
CS 476 – Programming 
Language Design
William Mansky



Turing-Completeness

• Lambda calculus is Turing-complete

• C and OCaml can express all the same computations

• And so can a lot of other things:



Turing-Completeness: Representation

• Functional, imperative, etc. languages can all simulate each 
other

• We can define any language in OCaml (syntax, type system, 
semantics, interpreter)

― Or in C, or in Java, or…



Choosing a Language

• We don’t have to choose a language based on what’s possible
to compute

• Reasons for choosing a language:
― Familiarity
― Existing/legacy code
― Library support
― Tool support
― Match between syntax/paradigm and thing we’re trying to describe
― Level of abstraction



Turing-Incomplete Languages

• We don’t have to choose language based on what’s possible to 
compute

• And our languages don’t have to be able to compute 
everything!

• There are some useful Turing-incomplete domain-specific
languages (DSLs):

― Regular expressions
― HTML
― Some versions of SQL
― Interactive theorem provers



Combining Language Features

• Lambda-expressions in Java, Python, …

f = lambda x : x + 1

(* f evaluates to a closure *)

print f(5)

• References in OCaml

Already exist, but require major changes to the semantics!



Combining Language Features

• Object orientation + universal polymorphism, as in F#

• There are now two “top” types: Object and ‘a
― F# generic functions are defined with universal types
― Other .NET methods (ToString, etc.) are defined on Object
― Type inference may infer Object or ‘a as the type of an argument 

depending on how it’s used, unpredictably
― Reflection makes this even worse: “generic” functions can case on

the type of the input, turning polymorphism ad-hoc



Combining Language Features

• Pattern matching in imperative languages
― Usually not done, because they don’t have inductive datatypes

• Pattern matching in Rust:

enum Option<T> { match x {

Some(T), None => None,

None, Some(i) => Some(i + 1),

} }



Making a New Language

• Why make a new language?
― To change the syntax
― To make a design decision in the other direction
― To make a common pattern easier to write
― To combine features that can’t easily be added on to an existing 

language
― To make a language that can’t express certain bad programs



Making a New Language: Swift

• Goal: a cleaner replacement for Apple’s Objective-C

• Object-oriented, with Java-like syntax

• Can add an interface implementation to an existing class

• Functions (closures) as values

• Option type for possibly-null values

• Type inference

• Has libraries for iOS programming



Making a New Language: Kotlin

• Goal: a faster, more concise replacement for Java

• Object-oriented, with Java-like syntax

• Both member methods and top-level functions

• Can extend classes with new methods

• Functions (closures) as values, including higher-order functions

• Type inference

• Can deconstruct an object into the tuple of its fields

• Has libraries for Android programming



Making a New Language: Rust

• Goal: a safer replacement for C

• C-like syntax, but actually more like a functional language

• Inductive data types and pattern matching

• Type inference

• Type classes for ad-hoc polymorphism

• “Borrowing” type system for safe concurrency

• Used by Mozilla to implement Firefox



Making a New Language

• Swift: meant to replace Objective-C, cleaner and easier to use, 
combines OO and functional features, type system prevents 
null pointer references, pushed by Apple

• Kotlin: meant to replace Java, cleaner and easier to use, 
combines OO and functional features, type system prevents 
null pointer references, pushed by Google

• Rust: meant to replace C, safer, combines OO and functional
features, type system prevents data races, pushed by Mozilla


