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ABSTRACT: Numerical experiments are performed on a 36,000-atom
protein]DNA]water simulation to ascertain the effectiveness of two devices for
reducing the time spent computing long-range electrostatics interactions. It is
shown for Verlet-Irr-RESPA multiple time stepping, which is based on
approximating long-range forces as widely separated impulses, that a long time
step of 5 fs results in a dramatic energy drift and that this is reduced by using
an even larger long time step. It is also shown that the use of as many as six
terms in a fast multipole algorithm approximation to long-range electrostatics
still fails to prevent significant energy drift even though four digits of accuracy
is obtained. Q 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1785]1791,
1997
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Introduction

he computation of full electrostatics has beenT Ž .avoided in molecular dynamics MD simula-
tions because of the high cost of doing the direct
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calculation. Nonetheless, it is generally recognized
that neglect of long-range electrostatics introduces
serious artifacts in many situations.1 ] 6 This is due
to the slow decay of long-range electrostatics ef-
fects with distance as illustrated in Figure 1 for an
approximately 36,000-atom solvated protein]DNA
system studied in the literature.7, 8 Fortunately, in
recent years two computational techniques have
been developed that make the cost of full electro-

Ž .statics more manageable: multiple time step MTS
integrators reduce the frequency with which long-
range forces need to be computed and innovative
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FIGURE 1. Error in the electrostatic energy due to the
use of cutoff approximations for a protein ]DNA ]water ]
ion system.

fast electrostatics algorithms reduce the cost of
calculating pairwise electrostatic forces for N par-
ticles from order N 2 to order N log N, or to order

Ž .N in the case of the fast multipole algorithm FMA
applied to nonperiodic systems. MTS methods and
the FMA are both implemented in the biomolecu-
lar modeling system MDScope9 in its simulation
program NAMD,10 which was built from scratch
using an object-oriented design to achieve high
performance on parallel computers. In this article
NAMD is applied to a realistic molecular system
to study the limits of MTS methods and the FMA.
Results of the computer experiments suggest that:
the highest frequency present in the force field
imposes a limit of slightly less than half its period
on the longest time step that can be used; and the
discontinuities inherent in tree algorithms such as
the FMA cause instability unless the forces are
computed very accurately, for example, by using a
large number of terms in a multipole expansion.

Attempts to exploit the multiple time scale
character of the N-body problem by using MTS
Ž .different time steps for different interactions date
back to 1967 in astrophysics11 and to 1978 in MD.12

A simple version of such a technique was imple-
mented in the program GROMOS where it is called
a twin-range method.13 The long-range forces were
calculated typically every 10 time steps and then
held constant. More accurate is the local reaction
field method,14 which calculates the first four Tay-
lor series terms of the long-range potential at the
center of each ‘‘charge group’’ every m time steps
and uses this to evaluate the long-range force on
each atom of the charge group at every time step.
Another advance in formulas for MTS is the
1989]1991 work,3, 15 which introduces formulas
based on the idea of ‘‘Verlet equivalence.’’ The
idea is that if the short-range forces are not pre-

sent, then the integration of the long-range forces
should reduce to that of the Verlet method with
long time steps, thus obtaining to some extent the

Žfavorable properties of the Verlet method reversi-
.bility, symplecticness, second-order accuracy for

all time scales. Notable among these schemes is
the one called Verlet-I, which effectively amounts
to introducing the long-range force as an impulse
whenever it is evaluated. However, the impulse
method is not pursued in ref. 3 because of an
awareness that it was subject to resonance if the
long time step D t happened to coincide with a
natural frequency of the system, which could lead
to erroneous forces. A more abstract derivation of
the impulse MTS method based on operator split-
ting appeared in 1992 under the name r-RESPA.16

Subsequent work17 showed that the method re-
tained the symplectic property18 of Verlet and it
experimentally verified for simple test problems
the seriousness of the resonance. The use of indi-
vidual time steps that are fixed for the duration of
the simulation is adequate for bonded interactions.
However, it is not adequate for nonbonded inter-
actions because of a need to vary the size of the
time step as the distance changes. This variation
can be done without sacrificing properties such as
reversibility, symplecticness, and second-order ac-
curacy by using a switching function to artificially
break up the interaction potential into a fast and a
slow part.16, 19 More benefit from MTS methods is
attained by employing not just two but several
different time steps; for example, eight are used in
ref. 3, four in refs. 20 and 21, and five in ref. 22.
The biggest gain, of course, occurs in going from
one time step to two, and we focus our investiga-
tion on this special case.

A recent innovation of importance of MD is the
construction of order N log N and order N algo-
rithms for fast electrostatics, such as the fast multi-
pole method,23, 24 which improves the earlier work
on tree algorithms.25, 26 Initially, this generated ex-
pectations that full electrostatics could be achieved
at low cost. The most optimistic statement in this
regard is an early version of promotional material27

for the high performance computing initiative,
which has a graph showing that the fast multipole
method gives an N-fold improvement over exist-
ing algorithms. This, of course, ignores the hidden

Ž .constant in the O N estimate. An early imple-
mentation28 yielded instead a speedup of
Nr10,000, which was cited in ref. 29 as a reason
not to include full electrostatics. Recently more
efficient implementations have become available;
for example, the enhanced FMA described in ref.
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30, and yet faster versions of the fast multipole
method are promised.31

The combination of fast electrostatics with MTS
is first reported in the literature in ref. 32 for the
simple constant force MTS method and in ref. 22
for the impulse MTS method. The constant force
method demonstrated in ref. 22 does not conserve
energy very well at all. The program NAMD incor-
porates an implementation of an enhanced FMA
called DMPTA33 and implements various MTS in-
tegrators, including the impulse method. The com-
bination of an impulse MTS integrator with Ewald
sums for periodic boundary conditions is de-
scribed in ref. 21.

Difficulties with MTS

In the simples case, MD is modeled by Newton’s
second law of motion,

Ž .Mx s F x ,¨

where M is a diagonal matrix of masses, x is the
collection of all particle positions, and F is the
collection of forces obtained as the gradient of an
empirical potential energy function. This function
is a sum of a very large number of 2-, 3-, and

Ž4-body interactions, which after taking masses
.into account have a fairly large range of time

scales associated with them. When MTS inte-
gration is performed, slower forces are computed
less frequently than faster forces. The Verlet-Ir
r-RESPA impulse algorithm is described below in
the case where the potential energy is split into
two parts, yielding F s F q F , and two timefast slow
steps d t and D t s md t are used:

Ž . y1 Ž .V s V q D tr2 M F X ,n , 0 n slow n

X s X ,n , 0 n

y1 ¦Ž . Ž .V s V q d tr2 M F Xn , kq1r2 n , k fast n , k

¥X s X q d tVn , kq1 n , k n , kq1r2

y1 §Ž . Ž .V s V q d tr2 M F Xn , kq1 n , kq1r2 fast n , kq1

k s 0, 1, . . . , m y 1,
X s X ,nq1 n , m

Ž . y1 Ž .V s V q D tr2 M F X .nq1 n , m slow nq1

Typical time steps d t for MD are 0.5]1 fs. Much
larger values might be expected for D t. For exam-

ple, computational experiments34 show a 98% cor-
relation in long-range forces after 16 fs.

However, as explained in the Introduction, there
is a problem with resonance for the impulse MTS
method. This can be seen by recognizing the
method as simply the analytical solution of

q`

¨ Ž . Ž .MX s d td t y kd t F XÝ fast
ksy`

q`

Ž . Ž .q D td t y nD t F X .Ý slow
nsy`

The point is clearer if we assume that the substep
d t is sufficiently small to allow the following ap-
proximation to the preceding equation:

q`

¨ Ž . Ž . Ž .MX s F X q D td t y nD t F X .Ýfast slow
nsy`

This equation, which was first published in ref. 35,
makes apparent the possibility that the periodic
pulses of slow forces will resonate with a natural

Žfrequency of the fast forces. In the case of the
actual finite-d t simulation the frequencies of the
fastest forces will be slightly increased due to the

.‘‘blue shift’’ caused by the Verlet method. In MD
the vibrations of covalently bonded hydrogen
atoms have periods from 9 to 10 fs, so instability
would be expected if the long time step is in that
range. This is apparent in the results of ref. 34.
Also, extensive MD experiments with Langevin
damping show the shortcomings of the impulse
method with long time steps.36, 37

Other researchers obtain satisfactory results with
the impulse MTS method only for time steps much
less than 9]10 fs. For example, satisfactory results
are obtained in ref. 20 for long time steps of only 3
or 4 fs with markedly worse results for 5 fs. In
figure 3 of ref. 22 good energy conservation is
obtained for long time steps only up to 4.5 fs, and
there is pronounced degradation in going from 4
to 4.5 fs.

Similar experiences were obtained from the use
of NAMD to simulate a 36,573-atom protein]
DNA]water]ion system. Of these atoms nearly
90% constitute 11,040 flexible TIP3P water
molecules. Figure 2 shows energy as a function of
time for an implementation of the impulse two
time step method for a short time step d t s 1 fs
and various long time steps D t. The slow force
includes only the part of the electrostatic force left
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( ) ( )FIGURE 2. Conservation of energy kcal / mol as a function of time fs for a variety of long time steps for the inpulse
( )multiple time step scheme. The short and long time steps are indicated in femtoseconds as short, long in each graph.

In the graph on the left the ‘‘base energy’’ of each plot is shifted to separate the plots from each other.

over after subtracting a short-range electrostatic
force. A switching function given in ref. 20 is used
to effect a smooth transition between a short-range

˚Ž . Ž .fast force at 7.0 A and a long-range slow force
˚ Žat 8.5 A. Any electrostatic interaction at a distance

˚less than 8.5 A has a time step of 1 fs and anything
.greater has a time step of j fs, j s 1, 2, 3, 4, 5, 6.

The first graph shows noticeable energy drift for
a long time step of 4 fs and the second graph
demonstrates that this becomes dramatic at 5 fs
but then decreases at 6 fs—an indication of a reso-
nancelike phenomenon. A check of the different
contributions to the total energy indicates that the
energy gain occurred via the bonded energies.
These observations suggest difficulties associated
with values of D t at nearly half the period of the
highest frequency modes in the system, which are
vibrations of hydrogen atoms.

These difficulties cannot be attributed to ordi-
nary resonance because they occur not at the pe-
riod of a natural frequency but near half its period.
An intricate analysis of a linear 1-dimensional 2
degree of freedom system38 explains this as a nu-
merical instability inherent in the impulse MTS
method. A purpose of the present article is to
demonstrate the relevance of this instability for
MD.

The maximum value of D t consistent with sta-
bility is undoubtedly affected by both the choice of
the smaller time step d t and the splitting between
F and F . For example, Fig. 3 shows thefast slow
results of a simulation of a sphere of 1117 flexible
TIP3P water molecules for switching intervals of
two different lengths. Each of these simulations

used a MTS scheme with a short time step of 0.7 fs
and a long time step of 2.8 fs. The upper graph
shows the effect on energy conservation of a switch

˚from 7.5 to 8.5 A, whereas the lower graph shows
˚the effect of a switch from 8.0 to 8.5 A. As can be

seen, the use of too short ‘‘healing’’ distances cre-
ates ‘‘slow’’ forces that are too fast and this makes
energy conservation go from good to bad.

Difficulties with FMA

The combination of the Verlet-Irr-RESPA im-
pulse method with the FMA was first studied in
ref. 22. Good energy conservation was obtained
with only four terms in the multipole expansion
for long time steps D t as large as 4 or 4.5 fs. The
largest system tested was the photosynthetic reac-
tion center with 9513 atoms. In subsequent work

Ž . 39with rigid SRC water and solvated proteins, six
multipole terms we needed to maintain energy
conservation.

Experiments are described here for the same
solvated protein]DNA system, which suggest dif-
ficulties with even six multipole terms. A dynam-
ics simulation was performed using a 1-fs time
step for both the fast and slow forces so that the
switching does not effect the results. Four levels of
FMA cells were used, and all calculations were
done in double precision. The results are given in
Fig. 4, and they show that the use of six terms
leads to an energy drift whereas the use of eight
terms does not. It does not seem to be a simple
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FIGURE 3. Drift in the energy due to the use of a too short healing distance for a simulation of a sphere of 1117
flexible TIP3P water molecules.

FIGURE 4. Energy conservation for the 36,000-atom protein ]DNA system using DPMTA multipole expansions of four,
six, and eight terms at every time step.

JOURNAL OF COMPUTATIONAL CHEMISTRY 1789



BISHOP, SKEEL, AND SCHULTEN

TABLE 1.
DPMTA Calculation of Electrostatic Energy

No. terms Relative Error

y58 1.8 = 10
y56 8.6 = 10
y44 1.7 = 10

matter of inaccuracy. Table I gives the relative
error in the DPMTA calculation of the electrostatic
energy as a function of the number of terms; the
six-term expansion appears to give more than

Ženough accuracy. Additional data on the accuracy
.of the FMA is given in ref. 40. The data indicate

that high accuracy is needed for energy conserva-
tion with the FMA. The simulation reported here
differs from those cited above in that there are a
large number of flexible covalent H bonds. For this

Ž .sytem the eight-processor CPU time for comput-
ing an eight-term FMA long-range force is six
times that required for computing the short-range
forces.

The truncation of the multipole expansion yields
a potential energy that is discontinuous as a func-
tion of the positions of the charged particles. In
particular, there is a small jump in energy when-
ever a particle moves from one FMA cell to an-
other. Numerical experiments indicate that small
enough discontinuities can be tolerated. Note that
extremely small discontinuities are undetectable
due to the quantization of phase space induced by
the use of finite precision numbers.
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