,,=d-‘i;hko (18)

is independent of s. $ubstituting (16), (17) into (13),
keeping only derivatives up to second order and of
these only the leading order in ¢, we obtain

S(w, t+1)—S(w, )

e
=J,8(w,1)
a3
+ g . {w) dv P(v) z:. hf,(w,,,,—-v,,,) m
+ g T [ dvPW)
s F(w)
. a2
X - hrshr'l(wrm_vm) (w,:,,—v,,) 6—wi§T,.,, (19)

In the vicinity of the stationary state we expect S(w, £) to
* be peaked around the stationary expectation value W
of w, which obeys

{dvP(V)T(®,v,e)—w=0. , (20)
Therefore, we make a shift of coordinates and define
S(u,8):=S(W+u,0), 1)

i.e. S(u, t) is the distribution of the deviations u from the
stationary expectation value w. For the following it is
convenient to introduce the quantities

P(w):= . j"w dv P(v), (22)
V.= ﬁ% R dvP(v)v, (23)
vrm(w) = ( rm v!m)hrsps(w) (24)

Drmr'n(w) = Z hrshr’s [(wrm - vsm) (‘Vr'n - V,,,)r),(W)
0 = Van¥u) PY)Y] . (25)

P (w)is the probability for an input to belong to feature
set F,, ¥ is the centroid of the input distribution,
restricted to feature set F,.

In the limit of small ¢ we may evaluate the O(e)-term
in(19) directly at w=w and replace S(u, t + 1)— S(u, t) by
0,5(u, t). This results in the Fokker-Planck equation

éé,S(u, t)=JS(u,1)

+ 5 Vo) S0
2
+ ) MZ rme’ n( ) 0 S(au t) (26)

The first order term represents the restoring force. It
vanishes at u=0 and, therefore, must be retained to
linear ‘order in u. This yields

3 Vi + )52(“’ J
=-Z w::
0 (Vg ..
+ 3 ( At (w)u.,,S) . @n

To obtain a convenient expression for Z OV n/ OW (s
we start from .

Viw) =3 h, | dvP()(W,—V)
s K

= % [ dv P(v)(w,—T(W,V, £),) (28)
and obtain
3V.... _ aT
Z . ;va( )Tr (1— 'a‘»?) (29)

The deviation of the Jacobian 6T/dw from the identity

aT
matrix is of order &. Writing I = 1+¢A, we conclude
from (11)

J(e)=det(1—eA)+0(e?)=1—¢-TrA +0(e?). (30)
Comparison with (17) yields

1 T
Jy=—TrA=_Tr (1—5;) | (31)

Inserting this into (29) results in the relation

v,
Z 3w,

=J,. (32)



This brings us to the finalform of our Eq. for S(u, 1)

1
; ats(u’ t)‘—' rmzr'n 5‘; B,.,,".',,u,",,S(u, t)
3*S(u, 1)
+ 5 "';" Drmr’n aurmaur’" ) (33)
with the constant matrix B given by -
. avrm(w)
Bl"'"‘ " ( awr n >w=v'v ' (34)

Equation (33) is the desired Fokker-Planck equa-
tion for the Markov process (7).

For the expectation value ,,(t)=<u,,>s and for
the correlation matrix

Crmsn(t) = <(urm - l_lrm) (usn - lqun)>$

of the distribution S obeying (33) explicit expressions
can be derived (for details see e.g. van Kampen 1981;
Gardiner 1985). Defining the matrix

Y(t)=exp (— B (}) &(t) dr) , (35)

ii(z) is given by
i(t) = Y(1)a(0), (36)
where @(0) is the expectation value at ¢t =0, and C(t) by

Ct)=Y() [C(0)+ 5; &(1)?Y(x) " ID(Y(x)~ )T dr] Y(H)T.
(37

If the initial condition is a é-distribution, i.e. S(u,0)
=[] 8(u,p—u(0),,.), S(u,t) is & Gaussian

S(u, ) =det(2nC)~ 2 exp(—(u—H)TC~ '(u—i)). (38)

If &(¢) is chosen such that in the limit t— oo the initial
conditions become irrelevant, e.g. for constant ¢, then
replacing C and @ in (38) by their asymptotic limits
yields the stationary solution: A further simplification
arises, if B and D commute. In this case the integral in
(37) can be explicitly evaluated for e =constant and the
stationary distribution is the Gaussian (38) with

C=¢B+B")"'D. (39

4 Convergence to Equilibrium State

In this section we consider the question under which
conditions the Markov process (7) converges with
probability 1 to a stationary expectation value w. To
achieve such convergence both the variance of the state
distribution and the expectation value i@(f) of the
deviation from W must vanish in the limit t—co.

As a consequence of (37), the correlation matrix
C(t) obeys (see e.g. van Kampen 1981)
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= —&(t)(BC+ CB") +¢(t)*D. (40)

The time derivative of the Euclidean matrix norm

ICl2:= ¥ C2Z,, is then

rme'n

30,ICll2= —&(t) TrC(B+BT)C +¢(t)> TrDC. (41)

We will require that C remains bounded if &(t) is
constant and the initial correlation matrix C(0) is
sufficiently small but else arbitrary. This is a stability
condition for the equilibrium state W. Since both C and
D are symmetric and non-negative, TrDC=0 holds.
Therefore, the stability condition requires that (B + BT)
be positive, i.e. there exists a constant >0 such that

TrC[B(w)+B(W)7]C> | C||%/2. - (42)
Consequently, there is another constant y > 0 such that
OlICI% = —e0)BICH +et)y . (43)
Integrating (43), we obtain
t t
ICOI*<y (I) &(t')” exp (—ﬁf &(t") dt") dr'. (44)
S

Any positive function &(t), for which the right hand side
of (44) vanishes asymptotically guarantees the desired
convergence of C towards zero. In the Appendix we
will show that this condition is equivalent to requiring
lim &(t)=0 together with

t
lim | &t)dt'=c0. 45)
t=w 0
Besides hm C(t)=0 this also ensures lim ii(t)=0 [cf.

t— oo
(35), (36)], and therefore, guarantees the convergence
to the equilibrium expectation W with probability 1.
The criterion cannot be weakened: according to (40)
lim &(t)=0 is necessary for the variance to decay to

t~ o
zero and due to (35), (34), (45) is necessary to ensure
Eq. lim ii(t)=0. Hence, for convergence to an equilib-
t—=+w
rium state W obeying the stability condition, we have
shown:
Let ¢(t)>0 be any positive function sufficiently
small for the Fokker-Planck-equation (33) to describe
the original Markov process (7) accurately. Then the

two conditions

lim j gr)ydt'=c0, (46)
t—~ow 0
lim &(t)=0. (47)

are necessary and sufficient to guarantee with proba-
bility 1 convergence to W for all initial states sufficiently
close to the equilibrium expectation Ww.



Condition (46) is identical to the first convergence

condition obtained by Cottrell and Fort (1986) for a
closely related process. However, their second con-

¢
dition, namely that | &(r)?dt< oo, is not required in
0

our case and is replaced by the milder requirement (47). -

In particular these conditions are fullfilled for all decay
laws g(t)oct™® with 0<a < 1. For laws with a>1 or
exponential decay laws (46) is not fullfilled, i.e. some
residual error remains even in the t— co-limit.

5 Analysis for Spatially Uniform Input Vector Density
5.1 General Considerations

In the following we shall discuss the case of a spatially
uniform probability density P(v) of the input vectors v
more closely. We shalﬂ assume that any change in the
gain factor ¢ occurs sufficiently slowly to replace S(u, ¢)
by the stationary solution for the corresponding
constant value of ¢. In general, the input vectors v will
be drawn from a volume whose dimension d is much
larger than two. The above Markov process will try to
detect the two most significant dimensions of the
volume and map these across the array, thus providing
a two-dimensional map which, despite of being neces-
sarily a many-to-one projection, is as faithful as
possible. This is illustrated in Fig. 1a for the case of V
being a three-dimensional parallelepiped of size
40 x 40 x 10 units, for which a map on an array of
40 x 40 neurons is sought. Figure 1a shows a “snap-
shot” of the resulting map from a Monte Carlo
simulation of the algorithm with a finite learning step
size of é=0.05 and random input vectors v drawn
uniformly from the parallelepiped. For each neuron
the location w, € V, (i.e.ithe center of its feature set in V)
is drawn, and locations corresponding to neighboring
neurons in the array are connected by lines. This
visualizes the map as an “embedding” of the array in

the parallelepiped V. Since the parallelepiped is fairly
“flat”, the resulting map is essentially symmetric and
represents a projection onto the subspace spanned by
the two largest dimensions of the parallelepiped.

For non-zero step size ¢ the map usually will
exhibit statistical fluctuations around its equilibrium
configuration. These fluctuations can be seen in Fig. 1a
both as shallow “bumps” in the embedded surface and
as weak tangential distortions of the mesh and will be
calculated below.

However, if inputs scatter too much along some or
all of the additional d—2 dimensions, restriction only
to the two main dimensions would yield a poor
representation for many inputs v. In this situation, the
map described above looses its stability and shifts to a
more complicated stable equilibrium map. This new
map usually is of lower symmetry and corresponds to
an embedding of the array in V which is strongly folded
in direction of the additionally needed dimensions.
This behaviour, termed “automatic selection of feature
dimensions” and mentioned already above, is illus-
trated in Fig. 1b, where the vertical extension of the
parallelepiped has been increased from 10 to 14 units.
As a result, the symmetric map is no longer stable and
the associated embedding switches to a new configu-
ration with large folds protruding into the vertical
direction, indicating that the new stable map has
broken the symmetry of the underlying uniform input
distribution in favor of a better representation of the
vertical dimension of the parallelepiped. Below we
will show that this change to a new equilibrium
configuration occurs at a critical value 2s* of the height
of the parallelepiped and that the maps, approaching
this value from below, exhibit increasing fluctuations
of a typical wavelength A*. Both s* and 1* will be
calculated in the sequel.

The use of a three-dimensional volume is not a
serious restriction of generality, as each of the ad-
ditional d—2 dimensions contributes in the same

Fig. 1. a Snapshot of Monte|Carlo simulation of a map between an array of 40 x 40 neurons and a three-dimensional parallelepiped of
size 40 x 40 x 10 units. Sincethe height (10 units) of the parallelepiped is sufficiently small, the map is essentially a projection onto the two
main dimensions of the parallelepiped. The shallow “bumbs” indicate weak distortions due to equilibrium fluctuations. b Same
simulation as in Fig. 1a, but for a height of 14 units. The map of Fig. 12 is no longer stable and has changed to a less symmetric map given
by an embedding with large folds protruding into the vertical direction, thus, furnishing a better representation of this dimension

L4



manner and independently of the others to the insta-
bility and the equilibrium fluctuations. Taking an
array A of N x N neurons' and a three-dimensional
parallelepiped V given by 0<x, ySN, —s<z<s, the
uniform probability distribution is P(v)=[2sN?]"!.
To avoid edge effects we impose periodic boundary
conditions along the x- and y-directions. Then, by
symmetry, W, =r, r=me, + ne, must define an equilib-
rium state w. To show this we calculate the L.H.S. of
(20)

fdvP(Y)[T(W,v,8)],—W,
=¢Y h, \ {w) dvP(v)(v—W,)

=& T hN" 2, —#,)=0. (48)

Here we have made useof [ vdv=w, for the special

EW)
configuration W and the symmetry of h,,. As P(v) is
constant and we have periodic boundary conditions,
neither any origin nor any' direction is preferred.
Hence, any configuration obtained by translating or
rotating W is an equilibrium configuration as well. Our
special choice thus amounts to a convenient selection
of origin and orientation of qur coordinate system.

For non-uniform input distribution P(v) an equilib-
rium configuration can be calculated only in special
cases (Ritter and Schulten 1986a). Generally, for non-
uniform P(v) we expect the analysis of this chapter to
remain valid “locally”, i.e. upito distances over which
P(v) does not vary significantly. This means, that
fluctuations with sufficiently short wave length will still
behave as calculated below. The behaviour at long
wave lengths, however, may be very different. In
particular, the divergence of the equilibrium deviations
at long wave lengths calculated below is due to the
translational invariance of the system and will be
absent in the general case.

If a distribution S with finite variance and expec-
tation W exists, W is stable and we can calculate any
fluctuations about W from S, or, more directly, from
(39). '

Let S(u)= lim S(u,t) denate the stationary distri-

. t—*
bution function of the equilibrium deviationsu=w—w
for a constant step size &. Due to the translational
invariance both D,,, , and B,,,., depend only on the
difference r —r’ and on m, n. Therefore, we can decouple
(33) if we represent S(u) in terms of the Fourier mode

amplitudes

1o e
b= 5 ey, (49)

! The reader should note that the number of neurons is now N2
rather than N
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of u. Each mode amplitude turns out to be distributed
independently, i.e. by separation of variables
Sw)=1I S0y, (50)
we obtain a set of mutually independent stationary

Fokker-Planck equations for the individual mode
distributions S,

% Bon 5o 0,5,0)
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m gk(“)=0. (51) '

€ A
+3 é D(K) e
Here D(k) and B(k) are d x d-matrices given by
D(k)= z eik(r—r’)D"' '
= 172 A (FRRO)T + A, 52

and, similarly,

A, AW, 1
8= 2 | 1- i a0 | - iz (RAGIBT, (59

where we have defined k:=(k,, k,,0)T to facilitate the
notation. M is given by

M=—1— f dv(wT—v,37)

25 £, W
1/12 0 0
=( 0 1/12 0 ), (54)
0 0 53

i.e. M is the correlation matrix of the input vectors v
overafeatureset F, [since all F, are identical and P(v)is
constant, M does not depend on the choice of r]. The
function A(k) is the discrete Fourier transform of the
neighborhood function h,, i.e.

k)= % e*""h,, (53

and matrix 4(k) and vector b(k) are the Fourier
transforms of the functions

. OV (w)

Sl I (56)
1 0B(w)

brr"“‘F: awr‘ w- (57)

Hence, both 4 and b depend only on the geometry of
the equilibrium configuration and not on the neigh-
borhood function h. Matrix a measures the shift of the
centroid of a feature set under small deformations of
the equilibrium state and b essentially measures the
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corresponding volume change of a feature set. In our
case, the feature set F(w) is given by the volume
bounded by the four planes orthogonally bisecting the
four distances between w, and its four nearest lattice
neighbors, together with the two planes z= +s. Ele-
mentary geometry yields

23 0 0
a,=6,| 0 23 0
0 0 453

-1/4 0 0

—(5,+,x,,,+5,_,,,,,)( 0 1/12 o)

0 ' 0 s/

1/12. 0 0
- (5r+e,.r’ + ‘Sr—ey.r’) 0 - 1/4 0 (58)
0 0 s3

n(ar +n,r 35r|-’) . (59)
The corresponding Fourier transforms are
ik)= % (4+3cosk,—cosk,)eel
+ % (4—cosk,+3cosk,eel
2s? r
+ 3 (2—cosk,—cosk,)e.el, (60)

bk)=—i-(e,sink,+e, sink,). (61)

We are now ready to discuss the behavior of the
system in the vicinity of the:equilibrium state . From
klim bk)=0 and klim 4K)=0,,(1—0, 3), we see

- had® ]
that equilibrium deviations along the 1- and 2-direc-
tion sense a vanishing restoring force in the long
wavelength limit, corresponding to the two zero eigen-
values developed by B(k) in this limit. Correspond-
ingly, the equilibrium fluctuations associated with
these modes can become very large with increasing
wavelength. This is due to the translational invariance
of the system along the 1- and 2-direction. In contrast,
the remaining u;-modes experience a finite restoring
force and, therefore, finite fﬁlctuations even at k=0.

However, these modes are subject to a different
source of instability. As 4,4(k) is proportional to s2,
B(k) may develop a negative eigenvalue for the 3-direc-
tion, if s grows too large. As a result. a subset or even all
of these modes may become unstable if s starts to

exceed a critical value. Hence, when the input vector
distribution along the transversal dimensions becomes

too broad the symmetry underlying the distribution
P(v) is broken and the array A folds into a new
nonsymmetric equilibrium configuration. This sym-
metry breaking is preceeded by a strong increase of
fluctuations of modes with a characteristic wavelength
ot

For a more detailed analysis and to calculate A*, we
shall consider the limiting cases of long-ranged and

short-ranged adjustment function h,,,

5.2 Long-Ranged h,,

We consider the adjustment function Gaussian
shaped, i.e.

2
ho= T 8,400 €XP (— 550—2) (62)

with lateral width o, for which we will require
1<a<N. In this case it is a good approximation to
replace the finite discrete Fourier transform by an
infinite continuous one, yielding

h(k)=2nc? exp(— ak2/2). (63)
Substituting (63) into (52) we obtain

4n%q*

D(k)= N2

[kkTo* +M] exp(—k2c?). (64)

The non-vanishing elements of B(k) are

2n0? 1 .
B,,= N (1 ~% (4+ 3 cosk,—6k,0?sink,

— cosk,) exp(— k20’2/2)> , (65)
o 2ng? 1 2gink
B,,= N 1- 3 (4—cosk,—6k,0*sink,

+3cosk,) exp(—kzaz/2)> , (66)
- 2n0? 2s?
By;= N (1 -5 (2—cosk,—2cosk,)

X exp(—k’az/Z)) , (67)
s 2me* '
B,,= 7’\‘;— -k, sink, exp(—k?a2/2), (68)
8 2no* , 22

0= TV—Z—-kysmkxexp(—k 6%/2). (69)



To sxmphfy these expressions, we observe that for ¢ > 1
either e ~**** is very small or k, and k, are sufficiently
small to expand the sines and cosines to leading order.
Further neglecting k2-terms relative to k?¢-terms we
obtain for B the simpler expression

Bk)~ 2;:;: [1—( 2kkT+—2§k—2—ee )
x exp(_kzaz/z)]. ‘ (70)

In this approximation B(k) and D(k) commute and
both have the same eigenvectors, namely &5 =e,, &, =k
and the vector &, =k* perpendicular to these two. The
corresponding eigenvalues 2 and AP for B(k) and D(k)
are :

1= 2% 2197 (| _e-taeny,

(71)
-kzdz.
3N2 ’
10)= 2,’:,‘2 (1~ (=KoY e0en);
(72)
AB(k)= 2 3N2 ” (12K%% + 1)e P,
2 2
).B(k)‘— 27:0' (1_Tke_kz¢2/2);
4n’c (73)
2(k)= ;‘N, e,

B represents the strength of the drift term responsible
for driving the expectation value of the distribution
towards its equlhbnum value. Hence (71), (72) imply
that the system is “stiffer” for deviations along the
E,-mode, for which deviations and|wave vector k are
parallel, than it is for deviations along the &,-mode, for
which the deviations are perpendicular to k. For
wavelengths which are large compared to the lateral
extension ¢ of the adjustment function we asymptoti-
cally have A3(k)=34%(k)=0(k?), i.e. the &,-mode is
three times stiffer than the & ,-mode and both stiffnesses
vanish as k tends to zero. The stiffness of the &;-mode
does not vanish at k=0. This mdde is subject to a
different kind of instability: if s is large enough, A5(k)
can be negative for a whole band of k-values. In this
case the associated modes, and with them the sym-
metric equilibrium configuration chosen for our
expansion, are unstable and the system will develop
towards a different equilibrium state. To see this more
clearly, we consider the fluctuations of the associated
eigenmode amplitudes u,. From (39) follows
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e (k)

(u,,(k)z)= m, n=1,2,3. (74)

All other correlations vanish. Hence, we have

_ exp(—k2a?)
) =ena® o K3 (73)
_ (12k%c* + 1) exp(—k3c?)
My =ena o RaT exp(—kTo7)” (1O
Cus(k)?> =enc? s*exp(—k’e?) (77)

3—s?k?exp(—k*a?/2)’

For the fluctuations of 4, and u, the deviation of w,
from its equilibriwin value W, lies along one of the two
main directions of the mapping. These fluctuations
affect the positions r in the array to which the feature
sets F, are mapped and, therefore, will be called
“longitudinal” fluctuations. As we can see from (75)
and (76), all fluctuations with wavelengths significantly
below o are practically absent. Consequently, the main
contribution to any statistical distortions of the map-
ping comes from fluctuations with long wavelengths
which exhibit a 1/k?-singularity. To estimate the effect
of these fluctuations on the final mapping, we expand
(75) for the lowest possible wave number k=2xn/N,
assuming ko =2ng/N <1. This yields

(u}d'? =N}/ ¢/24n ~0.12Ne'/?, (78)

For this expression to be of the order of one lattice
spacing or less, ¢ must be chosen inversely propor-
tional to N, i.e. inversely proportional to the number
of neurons in the array. However, it should be noted
that for practical applications these smooth, fluctuat-
ing distortions over a large spatial scale are usually not
very disturbing, as one is interested primarily in
preserving the correct neighborhood relationships
along the most important feature dimensions. Many
applications will tolerate, therefore, much larger values
of ¢ in the final convergence phase.

The u;-mode affects the deviation of each w, in the

.direction perpendicular to the array and, hence, the

specification of the associated feature set F, along this
dimension. From (77) we see that in contrast to u, and
u, the transverse fluctuations remain finite at k =0 but,
as already indicated above, their stability now depends
sensitively on the value of s. Instability arises when s
reaches a value s* for which the denominator in (77) is
no longer positive for all k. The smallest value of s for
which this happens is s* =0]/3e/2 ~2.02¢. The wave-
length of the associated mode is A* =an1/§z 4.44¢.
One can conclude that the system tolerates inputs with
a maximum transverse variance which is proportional
to the width o of the lateral adjustment function h,,. By
varying o one can control the tolerance of the map
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against variance of inputs along the remaining or-
thogonal directions. When s approaches s* from below,
the system exhibits fluctuations which become increas-
ingly intense and especially pronounced around the
wavelength 1x4.440. When s exceeds s*, the sym-
metric equilibrium’ configuration becomes unstable
and the system settles into a new equilibrium state.

5.3 Short-Ranged h,,

In the short range limit h,, includes only the nearest
neighbors, i.e.

hrs = 6n + Z ‘61- +n,s8°* (79)
n=tex,ey

In this case

h(k)=1+2cosk,+2 cosk,. (80)

Focusing the representative case k, =0, k:=k,, we
obtain

v &-(3+2cosk)
Cuylk)y™>= 4(1—cosk)(9—2cosk)’ ®1)
_ &-(44sin’k+12cosk+13)
Caa(k)?) = 12(1— dosk) (11 + 6 cosk) ° ®2)
_ es?-(1+2x)?
wslk)*> = STt —esTrt 15=45)" ®3)

where x:= cosk,+ cosk,. Equation (83) is also valid
for k,+0. We observe again the 1/k%-singularity of
longitudinal equilibrium fluctuations as one ap-
proaches long wavelengths. As before, we find B, ,(k)
>B,,(k), i.e. u, is stiffer than u,. As D, ,(k)=D,,(k)
this situation is also reflected in the fluctuations of the
two modes, which are smaller for the stiffer mode u,. A
similar analysis as in 5.2 yields {u,(k)*)L/2 20.2¢!/2N.
An overall distortion of the order of one lattice spacing
or less again requires ¢ to be scaled inversely propor-
tional to the number N2 of neurons in the lattice. The
critical value for the onset of the transverse instability

in this case is s*:=]/12/5~1.549 and the associated
first unstable modes are characterized by x*=3/4. If
k,=0, this corresponds to a rather short wavelength of
about 3.45 lattice spacings which is again comparable
to the lateral width of the adjustment function.

6 Monte Carlo Simulations

To test the analytical results of the preceeding sections,
we have carried out Monte Carlo simulations of the
Markov process (7) on a two-dimensional square array
of 32 x 32 units, i.e. N =32, with a constant step size of
€=0.01 and adjustment function (79). The resulting
correlation functions {u,(k)>) are compared with the
analytical expressions (81)«83) in Figs.2-4. We have
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Fig. 2. Dependence of fluctuations of “soft mode” u, for the short-
ranged adjustment function of (79) on the wave number k. The
data points were obtained from a Monte Carlo simulation with
20000 samples of the Markov process (7) for fixed £¢=0.01 and
5=0.0001. Superimposed is the analytical result according to (81)
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Fig. 3. Fluctuations of the “hard mode” u, of the same simu-
lation as in Fig. 2 above [analytical result according to (82)]. For
small wave numbers the fluctuations are smaller than for u,. For
larger wave numbers this distinction looses its significance
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Fig. 4. Fluctuations of the “transverse mode” u, [analytical
results according to (83)] for three different values of the
thickness parameter s: for s=0.0001, i.c. essentially a two-
dimensional input distribution, only small transverse fluctu-
ations arise. For s=1.3 fluctuations begin to exhibit a broad
maximum at about k=0.58x, which becomes very pronounced
for s=1.5, which is closely below the critical value s*~1.54



also studied map formation for a long-ranged adjust-
ment function. This case is discussed further below.
We generated an ensembile of states by taking 20000
successive “snapshots” of the Markov process (7),
starting from the equilibrium configuration W,=me,
+ne,, m, n=1,2,...,32. Successive snapshots were
2000 Markov steps apart. From the generated en-
semble, we evaluated the correlation functions
fiK):=<{u,(k)*>'?, n=1,2,3 at the discrete wave
vectors k=e,-2nl/N, 1=1...32. The resulting data
points for the “hard” mode u, and the “soft” mode u, at
s=10"* are shown in Figs.2 and 3, respectively.

Superimposed are the predictions dus to(81), (82), .

which are in very good agreement with the simulation
data. Figure4 shows the data points of correlation
function f3(k) (in units of s)ifor the transverse mode u,
for the three parameter values s=10"%, 1.3 and 1.5
together with graphs of the theoretical predictions
according to (83). At s=10"* fluctuations decrease
monotonously with decreasing wavelength. However,
as s begins to approach the critical value s*~1.54 the
fluctuations of modes in the vicinity of k* ~0.58x start
to increase markedly. At s=1.5, i.e. only little below
the transition at s* ~1.54, the fluctuations are already
sufficiently strong to protrude into a significant part of
the vertical extension of the parallelepiped. This sig-
nals the onset of the instability point, at and above
which a discussion in terms of equilibrium deviations
u=w-W is no longer possible. For all three param-
eter values, the agreement with the theoretical pre-
dictions is very good.

A similar Monte Carlo simulation for the long-
ranged case would require prohibitively much com-
putation time. We have restricted, therefore, the simu-
lation of the long-ranged ¢ase to a one-dimensional
array consisting of a chain of N =128 neurons. The
parallelepiped was a two-dimensional strip of vertical
extension 2s and length N =128. For the step size we
assumed again the value ¢=0.01. We generated 10000
snapshots, which were 1000 Markov steps apart. The
analysis of Sect.5 carries over to this case in a
straightforward manner with very similar results. For
the one-dimensional analog of the adjustment function
(62), we obtain for the equilibrium fluctuations of the
(only) longitudinal (u,) and the transverse (u,) mode:

Cuy(k)*>
_ ea)/2n(12k*c* + 1) exp(—k2a?)
" 12(2—[1+ cosk— 242k sink] exp(—k20?/2))
(84)

w[/Zc—sz exp(—k?a?) 85
6—as%(1—coskjexp(—K%73)” &)

Cup(k)?) =
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Fig. 5. Dependence of longitudinal fluctuations for a Gaussian
adjustment function of width ¢=5 on wave number k. Data
points are from a Monte Carlo simulation of a chain of N =128
neurons. Superimposed is the theoretical result according to (84).
The predicted exponential decay towards increasing wave num-
bers is well reproduced

0.35 [t , . T

0.30 FFatk)/s © . .
0.25
0.20
0.15
0.10
0.05 |-

0.00 “ L L -
0.00 0.05 0.10 0.15

k/n

0.20

Fig. 6. The corresponding transverse fluctuations for three
different values of s [analytical results according to (85)]. In
comparison to Fig.4 the critical value is s*~10.1 and the
fluctuations show an exponential decline for larger k-values.
The maximum associated with the transversal instability occurs
at lower k-values due to the longer-ranged adjustment function

Apart from an additional prefactor of (a[/Zz_ ~! the
k—0-limit of these expressions is identical to (76) and
(77) of the two-dimensional case and symmetry break-
ing by the transverse modes occurs at precisely the
same value s* and wavelength A* as for the case studied
in Sect. 5.2. In Figs. 5 and 6 we show a comparison of
the graphs of the theoretical correlation functions (84),
(85) and the results from a Monte Carlo simulation for
o=>5. Figure5 shows the data points of the Monte
Carlo simulation for the longitudinal fluctuations f,(k)
at s=0.1. The expected exponential decrease for
k%62>1 is clearly reproduced. On the other hand, the
expected 1/k-singularity for f,(k) does not show up, as
the required very small k-values are attained only on
longer chains. Figure 6 presents the transverse fluctu-
ations f5(k) for the three cases s=0.1, i.e. an essentially
one-dimensional input vector distribution, s=9.0, i.e.
markedly below the critical value s*~2.026~10.1,
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and at s=9.9, i.e. just below s*. Most significant
differences to the short-ranged case discussed above
and well confirmed by the data points of the simulation
are the shift of the instability to lower wave numbers
reflecting the longer scale o=5 set by the long-ranged
adjustment function, and the exponential decline of the
fluctuations for ko> 1.

7 Conclusion

Many pattern recognition and signal processing tasks
can profit from a class of neurally inspired adaptive
algorithms with the capability of forming low-
dimensional reduced representations or maps of the
most essential features of their input signals by learn-
ing. Convergence to these maps is a stochastic process
driven by a sequence of input samples and besides a
consideration of its average behaviour requires also a
study of statistical fluctuations. We have carried out
such study for one promineént representative of these
algorithms which is due to Kohonen and which can be
described by a Markov pracess. For this purpose we
have derived a Fokker-Planck equation which de-
scribes the time evolution of the distribution function
of this process in the final convergence phase. We could
derive a criterion for the time dependence of the step
size which guarantees convergence. For finite times, we
find the presence of two différent types of fluctuations.
The first type affects the positions of the features in the
mapping and consists of waves with large amplitude
for long wavelengths and practically vanishing ampli-
tudes for wavelengths significantly below the diameter
of the adjustment function used in the algorithm. The
second type affects the mapped features themselves.
These “transverse” fluctuations increase with the vari-
ance of the inputs along the dimensions orthogonal
to the map. If this variance exceeds some critical value,
the associated modes become unstable and a re-
configuration of the mapping occurs. This behaviour
has been observed earlier in computer simulations as
an “automatic selection of feature dimensions”. For the
simple geometry of a parallelepiped as the support of
the input distribution, the reconfiguration results in a
breaking of the underlying symmetry of the input
distribution. For this situation we can calculate the
critical value of the variance and the typical wave-
length of the associated unstable modes.

The approach of this paper may prove useful for the
investigation of related self-organizing mapping al-
gorithms. In addition, the theoretical results concern-
ing convergence, fluctuations, and automatic selection
of feature dimensions can facilitate the practical design
of the algorithm for pattern recognition and related
applications. Further questions especially interesting
in this respect and likely to be accessible by this

approach are the optimal choice of the step size &(t) for
finite times and the extension of the analysis to more
general input distributions.
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Appendix

We want to show that for any positive function &) the
conditions

lim | e(r)dr=00, lim &)=0, (i)
t-o 0 1= ®
and

t 1
lim § &) exp ( -Bf s(t”)dt") dr'=0, (ii)
t~o 0 t

are equivalent for any §>0.

Proof. (ii)—(i) is obvious for ¢>0. To show (i)—{(ii), choose
8> 0 arbitrarily small and a>0 such that {t)< g4 for all t>a.
Let &, :=maxe(). Then choose b>a such, that

?
exp (— B &) dr) < Bb/emsy for all t>b. Then for all t>b
a

j" &t exp ( -8 } s(t”)dt") dr
1] t

1 /e t , a t , ., ,
=51+ D[ oo (-pfuerac)]
< Emax [exp < -—ﬁ } g(t") df’)]l =a

ﬂ v =0
+8: [exp <—B } (") dt”):ll -

Emax 256
: +0=36.
B

As 6 may be made arbitrarily small, (i) must hold.

<
=

[y}

max
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