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Abstract

This paper describes an application of time-dependent perturbation theory to the calculation of singlet-to-triplet yields in
radical pair reactions for oscillating magnetic fields. It outlines an iterative approach, based on the Liouville equation, that
holds for any order of perturbation theory. 1t then compares this method to other methods, namely, numerical integration and
the rotating frame treatment as well as methods based on the Schrédinger equation, and gives sample results.

1. Introduction

This work was stimulated in part by the continued
interest in the magnelic sense in animals [1,2] as well
as the growing concern over health effects of sub-
thermal nonionizing oscillating electromagnetic fields
[3,4]. One physical mechanism that has been pro-
posed to account for biological effects of magnetic
fields is the radical pair mechanism [S-11]. This
mechanism has proven quite successful in explaining
the effects of steady as well as microwave magnetic
fields on the photosynthetic reaction center (see, for
example, Refs. [12-16])).

The purpose of this paper is to further examine
the effects of oscillating magnetic fields on chemical
reaction yields within the radical pair mechanism. It

* Corresponding author; cmail: canficld@r1h6000.scs.uiuc.edu.

seeks a general treatment that can apply to a combi-
nation of a steady field with multiple oscillating
fields, all at different frequencies and orientations
with respect to the steady field. Since this work is
aimed toward biological effects of magnetic ficlds
and, in particular, magnetic sensory mechanisms, it
should be sufficient to develop a general treatment
that can hold in the nalural magnetic environment.
This is because the natural magnetic field undergoes
slight variations in magnitude and direction with
time and location, and these variations can provide
information on direction, location, time of day, or
season to animals capable of detecting them [17].
Thus, certain animals may have evolved sensitivity
to the natural magnetic environment, and effects due
to man-made magnetic environments, which have
not existed long on an evolutionary time-scale, are
probably only incidental.

Thus, since the geomagnetic field is typically
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composed of a steady field of 0.5 G and a spectrum
of oscillating fields with intensities well below 0.03
G (a fluctuation due to a very large magnelic storm)
[17], in order to hold in the natural magnetic environ-
ment, the general treatmemt is restricted in that it
must be able to handle very weak steady fields but
enjoys the freedom that it can use perturbation the-
ory to treat the effects of the oscillating fields. This
use of perturbation theory should also be applicable
to a number of man-made magnelic environments
where the steady field is much larger than the oscil-
lating fields. Thus, a general treatment based on
perturbation theory should be useful in certain health
eflfects studies as well.

In a previous paper {18], a perturbation expansion
for the effects of oscillating magpetic fields in the
radical pair mechanism was presented. This expan-
sion was based on the Schridinger equation. The
present paper discusses a similar expansion, this time
in the framework of the Liouville equation. Both
methods give the same results if the singlet and
triplet states depopulate with equal rates (kg = k) in
the Liouville method and an exponential time depen-
dence (7= time constant) is assumed in the Schri-
dinger method. In this limit where kg =k =1/7,
the spin and cage dynamics decouple (here cage
dynamics includes the effects of chemical reactions
and diffusion). Nevertheless, the Liouville equation
allows a more general treastment that includes the
effects of coupled spin and cage dynamics. This
allows one to treat more thoroughly systems ex-
pressed by kinetic equalions. This formalism also
allows a more natural description of more compli-
cated effects such as rotation, spin relaxation, diffu-
sion, and multi-step reaction kinetics (statc diagrams).

In addition to the increased rigor and generality of
the Liouville equation approach, the perturbation
method outlined below happens to yield a more
reliable, compact, and efficient computer algorithm
than did the Schrodinger approach. This new ap-
proach does not suffer from certain numerical prob-
lems arising in the Schridinger approach such as
occur when evaluating integrals (31) and (32) in Ref,
(18] near w = 0, especially for higher orders of per-
turbation theory. It also does not suffer from the
rapidly increasing computation times needed for the
Schridinger approach, thus allowing much higher
" orders to be done in a reasonable time frame.

2. Radical pair mechanism in the Liouville for-
malism

The radical pair mechanism [19-21] can be ap-
plied when two unpaired electron spins (S, and §,)
coexist in a cage long enough to undergo spin dy-
namics (variation in singlet/triplet character with
time) due, for example, to their interactions with
external magnetic fields B(¢) through the Zeeman
elfect, with nearby nuclear spins I; through the
hyperfine coupling a;, and with each other via the
exchange interaction J. Typically such a pair is
formed in a singlet state by a homolytic cleavage of
a covalent bond, and one needs to delermine the
chance that such a pair will escape rather than
recombine. Since recombination typically occurs only
in the singlet state {19, p. 15], the spin dynamics and
all the terms controlling it (such as the external
magnelic field) are very important for determining
the chance that the pair will escape. To quantify this
chance for escape, one calculates the singlet-to-trip-
let yield Pg;.

To find the triplet yield it is useful to consider the
following diagram:

S==T (1

-

where S(1) and T(r) represent singlet and triplet
state populations, respectively, and kg and k; give
the rates at which these states depopulate. Note that
there are typically two ways these states can depopu-
late: recombination at rate k, or escape from the
cage at rale k. The latter is determined by diffusion
and is likely independent of spin state. The former
can depend on spin state and is typically such that
the recombination of S(¢) or T(r) dominates. Thus,
for example, kg =ky +k; while ky=k; and so
ks # ky. Thus, in real systems, whatever effects kg
and ky; have on the steady field and frequency
dependences of the singlet-to-tfiplet yield can be
controlled by altering the diffusion rate, and this can
be done by varying the solution viscosity, tempera-
ture, elc. Also note that in the equations that follow,
ks and ky should have the same unils as angular
frequencies. Thus their units are given in radians per
second.
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Returning to diagram (1), if one starts with the
initial condition S(0) + T(0) = 1 (S(0) = 1 for initial
singlet state), S(¢) and T(¢) will decay with time
until both equal zero. The triplet yield is defined as
the fraction of radical pairs which depopulate from
the triplet state (at the rate k) while the singlet yield
is defined as the fraction which depopulate from the
singlet state (at the rate kg). Thus one has

d
E;(pST(l):k‘l‘T(t) _ (2)
or
P (1) = f"‘krr(r')dr'. )

In the Schrodinger equation method [18), kg =k
=1/7, and, if the initial state is singlet, one has
T(1)=e "/ ()Q (1), where (1) is the wave
function determined by

" |
=Y(0) = = ZH() (1)

and Qg and Q. are the singlet and triplet projection
operators, respectively, that satisfy [18]

Qs + Q'r =], (4)
where [ is the identity matrix, and
Qr=3+S,-85,. (5

Meanwhile, in the Liouville formalism where kg
and ky can be different, one must use p(r), the
density matrix representing the electron and nuclear
spins at time ¢. In this formalism, the singlet and
triplet populations at time ¢ are S(¢) =t Qg p(1)]
and T(¢) = t[Qy p(1)], respectively, where

rA= ZA,.,. , ' (6)

is the trace (sum of the diagonal elements) of the
matrix A.

"~ To determine p(r) one specifies an initial condi-

tion such as p(0)=Qg/tr Qg for singlet, p(0)=

Qy/tr Qy for triplet, or p(0) =1/tr I for diffusion

randomized and integrates over time the Liouville

equation [16}:

d |
20 w2 LH(, p(0]_- $hsl0s. o(0)],

= 3k:[Qrs p(D)],, (7

where
[A,X]i=AX:tXA. (8)

Note that the last two terms in Eq. (7) involve
anti-commutators rather than products like Qg p(1)Qg
or O p(£)Q+. Haberkorn [22] shows why the form
used here gives more reasonable results. Also note
that the Hamiltonian H(1) is typically a sum of
Zeeman, hyperfine, and exchange interaction terms
(all often assumed isotropic, as given here):

H(1) = gpy ‘i [B(1) + S; +aI; - 5]
j=1

Even though other terms can contribute, this Hamil-
tonian is sufficient for the systems discussed in this
paper. Note that the methods discussed in this paper
also apply for more general Hamiltonians, the most
restricted being the rotating frame method which can
only handle g, hyperfine, and exchange tensors that
are axial or isotropic when a single rotating magnetic
field is applied. Also note that in Eq. (9) B(¢) and a;
are given in gauss while J is given in MHz. The
conversion factor gu,/h for g=2 (as here) is
2.799222 MHz /G [23].

To determine the singlet or triplet yields, one
must integrate kgS(¢) or k;T(¢) over time. Typically
one wants to find Pg (o) (often written as Pgp), the
steady-state singlet-to-triplet yield. This quantity is

Per(®) = [T (1) di= [Ty w]Qrp(0)] s

=ky [ Q1 5], (10)
where ’
f)=[:p(:) dr. (11)

Similarly, the steady state singlet-to-singlet yield is
Bog() = [ ksS(t) dt= [ ks t[ Qg p(1)] ds
0 . 0

= kg tt[Qs p].- (12)

Note that in the Liouville formalism the density
matrix includes all nuclear spin states. Thus, unlike
in the Schridinger approach, one does not need to
average over nuclear spin states.
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For a time-independent Hamiltonian I/, one can
solve for singlet or triplet yields by integrating Eq.
(7) over time. This gives, since p(¢) should always
decay to zero with time, an equation for  {(defined
in Eq. (11)):

i \
-p(0) = -——’;[H, pl-— 3ks[Qs, P,

_%kT[QT’ ﬁ]w (13)
which is a matrix equation of the form
Ap+pB=C, (14)

where A, B, C, H, p, p(0), Qg, and Q; are all
N X N matrices. Equations of this type can be solved
for p using the methods described in Refs. [24,25] or
the useful algorithm given in Rel. [26]. Nevertheless,
for time-dependent Hamiltonians H(t¢), like those
including oscillating fields, solving Eq. (13) is insuf-
ficient. Alternative methods are discussed below.

3. Typical treatments of oscillating fields
3.1. Numerical integration

A most general way lo determine dg; for time-
dependent fields, B(¢), is to integrate the Liouville
equation (7) using, for example, a 4th order Runge—
Kutta scheme (a numerical ethod for solving ordi-
nary differential equations [27, ch. 16]). This method
can handle any time-dependent field and more gen-
eral (e.g., less isotropic) Hamiltonians than in Eq.
(9), but, since it involves numerical integration, its
accuracy depends on the time step 8¢ and the num-
ber of steps N, used. That is, if 8¢ is too large, p(¢)
will deviate signilicantly from its true path, causing
increasing inaccuracies as the number of time steps
increases. Thus, this method usually requires a large
number of very small time steps, and, hence, tends lo
be quite computationally intensive and slow. It also
gives very little insight into how the singlet-to-triplet
yield varies with magnetic field strength or fre-
quency. Thus, a better method is desired.

3.2. Rotating frame treatment

If the oscillating field is of the form
B(t) =B,2+B,( £ cos wt +J sin wt), (15)

where £, §, £ are mutually perpendicular unit vec-
tors in a right-handed basis, the resulting time-depen-
dent Hamiltonian H(¢) can be transformed from the
laboratory frame into a reference frame rotating with
the field B (¢) where it becomes a time-independent
Hamiltonian H'. For example, if the laboratory frame
Hamiltonian is as in Eq. (9), then the rotating frame
Hamiltonian is [18]

2
H=gu, Y, (BySj: + B,S;.+a;1;+ S;)
j=1
2
+1S, - S, —he ¥ (S, +1,). (16)
j=1

Note that the field B(¢) has been replaced by its
steady component B,, along £ and its rotating com-
ponent B, along the rotating frame’s unit vector £.
Also note that a final term proportional to fiw has
been added to H(¢) to obtain H'. This final term
includes the electron spin operators for the electrons
that are involved in the Zeeman interaction with the
rotating field B\(r) as well as the nuclear spin
operators for the nuclei that couple 1o these elec-
trons. Finally note that if the Zeeman term due to the
steady field B, is large compared to the hyperfine
and exchange terms (as in RYDMR experiments [14,
p. 115)), the I;, operators in the final term of H' can
be neglected. Nevertheless, for very weak steady
fields By, it is important not to neglect these I
terms [18].

One important advantage of the rotating frame -
treatment is that it allows the time-dependent Hamil-
tonian H(t) to be transformed into a time-indepen-
dent Hamiltonian H', which allows quick and simple
solution of its singlet-to-triplet yields. This method
is, however, limited to the case in which the only
time-dependent field is rotating, the steady field is
either negligible or along the axis of rotation of the
rotating field, and the matrices of the Zeeman, hy-
perfine, and exchange terms are either isotropic_or
axially symmetric about the axis of the steady field.
Thus, if one hopes to deal with more general field
configurations, the interaction of multiple frequen-
cies of oscillating field, or anisotropic Zeeman, hy-
perfine, or exchange interactions, this method will
not suffice.

z
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4. Perturbation theory treatment
4.1. Derivation

The first step in the perturbation theory treatment
is to write the external magnetic field as
N
B(t) =B,+ AB/(t) =B, + ), ABlje'™, (17)
j=1
where N is twice the number N, of oscillating
fields applied and A is the perturbation parameter
which later gets set equal to one. Such an expansion
can always be done for periodic B(¢)’s. From this
one obtains a time-dependent Hamiltonian H(¢) made
up of a time-independent H, and a time-dependent
perturbation V(1):
Ne
H(1) =H,+AV(1) =H,+ Y AV, ',  (18)
j=1
Then, as usual when applying perturbation theory,
one must assume that B\(¢) and all its time-indepen-
dent B,; vectors are much smaller than B, in
magnitude and that V(¢) and all its time-independent
V, matrices are much smaller than H, (or, equiva-
lently, that the perturbations are applied for a very
short time).
Next, using
i

D=7

Y”

i .
E= - ",:Hu - %(sts +kQ1),
and

i .
F = ;;H" — $(ksQs + k1 Qx),

one obtains from Egs. (7) and (18)

d ' Ne

.-——pa(“—) =Ep(1) +p(t)F + j):| e"'f')«[D,, P(l)] .
(19)

Then, putting

p(0) = T o)X (20

I=0

into Eq. (19), one can equate powers of A to obtain
for =0

D) o) + aul) P, @

and for I > 1

dp,(t)
d¢

=Ep/(t) +p/(t)F

Ne
+ ) eia"[Dp Pl—l(’)]_~ (22)
j=1

Next, it is convenient to set p,(0) = p(0) and
p0) =0 for { > 1. Also, since for kg, k>0 the
density matrix decays to zero with time, one sets
p(®) =0 for | > 0. Then, if one defines

P(a)=[ p(t) e dt, (23)
0
integrating by parts yields
1 / @ ed pl(‘) fe
P,(a)m-i—a(p,(t) e‘“'lo —j‘; Te "dre].
‘ (24)
Then, inserting Eqs. (21) and (22) gives for [ =0

Py(a) = :‘1‘( n(0)
+_[:[EP0(‘) + ﬂ“(t)F] elat d;)

”":;[p(()) +EPy(a) +Py(@)F], (25)

while for /> | it gives »
il =
P(a)= ’(‘;[}; (Eﬂl(’) +p()F
Ng
+ ) e‘“:'[D,, p,_,(t)]_) ele! dl]
j=1

=.=—:;(EP,(a)+P,(a)F :

Ng
+ X [D;, P,_,(a+a,)]_). (26)

j=1
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These equations then give a series that can be iler-
ated to obtain any I’(w).
Next, since

m= [ i(0) dt=P(0), (27)

one obtains from Egs. (21) and (22) or from Egs.
(25) and (26) that for I =0

=p(0) =Epy + pyF, - (28)
and for l‘> 1

N
0=Ep+pF+ Y[ D), P_y(e)] . (29)
j=1

4.2. Summary of results

Thus, in sununary, to obtain @g; one simply sets
A = 1"and uses

[/

Do = ke 1[ Q7] = k¢ "[QT Y f’l]

I=0

mll nu\x

= Y ke f[Qr ] = X 98, (30)

=0 1=0

where !, is the maximum order of perturbation
theory to be used and where p, satis(ies

~p(0) =Ep, + pyF (31)
and p, for [ > 1 satisfy

Ne

0=Ep+pF+ ¥ [y, Pio(e)] (32)
i=1

Of course, one must also use the results for / =0

Py(a) = ”[131 w(@) + Po(a)F+p(0)], (33)

and for [ 2 1

P(a) = | EP(a) + P(a)F

Ng
+ jzl [y Pi(a+a)]_]. (34)

4.3. Implementation details

These last two equations both have the form

i

X=—[EX+XF-C], (35)
o :

or equivalently

C=[E+ia/2]X+X[F+ia/2], (36)

which is of the form

AX+XB=C. (37)

Egs. (31) and (32) (the other main equations used in
this method) are also of this form. This type of
equation can easily be solved for the complex matri-
ces A, B; C, and X used here with the algorithm
given in Ref. [26] and a useful trick [27, pp. 50, 481,
482] that works for any group of complex maltrices
in the equations used here. The trick is to set, for
example, .
i_[ReA —-ImA
A_([mA Re A ) (38)
so that A, B, C, and X are 2N X 2N real matrices
based on the N X N complex matrices A, B, C, and
X. ‘The algorithm can then be used to solve AX + XB
=C for the real matrix X, and then the complex
matrix X can be found from the elements of X.

Ideally, however, one would like (o solve AX +
XB = C directly for complex matrices, but Ref. 27,
pp. 50, 482] says that for similar problems solving
the complex N X N case directly is in principle only
two times faster than solving the real 2N X 2N case.

A number of methods for solving AX+ XB=C
have been discussed over the years {24,25), and it
may be that some of these give better-performing
algorithms than the one used here. For example, one
paper [24] discusses a method that should run 30%
faster than the one used here, but no source code is
given.

Finally, the breakmg up of a in Eq. (36) is rather

~ arbitrary. It may be that other equivalent expressions

such as the one with A=FE +ia and B=F work
better, perhaps being solved faster or more reliably
than the expression used here.

4.4. Execution times

Examining the heart of the Liouville perturbation
method (Egs. (30)-(34)), one can see that many
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AX + XB = C equations must be solved. For exam-
ple, for [, =0 there is only one such equation to

solve, but for [, = | there are 1 + 1 + N,. In fact,

for a given m =1, there are tot,, such equations to
solve, each typically scaling as N>, where tot,, is

tot,, =1+ (L+Ng) + (1 +N+NZ)+ ...
+(1+Ng + N2+ ... +Nf)
(m+1)+(m+0)Ng+ (m—1)N7?
+(m—2)NZ+ ... +(1)NF

]

m

f: Ni(m+1—=r)= Y NI "(r+1).
r=0 r=0 (39)

For N; =2, the first few values of tot,, are 1, 4,
11, 26, 57, 120, and 247, whereas for Ng =4, the
first few values are 1, 6, 27, 112, 453, 1818, and
7279 for m=10, 1, 2, 3, 4, 5, and 6, respectively.
Notice how for large m, tot,,, | approaches Nitot,,.
This is because

m+1
o, = L N*'"r(r+1)

r={)

m
= Ng E N "(r+ 1) +(m+2)
“r=0
= Ngtot,, + m + 2.

(40)

Thus it is good to keep Ni to a minimum.

Table 1

The minimum number of perturbing Hamiltonians
N; needed for an oscillating field is two. Thus, if
there are multiple perturbations at the same fre-
quency, it is good to pool them into one e'*' and
one e~ '’ term. Although sometimes phase and
orientation relations among the different oscillating
perturbing fields can complicate this pooling, the
savings in computer time, especially for high /.,
makes it well worth the effort. ‘

Table 1 lists typical execution times in CPU
seconds on an IBM RS6000/320H workstation for
the Runge—Kutta, rotating frame, and perturbation
methods in the Liouville formalism (described in this
paper) and in the Schrédinger formalism (described
in a previous paper [18]). Notice how the perturba-
tion method is much faster for large [/, in the
Liouville than in the Schrédinger formalism. Also
notice the rough agreement of the times in Table 1
with the predicted scaling rules (N3 for the Liouville
Runge—Kutta, rotating frame, and perturbation meth-
ods) as well as the predicted rise in perturbation
method execution time with [, (1, 11, 57, 247,
1013, 4083, and 16369 for [, =0, 2, 4, 6, 8, 10,
and 12, respectively when N is fixed and N = 2).

Although both scale as N°N,, one reason that the
Liouville Runge—Kutta method goes slower than the
Schriodinger Runge—Kutta method may be that the
Liouville equation uses an N XN density matrix
p(t) while the Schridinger equation uses for initial
singlet states Ng=N/4 different wave functions

Typical times spent on an IBM RS6000/320H workstation calculating points as in Figs. 1 and 2 but with I, = 1/2,3/2, 0t 7/2 (N =8,
16, or 32) and Ny =2 (Liouville formalism) or N, = 1 (Schridinger formalism). Times are given for methods based on the Liouville
equation (desctibed in this paper) and the Schridinger equation (see Ref. [18])

Method Liouville formalism Schridinger formalism
time (CPU sec) effective  time (CPU sec) effective
N=-8 N=16 N=32 Sling  ROgT Nol6 N=3z  scaling
Runge-Kutta (N, = 5000)  163.68 446.40 1863.17  N'-3 222.00 436.69 95822 N°?
rotaling frame 0.12 0.34 1.61  N'? 0.12 0.16 048 N2
pesturbation (/,,,, = 2) 0.49 224 1461  N?*-3 4.10 29.12 183.89  N2?3
perturbation (/,,,, = 4) 2.15 11.17 7610  N2-3 21044  3885.10 1352501 N'-3
pesturbation (I, = 6) 9.12 41.76 33163  N??
perturbation (/,,,, = 8) 35.50 189.99 133993  N?? -
perturbation (/,,,, = 10) 142,07 766.21 542357  N??
perturbation (I, = 12) 569.88  3070.71 2171951  N?*-?
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Fig. 1. Comparison of singlet-to-triplet yields calculated using
Runge—Kutta (fincly dotted lines), rotating frame (solid lines), and
perturbation methods in the Liouville formalism. Here g =2,
B (1) is a ficld rotating counterclockwise about B, at frequency
2.5 GHz, only one nuclear spin with /, = 1/2 and a;, =05 G is
included, J = 39.1891 MHz (14 G), and 7 = S ns. Runge~Kulla
points use N, = 5000 and 8¢ = (.03 ns. In both plots B, is varied
but orders of perturbation theory /,,, and B, used differ in cach.

Cutves for odd /,,,, coincide with curves for [, — 1. (a) B, =3

or 13 G and I, =~ 2 (sparsely dotied), 4 (dashed), or 6 (dot-
dashed). The curves for B, = 3 G are practically coincident and so
are not labelled individually. (b) B, =13 G and {,,, =6 (dot-
dashed), 8 (sparsely dotted), 10 (dash-dashed), or 12 (dashed).

¥(t), each of which is an expansion in terms of N
different eigenvectors (for initial triplet states it uses
3Ng =3N/4 different wave functions (). This
may also explain why the Liouville rotating frame
method is slower than the Schrédinger rotating frame
method. It may also be that solving AX+XB=C
takes longer than diagonalizing Hamiltonians, even
though both scale as N [26; 27, ch. 11]. If this were
$0, it could account for the different execution times
in the rotating frame methods.

Finally, comparing Table 1 with Tables I and 2 in
Ref. [18] shows slight changes in the speed of the
Schridinger equation methods. These differences are
due to minor algorithm changes and improved use of

<

certain compiler options on the RS6000 after Ref.
(18] was written.

5. Comparison of methods

Figs. 1-3 all give results for Hamiltonian (9)
when g=2,8,=8,=1,=1/2,1,=0,a,=05G,
a, =0 G, and J =39.1891 MHz (14 G) for Figs. 1
aud 2 or J =0 MHz for Fig. 3. The parameters for
Figs. 1 and 2 were chosen to give results as in Fig. |
of Ref. [15] while those for Fig. 3 were chosen
because they yield interesting effects. Incidentally, a
number of real systems have J, = 1/2 nuclei with
hyperfine constants a, near 0.5 G; for example,
certain hydrogens in biphenyl anions and polyacenes
have a, between 0.39 and 0.98 G [23, pp. 63, 65,
105] while Y@Cg, fullerene complexes have a, =
0.48 G [28] and O~ ions in natural zircon crystals
interact with ®Y nuclei having a, = 0.34 G [29].
Finally, a number of different B,, B,(1), 7, kg, and
k, values are used in Figs. 1-3 (see -captions for
details).

Figs. 1a, 2, 3b, and 3e repeat Figs. 4a, 4b, 5a, and
5b of Ref. [18}, this time being calculated using the
Liouville equation when kg = ky = 1/7. The results
shown here are practically indistinguishable from the
ones there except that in Figs. 1 and 2 the Liouville
Runge-Kuita method agrees slightly better with the
other methods than did the Schridinger Runge—Kutta

©
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Fig. 2. Comparison of singlet-to-triplet yields calculated using
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method in Ref. [18). Another difference is that in the
same execulion time the Liouville perturbation
method can go to much higher /., than the Schrd-
dinger perturbation method.

Figs. I, 2, and 3 have a number of things in
common. Most of them show good agreement among,
the different methods, especially for weak oscillating
fields, and the Runge—Kutta and rotating frame
methods typically give indistinguishable results.
These figures also show that as [, rises, the pertur-
bation method usually agrees better with the other
methods. When this happens, the perturbation series
is said to converge and typically only -the first few
orders are needed o approximate the overall cffect
well. Although general rules for convergence are
beyond the scope of this paper (and perhaps more
easily derived for the kg = k4 = 1/7 case using the
Schridinger perturbation method in Ref. [18]), in
practice one can determine convergence by compar-
ing at points where B,(¢) has a large effect (such as
near B, =893 G in Fig. 1) perturbation results from
the first few orders [, and, if possible, doing spot
checks against Runge—Kutta results. If the results are
not convergent, one simply reduces B, until they
converge.

Next, each plot shows that for rotating fields, only
even orders contribute [18], while for parallel fields,
odd orders can contribute (see Figs. 3e and 31 where
l..x =1 stands out from the rest). That only even
orders contribute for rotating fields is best seen in
Fig. 2 where the dilferences between the I, and
I, — 2 curves all go as B{==. As discussed in Ref.
[18], this effect is due to the fact that for a rotaling
field the symmetry of the system prevents the sign of
B, from affecting the overall yield. Thus odd orders
of pertutbation theory do not contribute for rotating
fields.

Nevertheless, each of the figures has its own
unique features. For example, Fig. 1 shows a range
around the peak (near 893 G) in which the perturba-
tion method does not converge with increasing [,,,.
However, this figure also shows that this range
narrows as [, rises. Fig. 2 shows a similar effect,
this time showing a cutoff with respect to B,; that is,
beyond a certain B, value (around 10 G here),
higher [, values give worse results, the series
diverges, and perturbation theory is said to break
down. From the trend in Fig. 2, it seems that higher

order terms approach oo at the breakdown field
value.

Next, Fig. 3 shows a number of things. It shows
one system at several different kg, k; values when
rolating or parallel oscillating fields are used. First
note the close agreement among all the dilferent
methods used, even when kg # k. Next note that
higher 7 (lower kg, k;) gives a less convergent
perturbation series (for example, compare 3a with 3c
or compare 3d with 3e and 3f). This is less apparent
in the parallel oscillation plots where by [, = 2 the
plots have converged considerably. Nevertheless, in
the rotating oscillation plots, the serics take several
orders to converge, thus allowing one lo see how
different orders contribute. As in [18], only even
orders contribute, and, for this particular system, the
orders seem to alternate being above and below the
results from the other methods (/,,,, = 2 is above, 4
is below, elc.). -

Also note in Fig. 3 the effects of varying kg, ky
on singlet-to-triplet yields. One can see substantial
changes in the baseline yields as well as variations in
the peak heights and line widths of the frequency
dependent parls of the yields. In fact, it is apparent
that different peaks are affected in different ways by
kg, kp variations, allowing the relative importance
of different frequencies to be altered by changing kg,
k. Such effects could, in principle, be measured by
an experimenter by varying solution viscosity, tem-
perature, etc. Such effects could also be exploited in
biological systems allowing, for example, magnetic
field receptors to work better in one cellular com-
partment than another. Although these effecls are
interesting and give an incentive for using this new
Liouville perturbation method, a detailed discussion
of them is beyond the scope of this paper.

Finally, using /., =0, the Liouville method de-
scribed here has reproduced Figs. 4-6 of Ref. [16] -
(data not shown). .

6. Conclusion

This paper has presented a perturbation method
based on the Liouville equation for treating oscillat-
ing magnetic fields in the radical pair mechanism.
This method is much faster and more reliable than a
similar perturbation method based on the Schrd-
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dinger equation [18). This new method can also serve
better as a base for more complicated, thorough,
rigorous treatments including, for example, rotational
correlations, spin relaxation, multi-statc processces,
and complex rate equations. The Liouville perturba-
tion method is also more general and applicable than
the rotating frame method, since it allows fully
anisotropic g, hyperfine, and exchange tensors and
can treat any combination of a steady field with one
or more oscillating ficlds at different frequencies,
phases, and orientations with respect to the steady
field. It is also much faster than the Runge—Kutta
method, especially in the limit of small kg, k;
where one must use a large number N, of Runge-
Kutta time steps.

Since this perturbation method works best when
oscillating ficlds are very weuak compared to the
steady field, it should be applicable to studies of
magnetic sensory mechanisms in animals (which
evolved in the natural magnetic environment where
oscillating fields are much weaker than steady fields)
as well as to studies of health effects of oscillating
magpnetic fields.
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