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Abstract:

We investigate the convergence properties, in particular convergence time and
number and characteristics of metastable states, of the self-organizing feature
map algorithm for a simple, but very instructive case: the representation of
the unit interval by a linear Kohonen chain. We find that convergence times
are minimal for a Gaussian neighborhood function with a width of the order
of the number of neurons in the chain. Metastable states, which may “trap”
Kohonen maps for a long time during the ordering process, arise for concave-
shaped neighborhood functions. An extension of Kohonen’s proof of ordering
to include all neighborhood functions which are monotonically decreasing with
distance is introduced. :

1. Introduction

The self-organizing feature map algorithm (SFM) [1,2] is an iterative procedure to generate a rep-
resentation of an often continuous input space by a discrete set of prototypes, weight vectors, which
are associated with points, neurons, in some image domain or network. Besides approximating the
input space by these prototypes, the SFM algorithm also arranges them in such a way that the
metric relationships of its elements are mirrored by the metric relationships of the points associated
with the prototypes. This requires that neighboring input patterns are mapped onto neighboring
neurons. The desired result is an optimal representation, i.e. an image (map) of the input space in
which the most important similarity relationships among patterns are preserved and transformed
into spatial neighborhood relationships on the network.

The representation of data generated by the SFM algorithm has proven useful for a variety of
technical applications in the areas of pattern classification and function approximation [3-5] and
has successfully been applied as a model for patterns and pattern formation in biological neural
systems [6]. However, a general theory of map formation is still out of sight, and even problems of
important practical interest, like the number and type of optimal representations, the convergence
to optimal representations, convergence speed as a function of the algorithm’s parameters and the
avoidance of sub-optimal representations, are not solved.

The intent of this paper is to shed some light on these questions for a simple, but very instructive
case: the formation of a topographic representation of the unit interval by a linear chain. We will
first outline an extension of Kohonen’s proof of convergence [7], and then consider the issue of the
rate of convergence. It can be shown that the rate at which the algorithm converges depends on the
shape of the so-called neighborhood function. In particular, for a fixed value of the learning step,
there is an optimum value for the width of the neighborhood function, for which convergence time is
the shortest. The “best” neighborhood function to use turns out to be one which is “convex” over a
large range around the winner neuron, and yet which has large differences in values at neighboring
neurons. For a Gaussian function, which is typically chosen, these competing interests balance
when the “full width at half-height” of the Gaussian is of the order of the number of neurons in the
chain. It can be proven that no metastable states exist for broad, convex neighborhood functions,
but for Gaussian functions below a certain width, metastable states appear. These metastable states
are fixed points of the mapping algorithm other than the optimal representation. The mapping
algorithm may be “trapped” in these metastable states for a finite number of iterations before
the optimal representation is found. For neighborhood functions which are not convex anywhere,
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metastable states exist for all parameters and the ordering time is much longer than for a Gaussian :
function, even if both functions are similar in that their distance in function space is arbitrarily
small.

2. The SFM-Algorithm

In the following we are concerned with the representation of the unit interval [0,1], the input
space, by a one-dimensional network of N neurons. We define a state ¥ as a particular set of
weight values w,, and a configuration as the set of states which are characterized by the same order
relations.

The mapping process starts by assigning random initial values to each weight vector w,(t) at
t = 0. The generation of the map by the SFM-algorithm then follows an iterative procedure. At
each iteration step a pattern v is chosen from the input space at random. Then the neuron r whose
weight vector is closest to v is selected, and the value of each weight vector is changed according’
to the update rule

wy(t + 1) = w,(t) + €h(r, s)(v — wy(t)) (1

where h(r,s) is usually given by a Gaussian function of the distance between a neuron s and the
winner neuron r:

h(r, 8) = h(lr — s]) = exp(—(r - 5)*/0?) &)

One of the aims of this paper, however, is to study the effect of using different definitions of A(r, s).
In particular, we will consider the property of convexity; we define the neighborhood function to
be convez on a certain interval I, if |s — ¢| > {s - r|, |r — g| = [h(0) + h(s, )] < [h(s,r) + R(r, q)]
for all s — g|, |s — r|, |r — g| within interval I, and to be concave otherwise. (See Fig. 2.)

3. Ordered Configurations

We define an ordered configuration as a map of the input space [0, 1] which preserves the dxstance
relations between input patterns "

[r—s| < |r — gl <> |wy — w,| < |wr —wy| Vr,5,9 (3)

and we define an optimal representation as a stationary state of (1) which is ordered. For a given
pattern v, equation (1) results in multiplying (ws—v) by the factor (1—¢h(r, 5)). If (3) is fulfilled for '
a given map, 0 < ¢, 0 < h(r,s) < 1, and if the neighborhood function is monotonously decreasing
with |r — s|, this factor is positive, smaller than one, and decreases with the distance between a
weight and the applied pattern. Thus ordered weights cannot change order and there is no sequence
of patterns which leads to a configuration violating condition (3).

Kohonen {7], and Cottrell and Fort [8] have proven that, with a neighborhood function that
is a step function, the SFM-algorithm will cause any inital set of weight values to be arranged
into an ordered configuration in the limit as time goes to infinity. We have extended this proof to
include the set of all monotonically decreasing, positive-valued neighborhood functions in the set of °
neighborhood functions that will result in an ordering of the weight values. The proof rests on the
facts that for such neighborhood functions, it can be shown that the only absorbing states obey (3)
and that it is always possible to find some sequence of patterns v which will cause a given mapping
to develop into a map obeying (3). The proof is lengthy and details will be published elsewhere [9].

4. Ordering Time

Figure 1 shows the ordering time, or the average number of iterations necessary to reach an ordered
configuration (3), and the corresponding standard deviations as a function of o. Ordering time is
shown for two types of neighborhood functions, a Gaussian function given by eq. (2) (Fig. 1a) and
a “compressed” Gaussian function defined by Acomp(r,s) = 0.9 + 0.1 h(r,s), where h(r, s) is given
by eq. (2) (Fig. 1b). The ordering time is proportional to 1/¢ for small £ and has a sharp minimum
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Figure 1. Average ordering time as a function of the width & of the neighborhood function for a
Kohonen chain consisting of ten neurons; a (left) Gaussian h as in (2), and b (right) “compressed”
h (see text.) Time in units of 1/e. Average is over 1000 trials. Error bars represent one standard

deviation.
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Figure 2. Examples of the neighborhood Figure 3. Ordering time (open squares), time
functions used: a (top) Gaussian, o = 10; spent in the initial configuration (closed squares),
b (bottom) concave, o = 10. (See text.) and rearrangement time (closed circles) as a func-
tion of o for a ten-neuron Kohonen chain with a

Gaussian neighborhood function (¢ = 0.01).

for o = 9. The standard deviations are much larger for a small value of ¢ than for a large value.
The parameter region around the value of & = omin Which corresponds to the minimum of ordering
time separates the parameter space of (1) into two regimes dominated by different phenomena
which will be discussed below.

Both neighborhood functions are convez, at least within a certain interval of their argument,
and this turns out to be important to keep ordering times short. For a “concave” neighborhood
function ordering times increase dramatically. In the case of h(r,s) = exp(—v/[r — s|/a?), and the
“compressed” version heomgp(r,s) = 0.9 + 0.1 h(r, s), the average ordering time was even too long
to be determined. This result indicates that ordering times are determined more by the “shape”
of the neighborhood function than by its overall “height,” and that neighborhood functions which
are close (in some function space metric) can still lead to very different ordering times. Figure 2
illustrates the difference between the Gaussian and concave functions. The optimal neighborhood
functions turn out to be functions which are convex for all r,s of a given Kohonen chain and for

which |h(z) — h(z + 1)| is as large as possible.
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Figure 4. Percentage of ordered maps and maps in disordered configurations as a function of
time for 5000 independent simulations for a Gaussian neighborhood function with o = 2 (a, upper
left), o = 10000 (b, upper right) and a concave neighborhood function (see text) with ¢ = 2 (c,
lower left), o = 10000 (d, lower right). Open circles denote the percentage of maps in an ordered
configuration; filled symbols, the percentage of maps in selected disordered configurations; and solid
lines without plot symbol, the total percentage of maps in all other disordered configurations. The
selected disordered configurations shown in a,c,d are metastable.
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5. “Contraction Phase” (¢ >> opmin)

Above the optimal value 0y, the average ordering time increases and assymptotically approaches
a logarithmic function of o. The increase in ordering time has a simple explanation: it is completely
due to the increase in the amount of time spent in the initial (random) configuration (see Fig. 3).

For large o, the SFM-algorithm generates a map which covers only a small range in the center
of the unit interval, and the average distance between weights as well as the change in their distance
per iteration (1) approaches zero for & — co. Since in the initial random configuration the weights
cover the unit interval completely, map formation proceeds in two steps; first the range of weight
values contracts while maintaining the initial random ordering of weights, and then the weights are
able to rearrange to form an ordered mapping. Figure 3 shows the average ordering time, the time
spent in the initial configuration, and the rearrangement time (the difference) as a function of o for
the Gaussian neighborhood function (2). The increase in ordering time above omin is completely due
to the time ¢, necessary for contraction. The time t, is given by ¢, & €~ In(l/lc[h(r,s)]) where !
denotes the length of the interval spanned by the initial weight values and l; denotes the length
of the interval covered by the weights (critical length) at the time where the first rearrangements
occur. The distance I is a functional of h(r,s). Its dependence on o determines the shape of the
ordering-time curves for large 0.~

Figure 4b gives another way of looking at this result. The figure shows the percentage of ordered
maps and maps in disordered configurations as a function of time for 5000 independent simulations.
During the contraction phase (t = 0 — 150) the initial configuration of the maps is preserved. When
at ¢ = 150 the length of the interval covered by the weights assumes the critical value /., sudden
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rearrangement takes place and the maps become ordered almost at once. Note the low number
of maps in intermediate configurations, nearly all of which are characterized by wy < w2 <+ <
wg < wyg < Wy, or one of three other symmetrically equivalent configurations. This indicates that
metastable states are absent in this parameter regime of the Gaussian neighborhood function, a
finding which we will discuss in more detail below.

6. Metastable States

If the probability of chosing a pattern v is P(v), then the average change of the weight value w,
per iteration is given by

1
Ve = —¢ /o dv P(v)h(r, 8)(v — ws) : ()

where r is again the label of the winner neuron. States of particular interest are those for which
V, = 0 for all s, the stationary states, since presentation of a pattern results in no change in the
weight values on the average. We will call the stationary states stable if they belong to ordered (i.e.
absorbing) configurations, and metastable otherwise. For P(v) =const. they are given by

N
0=3"h(rs) [ (v-wi)dv (5)
r=1 Qr
where N and , denote the total number of neurons and the tesselation cell of neuron r, respectively.
For h(r,s) = 1 the only stationary state is given by w, = 1/2 for all s. For more general
neighborhood functions one considers the actual neighborhood function h(r,s) to be the effect
of a perturbation g(r,s) on this trivial case, namely h(r,s) = 1 — eg(r,s). It is convenient to
relabel the weight values with indices that are arranged in ascending order in the input space:
r < y = wy < wy, with index values ranging from 1 to N. Let r = P(z) be the “old” index r
which denotes the position of the corresponding neurons in the Kohonen chain. By expanding
(5) in a power series around w; = 1/2 up to order (¢2), one can determine the stationary states.
(Details will be published elsewhere.) They are given by

1 e €
we = 5 = g(PPE) — IPO)PE) + 'l'a'(g%(N)‘P(z) - payp() + O(€%) ®)

Every permutation P(z) which when inserted into (6) leads to weights w, in ascending order,
describes a configuration which contains one stationary state. For a convex neighborhood function,
h(r,s) = 1—eg(r,s), it can be proven that there are only two states fulfilling eq. (6) and that these
states correspond to the two possible ordered configurations. Since these states are absorbing,
ordering is guaranteed for convex neighborhood functions. For convex neighborhood functions
there exist no metastable states; for a concave neighborhood function, however, metastable states
exist for all parameter values. '

Figure 5 gives an overview of the metastable states for a Kohonen chain consisting of ten
neurons and a Gaussian neighborhood function. The horizontal axis represents the configuration
space coordinates, the width o is plotted on the vertical axis. Each vertical line segment denotes the
range of o over which a metastable state with a particular configuration exists. For large values of
o no metastable states are present. At o & 5.0245 the first metastable states appear, characterized
by the configuration w; < wz < .-+ < wyg < wy, or one of the three configurations related by
symmetry. Below o = 4.5289, more metastable states come into existence. Some are only present
over a short range of o values, while others seem to persist even as o approaches 0.

The presence of metastable states has an enormous impact on the ordering time, because these
states may temporarily “trap” maps during the ordering process. It is possible to prove, however,
that the maps will eventually become ordered despite the presence of metastable states [9]. Figure 4
shows the percent of maps in a particular configuration as a function of time for the Gaussian
neighborhood function given by (2) (Fig. 4a,b) and the concave neighborhood function given by
h(r, s) = exp(—/[r — s|/o?) (Fig. 4c,d). Figure 4a shows the population of maps as a function of
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~ Figure 5. Bifurcation diagram show-
ing that the number of metastable states
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time for a regime where metastable states exist. Not all of the states which were predicted to be
metastable are included in the figure printed here since there are too many such states. The curve
that rises the highest before falling to zero represents the four symmetric configurations given by
w < wp < -+ < wyp < wy, and the three corresponding configurations. These states are the
most “stable”, i.e. the average time a map spends in one of these configurations is larger than the
time spent in other metastable configurations. The curve which starts at 100% and falls to zero
is the total percentage of maps in any of the configurations whose populations are not calculated
separately, and may be thought of as representing the percentage of disordered maps. This behavior
is very different from that in Fig. 4b which displays the result from a regime where no metastable
states are present.

Figure 4c,d shows the percentage of maps in a particular configuration as a function of time for
the function h(r,s) = exp(—+/r — s|/02), which is concave everywhere. Metastable states exists
both for large and small values of o. Although a plot of the concave neighborhood function for
o = 10000 appears almost identical to a plot of a Gaussian function with o = 10000 (particularly if
one plots only the discrete points of the function,) the ordering time of the concave function is much
longer than that of the Gaussian. Compare Figure 4d representing the case of a concave function
to Figure 4b discussed above. Again the exact configurations whose populations are plotted are
not given. The particular set of configurations which is plotted in each case is different, but in both
cases the most prevalent metastable state happens to have the same configuration. However, the
metastable states for small and large o are identical for the concave neighborhood function.

Acknowledgement: The authors would like to thank H. Ritter for stimulating discussions. Finan-
cial support by the University of Illinois in a fellowship to E. E., and by the Boehringer-Ingelheim
Fonds in a scholarship to K. O. is gratefully acknowledged. This research has been supported by
the National Science Foundation (grant number 9017051).

References

[1] Kohonen T. (1982a), Biol. Cybern. 43, 59-69

[2] Kohonen T. (1982b), Biol. Cybern.44, 135-140

{3] Kohonen T. (1989), “Speech recognition based on topology preserving neural maps”, in:
Aleksander 1. (Ed.), Neural Computation, Kogan Page, London

[4] Nasrabadi N.M., and Feng Y. (1988), Proc. IEEE Intern. Conf. Neural Networks, Vol. I, 101
[5] Ritter H., Martinetz T., and Schulten K. (1989), Neural Networks 2, 159-168

(6] Obermayer K., Ritter H., and Schulten K. (1990), Proc. Natl. Acad. Sci. USA 87, 8345-8349
[7] Kohonen T. (1983), Self-Organization and Associative Memory, Springer-Verlag, New York
[8] Cottrell M., and Fort J.-C. (1987), Ann. Inst. Henri Poincare. 23, 1-20.

[9] Erwin E., Obermayer K., and Schulten K., in preparation.



