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Abstract

Slowdown factors determine the extent of slowdown a computing system can experience based on
functional and performance requirements. Dynamic Voltage Scaling (DVS) of a processor based on
slowdown factors can lead to considerable energy savings. We address the problem of computing slow-
down factors for dynamically scheduled tasks with specified deadlines. We present an algorithm to
compute a near optimal constant slowdown factor based on the bisection method. As a further gener-
alization, for the case of tasks with varying power characteristics, we present the computation of near
optimal slowdown factors as a solution to convex optimization problem using the ellipsoid method. The
algorithms are practically fast and have the same time complexity as the algorithms to compute the fea-
sibility of a task set. Our simulation results show on an average20%energy gains over known slowdown
techniques using static slowdown factors and40%gains with dynamic slowdown.
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1 Introduction

Power is an important metric for optimization in the design and operation of embedded systems. A
processor is central to an embedded system and contributes to a significant portion of the total power
consumption of the system. Modern processors have higher operating speeds and processing capacity
to meet the increasing computation demands of application. With the increasing speeds, the power
consumption of the processor also increases. Though processors are designed to handle large workloads,
the peak processing capacity may not be needed for all applications. This observation has led to two
primary ways of reducing the power consumption in embedded computing systems: processorshutdown
and processorslowdown. Slowdown using frequency and voltage scaling has been shown to be effective
in reducing the processor energy consumption [29, 30, 2].

Recent processors [12, 31] support slowdown, where we can vary the operating frequency and voltage
at run-time. The power consumption,P, depends on the operating voltage and frequency of the processor
and is given by:

P=Ce f f �V
2
dd � f (1)

whereCe f f is the effective switching capacitance,Vdd is the supply voltage andf is the operating fre-
quency. Due to the quadratic relationship between power and voltage, a decrease in the supply voltage
decreases the power consumption. However, the transistor gate delay increases with a decrease in volt-
age, forcing a decrease in the operating frequency. The relationship between the transistor gate delay,
tinv, and supply voltage is given by:

tinv =
k �Vdd

(Vdd�Vth)α (2)

whereVdd is the operating voltage andVth is the threshold voltage,α has a value in the range 1 to 2 and
k is a technology constant [32, 26]. Note that a decrease in the supply voltage has a quadratic decrease
in the power consumption but only a linear reduction in the operating frequency, thus resulting in lower
energy consumption per unit work. The important point to note is that energy savings are achieved at
the cost of increased execution time. Energy reduction and meeting deadlines are often contradictory
goals and we have to judiciously manage the tradeoff between time and power to achieve our goal of
minimizing energy.

Among the earliest works on this problem, Yaoet. al. [33] presented an off-line algorithm to compute
the optimal speed schedule for a set ofN jobs. The optimality is based on the EDF scheduling policy and
a continuous voltage range. Kwonet. al. [17] have extended this work by relaxing the assumption of a
continuous voltage range. Off-line scheduling using fixed priority tasks has been addressed in [24] [25]
and shown to be NP-hard [34]. As opposed to minimizing the energy consumption of a system, Rusuet.
al. have addressed the problem of maximizing the system value (utility) for a given energy budget [28,
27]. Scheduling of task graphs on multiple processors has also been addressed. Luo and Jha [20] have
considered scheduling of periodic and aperiodic task graphs in a distributed system. Non-preemptive
scheduling of a task graph on a multi processor system is considered by Gruian and Kuchcinski [10].
Zhanget. al. [36] have given a framework for task scheduling and voltage assignment for dependent
tasks on a multi-processor system. They have formulated the voltage scheduling problem as an integer
programming problem.

Dynamic voltage scaling techniques for real-time periodic task systems has been the focus of many
works, where known feasibility test have been extended to compute static slowdown factors [30, 9]. A
generalization of the energy minimization problem, which incorporates individual tasks with different

1



power consumption characteristics, is addressed by Aydin, Melhem and Moss´e [1]. Note that the static
slowdown factors are computed based on worst case execution time of each task. Dynamic reclamation
techniques in [23, 2, 16] result in additional energy savings by reclaiming run-time slack that arises
due to variation in task execution time. Recent work, including our own, has addressed extension of
slowdown algorithms to handle task synchronization [35, 14] and aperiodic tasks [21]. Furthermore, the
need for leakage energy minimization, which is increasingly important in current and future generation
CMOS circuits [5], has lead to procrastination scheduling techniques proposed in [18, 15].

DVS for periodic tasks is well researched, however most works are based on the assumption that the
relative task deadline is equal to the task period. Based on this assumption, the Earliest Deadline First
(EDF) policy is known to be optimal [19, 4], and the system utilization can be used as a slowdown
factor [2]. When the deadlines differ from the period, a similar approach implies that the system density
[19] or similar feasibility results [6] can be used as a constant slowdown. However, as we show later in
this paper, this slowdown is far from optimal and we bridge this gap in our work. We extend previous
work by computing slowdown for periodic tasks with (1) task deadlines less than the period and (2)
varying power characteristics for the tasks. We propose thebisection methodand theellipsoid methodto
compute optimized static slowdown factors. We gain on an average 20% energy savings over the known
techniques with static slowdown and 40% savings with dynamic slowdown.

The rest of the paper is organized as follows: Section 2 formulates the problem with motivating
examples. This is followed by algorithms to compute energy efficient slowdown factors. We present
the bisection method in Sections 3 and the ellipsoid method is explained in Section 4. The experimental
results are given in Section 5 and Section 6 concludes the paper with future directions.

2 Preliminaries

In this section, we introduce the necessary notation and formulate the problem. We first describe the
system model followed by an example to motivate the problem.

2.1 System Model

A task set ofn periodic real time tasks is represented asΓ = fτ1; :::;τng. A task τi is a 3-tuple
fTi;Di;Cig, whereTi is the period of the task,Di is the relative deadline withDi � Ti , andCi is the
WCET for the task at maximum speed. The phase,φi, of a periodic taskτi is the release time of thefirst
instanceof the task. A set of tasks said to bein phaseif the first instances of each task is released at
the same time. A system, where all tasks are in phase withφi = 0, is referred to as asynchronoustask
system [3]. Thehyper-periodof the task set,H, is defined as the least common multiple (lcm) of the task
periods. The tasks are scheduled on a single processor system based on a preemptive scheduling policy
and all tasks are assumed to be independent. A task system is said to befeasibleif all tasks meet the
deadline. The processor utilization for the task set,U = ∑n

i=1Ci=Ti � 1 is a necessary condition for the
feasibility of any schedule [19]. Thedensityof the system,∆ = ∑n

i=1Ci=min(Ti;Di) � 1, is a sufficient
feasibility condition under EDF scheduling [19].

Each invocation of the task is called ajob and thekth invocation of taskτi is denoted asτi;k. Each job
Jk is represented by a 3-tuplefak;dk;ekg whereak is its arrival time,dk = ak+Di its absolute deadline
andek �Ci is its execution time at maximum speed. The time interval[ak;dk] is referred to as thejob
interval andek is the weight of the interval. Theintensityof an intervalI = [z;z0], denoted byg(I ) is is
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defined as in [33] :g(I ) = ∑k ek
z0�z , where the sum is over all job intervalsJk with [ak;dk] � [z;z0] i.e. all

jobs with their intervals lying completely within[z;z0]. The intervalI � that maximizesg(I ) is called the
critical interval for a given job setJ. In this paper, we only compute the intensity of intervals of the
form [0; t], which can be efficiently computed. For a synchronous system (8i : φi = 0), the intensity of
an interval[0; t], with all tasks executed at maximum speed, is given by :1

t ∑n
i=1(b

t�Di
Ti
c+1) �Ci.

2.2 Variable Speed Processors

A wide range of processors like the Intel StrongARM processors [11], Intel XScale [12], Transmeta
Crusoe [31] support variable voltage and frequency levels, which can be varied at run-time. A task
slowdown factorcan be viewed as its normalized operating frequency. At a given instance, it is the
ratio of the current frequency to the maximum frequency of the processor. Note that the voltage and
frequency levels are tightly coupled, and a (frequency, voltage) pair is associated witheach slowdown
factor. The important point to note is when we perform a slowdown, we change the frequency along with
a proportionate change in voltage. We assume that the frequency can be varied over a discrete range,
with fmin and fmax being the minimum and maximum frequency respectively. We normalize the speed
to the maximum speed to have discrete points in the interval[ηmin;1], whereηmin = fmin= fmax.

We assume that all invocations (jobs) of a particular task are assigned an equal time budget for execu-
tion and this is referred to as auniform slowdown. The assigned time budget can be used for intra-task
voltage scaling, however in this work we assume that the budget is utilized by performing a uniform
slowdown during the entire task execution. Note that the time budget dictates the extent of slowdown
and can be expressed by the task slowdown factor. If all tasks are assigned the same static slowdown fac-
tor, it is called aconstant slowdown. With slowdown, the system utilization increases and is represented
byUη = ∑n

i=1
1
ηi

Ci
Ti

, whereηi is the slowdown factor for taskτi. We assume that the overhead incurred in
changing the processor speed is incorporated in the task execution time. Considering static and dynamic
slowdown, a speed change occurs only at a context switch. This overhead, similar to the context switch
overhead, is constant and can be incorporated in the worst case execution time of a task. We note that
the same assumption is made in previous works [1][2].

2.3 Motivating example

Consider a simple real time system with 2 periodic tasks,

τ1 = f2;2;1g;τ2= f5;3;1g

Figure 1(a) shows the jobs for each task at their arrival time and their workload at full speed. We have
explicitly shown the deadlines when the deadline differs from the period. The task set is feasible under
EDF scheduling at full speed. A slowdown equal to the processor utilizationU = (1=2+1=5) = 0:7 is
optimal when the relative deadlines are equal to the task period. However, as seen in Figure 1(b), job
τ1;2 misses its deadline at a constant slowdown ofη = U = 0:7. Three units of work has to be done
in first 4 time units. At a slowdown of 0:7, it requires 3(1=0:7) = 4:285 time units and a task misses
its deadline. Thus, to ensure all task deadlines, the utilization cannot be used as a constant slowdown
factor. A constant slowdown equal to the density,∆ = (1=2+1=3) = 0:83, keeps the system feasible
[19]. (Note that for this example, the feasibility test described in [6] also results in the same slowdown
of 0:83.) The schedule at a slowdown ofη = ∆ = 0:83 is shown in Figure 1(c). Note that, this is not the
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Figure 1. (a) Task arrival times and deadlines (NOT a task schedule). (b) Task schedule at a constant slowdown equal to the

utilization,η = 0:70, and jobτ1;2 misses its deadline. (c) Feasible schedule using density as the constant slowdown factor,

η = 0:83, however not optimal. (d) Task schedule at the optimal constant slowdown ofη = 0:75.

optimal slowdown and the schedule has many idle intervals which can be exploited for further energy
savings. A slowdown ofη = 0:75 suffices as shown in Figure 1(c). Note that three units of workload
has to be finished within the interval[0;4] and the intensity of the interval is 3=4= 0:75. Thusη = 0:75
is a lower bound on the constant slowdown andη = 0:75 is the optimal constant slowdown.

A constant slowdown need not be optimal when the task deadline is less than the period. As seen
in the Figure 1, there is inherent idle time even at the optimal constant slowdown. This motivates the
computation of uniform slowdown factors for the tasks. Furthermore, different tasks can have different
power characteristics, and assigning slowdown factors based on task characteristics can be more energy
efficient.

3 Constant Static Slowdown

In this section, we propose algorithms to compute the constant slowdown factor under EDF scheduling
when the task deadlines can be less than the period(Di � Ti). First, we present known feasibility tests
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for periodic task systems which form the basis of our algorithms.

Theorem 1 [19] A task set of n periodic tasks, is feasible under EDF scheduling, if the density,∆ =

∑n
i=1

Ci
Di
� 1:

Theorem 2 [6] A task set of n periodic tasks, arranged in non-decreasing order of their relative dead-

lines, is feasible under EDF scheduling if :

8i
i = 1; :::;n

i

∑
k=1

Ck

Tk
+

1
Di

i

∑
k=1

Tk�Dk

Tk
�Ck� 1 (3)

Theorem 1 and 2 are sufficient feasibility conditions. These tests are efficient and run inlinear time,
however not optimal. Theorem 3 by Baruahet. al. gives an optimal test when the system utilization is
strictly less than 1.

Theorem 3 [3] A task set is feasible if the intensity of all intervals[0; t], t � tmax=
U

1�U fmax(Ti�Di)g,

is less than or equal to 1. Thus the feasibility problem for synchronous systems on one processor is

solvable in time O( U
1�U fmax(Ti�Di)g).

By Theorem 3, it follows that the constraints for the feasibility of the task set can be specified as :

8t; t � tmax:
1
t

n

∑
i=1

�
b
t�Di

Ti
c+1

�
�Ci � 1 (4)

The important point to note is that when we consider slowdown, the values oftmax depends on the
utilization under slowdown,Uη, and is given bytmax=

Uη
1�Uη
fmax(Ti �Di)g. Zhenge. al. [37] also

present a similar result as given by Theorem 3, where they check the intensity of all intervals[0; t],
t � t 0max=

1
1�U f∑

n
i=1

Ci
Ti
(Ti�Di)g. Note that thetmaxgiven in Theorem 3 is just an upper bound oft 0max,

where each(Ti�Di) term is approximated by the maximum over all(Ti�Di) terms.
We extend Theorem 1 and 2 to compute constant slowdown factors as given by Theorem 4 and 5. The

proof of the results follows directly from Theorem 1 and 2.

Theorem 4 Given n independent periodic tasks, the feasibility of the task-set is guaranteed at a constant

slowdown ofη, if 1
η ∑n

i=1
Ci
Di
� 1.

Theorem 5 Given n periodic tasks, arranged in non-decreasing order of their relative deadlines, the

task set is feasible at a constant slowdown ofη, if

8i
i = 1; :::;n

1
η

 
i

∑
k=1

Ck

Tk
+

1
Di

i

∑
k=1

Tk�Dk

Tk
�Ck

!
� 1 (5)
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Theorem 5 is a stronger result than Theorem 4 [6], however not optimal. The best slowdown satisfying
Theorem 5 can be computed efficiently and we refer to it as theDevi Test Algorithm (DTA), named after
the author who proposed the feasibility test. Note that feasibility test given by Theorem 3 is optimal,
however it does not compute the optimal slowdown factor. The optimal constant slowdown factor for a
periodic task set can be computed as given by Theorem 6.

Theorem 6 For a synchronous task system,8i : φi = 0, the maximum intensity over all interval[0; t],

0< t �H, where H is the hyper-period of the task set, is the optimal constant slowdown factor.

The proof of the result is present in Appendix A.1. It is known that the intensity function can increase
only at discrete points represented by the setS= ft(i;k)= kTi +Diji = 1; :::;n;k� 0g [3]. Thus it suffices
to check the intensity of the intervals[0; t] with t 2 S. However, the cardinality of the setS can be
exponential in the number of tasks, resulting in a worst case exponential time complexity.

While we propose algorithms for synchronous task systems, note that the computed slowdown factors
can be used independent of the task phase. It is known that the maximum intensity interval of a syn-
chronous task set is an upper bound on the maximum intensity interval for the system, irrespective of
the task phase [19, 3]. Thus the results in this paper can be applied all periodic task systems.

Corollary 1 The slowdown factors computed for a synchronous system imply feasibility of the periodic

task set, independent of the individual task phase.

3.1 Bisection Method

We are interested in an efficient algorithm to compute the optimal constant slowdown. The feasibility
test given by Theorem 3 is much faster compared to the algorithm given by Theorem 6. Note however,
that the feasibility test cannot be directly used to compute slowdown factors. We observe that performing
a binary search over the range of slowdown factors can result in a faster algorithm. It is important to
note that the time valuetmax (in Theorem 3) is proportional toUη

1�Uη
, whereUη is the system utilization

under slowdown. As we slowdown the system, the utilization of the system increases. As the utilization
approaches 1,tmax tends to infinity. Thus in the worst case, we may have to check all intervals up to the
hyper-period of the task set, which requires worst case exponential time. To avoid the explosion oftmax,
we impose an additional constraint on the processor utilization,Uη � 1� εu. Sinceεu is a constant, it
boundstmax to ε�1

u fmax(Ti�Di)g. We present a pseudo polynomial time algorithm with this additional
constraint on utilization.

The algorithm begins with computing upper and lower bounds on the slowdown factor. The upper
bound on the constant slowdown isηu = min(∆;1), where∆ is the system density. The lower bound
on the constant slowdown is system utilization at maximum speed. However, at this slowdown, the
utilization becomes 1 andtmax tends to infinity. To boundtmax, we compute the slowdownηl which
bounds the utilization to 1� εu and is given byηl =

U
1�εu

. We perform a binary search in the range
[ηl ;ηu] to compute the optimal constant slowdown. This technique is called thebisection methodand is
described in Algorithm 1. In each iteration, we test the feasibility of the system at a slowdown ofηm =
ηl+ηu

2 by checking whether the intensity of all intervals[0; t] is�1, witht� tmax=
Uηm

1�Uηm
fmax(Ti�Di)g.

The feasibility test is given by Algorithm 2. If the system is feasible, we update the upper bound toηm,
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ηu ηm. If the system is infeasible, we update the lower bound toηm, ηl  ηm. This completes
one iteration. We compute a newηm in each iteration of the algorithm. The number of iterations is
polynomial in the binary representation ofη and we represent this bound bykη. Thus the loop in line 4
of Algorithm 1 can be bounded bykη. Since we bound the processor utilization,tmax is proportional to
max(Di�Ti) and we have a pseudo polynomial time algorithm.

Algorithm 1 Bisection-Method(τ1; :::τn)
1: ηsoln 1:0; fInitializationg

2: ηl  
U

1�εu
; fLower bound onη : Uηl is 1� εug

3: ηu min(∆;1); fUpper bound onηg

4: for (count 1;count< kη;count count+1) do

5: ηm (ηl +ηu)=2;

6: if (Feasibility-Test(ηm)) then

7: ηu ηm;

8: ηsoln ηm;

9: else

10: ηl  ηm;

11: end if

12: end for

13: returnηsoln;

If the utilization at the solution computed by the bisection method is 1� εu, then we have an approxi-
mate solution. Otherwise, we have the optimum solution to the problem in pseudo polynomial time, an
exponential improvement over the worst case computation time for the optimal constant slowdown.

4 Uniform Slowdown Factors

In this section, we compute uniform slowdown factors as opposed to a constant slowdown factor.
Underuniform slowdown, all instances of a task have the same static slowdown factor, however different
tasks can have different slowdown factors. Assigning different slowdown factors based on the task
characteristics is energy efficient, especially when the task-set is diverse with tasks having different
power characteristics [1].

4.1 Optimization Problem

We formulate the energy minimization problem as an optimization problem. Let~η 2 Rn be a vector
representing the task slowdown factors, whereith element of the vector represents the slowdownηi for

7



Algorithm 2 Feasibility-Test(η)

1: Uη = 1
η ∑n

i=1
Ci
Ti

; f Utilization at slowdownηg

2: tmax=
Uη

1�Uη
; ftmaxvalue atηg

3: if (Uη > 1� εu) then

4: return FALSE;

5: end if

6: fFeasibility constraints on slowdowng

7: if ( 8t<tmax : 1
ηi

∑n
i=1(b

t�Di
Ti
c+1) �Ci � t) then

8: return TRUE;

9: else

10: return FALSE;

11: end if

taskτi. Let the power consumption of the taskτi as a function of slowdown be represented byfi(η).
The optimization problem is to compute the optimal vectorη� 2 Rn such that the system is feasible and
the total energy consumption of the system is minimized. The total energy,E, is a function of~η and is
given below.

E(~η) =
n

∑
i=1

Ci

Ti

fi(ηi)

ηi
(6)

The constraints set for the feasibility of the system are described separately for each method.

4.1.1 Devi Test Optimization

The best knownpolynomial sizedconstraints for optimizing the energy function are those given by
Theorem 2. Considering slowdown, the constraints are as follows:

8i
i = 1; :::;n;

i

∑
k=1

1
Tk

Ck

ηk
+

1
Di

i

∑
k=1

Tk�Dk

Tk
�
Ck

ηk
� 1 (7)

Since a slowdown factors is the normalized frequency, we have the implicit constraintηmin� ηi � 1.
The above constraints form a sufficient feasibility test. The result follows directly from Theorem 2. We
refer to the optimization problem under the constraints given by Equation 7 as theDevi Test Optimization
(DTO)method.

4.1.2 Constraints for Optimal Solution

The constraints in Equation 7 are linear in the number of tasks, however the constraints are not optimal.
To compute an optimal solution, we consider the intensity constraints given by Theorem 3. The con-
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straintCt given by Equation 8 specifies that the intensity of interval[0; t] under slowdown be less than
or equal to 1.

Ct :
1
t

n

∑
i=1

(b
t�Di

Ti
c+1) �

Ci

ηi
� 1 (8)

The intensity of an interval depends on the number of task instances in the interval. The number of
instances of taskτi which contribute to the intensity of the interval[0; t] is given byσi(t) = (b t�Di

Ti
c+1)

and the execution time of each instance isCi=ηi. Equation 8 must be true for allt, 0< t � H, where
H is the hyper-period of the task set. Note that the constraint set contains only the constraintsCt ,
wheret 2 S= ft(i;k) = kTi +Diji = 1; :::;n;k� 0g. In addition, we also have the implicit constraints:
ηmin� ηi � 1.

4.1.3 Constraints with bounded processor utilization

To compute the optimal solution, the constraint set contains allCt ; t �H, resulting in exponential number
of constraints. Similar to the bisection method, we constraint the system utilization byUη � 1� εu, to
reduce the constraint set. This reduces the constraint set to include all constraintsCt ; t � ε�1

u fmax(Ti�
Di)g, resulting in pseudo polynomial number of constraints. However, solving a system with pseudo
polynomial constraints is computationally intensive and it requires time, two orders magnitude larger
than the proposed ellipsoid method [13].

Note that, to check the feasibility of a slowdown vector~η, we need not check all the constraints in the
system. It suffices to check the constraints given by Theorem 3, where the number of constraints depend
on the utilizationUη. The number of constraintsvarywith each vector and checking the minimal required
constraints for a given vector can lead to faster algorithms. In the ellipsoid method, the constraints are
not specified explicitly and it is well suited for problems of this nature.

4.2 Ellipsoid Method (Algorithm)

In this section, we present a high level description of the ellipsoid algorithm [7]. We begin with
a description of the terms used in the ellipsoid method, and then apply it to our energy minimization
problem. The exact definitions are given in [8].

4.2.1 Background

A weak optimization problemis to compute a solution that is close-to-optimum under specified perfor-
mance guarantees. Anoracle-polynomial time algorithmis an algorithm that calls an oracle algorithm a
polynomial number of times. Aweak separation oracleis an algorithm that decides if a vector is in the
feasible space and if not, it generates a hyper-plane that approximately separates the feasible space from
the vector with some specified performance guarantees. We state the theorem which solves the weak
optimization problem given that we can solve the weak separation problem.

Theorem 7 [8] There exists an oracle-polynomial time algorithm that solves the weak optimization

problem for every circumscribed convex body(K;n;R) given by a weak separation oracle. ((K;n;R)

represents a convex body K2 Rn and is contained in a sphere with center as the origin and radius R.)
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The algorithm that computes the weak optimum solution is the ellipsoid method. The ellipsoid method
applies to problems where the feasible space and the optimization function are convex, and the gradient
of the optimization function can be computed. We show our problem formulation satisfies the above
properties for all convex differential power functions,fi(�) [13]. The main result of the ellipsoid method
is as follows. If we have a subroutine (called the separation oracle) that checks the feasibility of a vector
~η and generates a separating hyper-plane if the vector is not feasible, then we can compute a close to
optimum solution in a polynomial number of calls to the separation oracle. The detailed theorems and
proofs stating this result are present in [8]. By Theorem 7, we can compute a weak optimum solution in
polynomial number of calls to the separation algorithm (separation oracle) using the ellipsoid method.

4.2.2 Separation Oracle (algorithm)

We present the separation oracle used by the ellipsoid method to compute slowdown factors. The separa-
tion oracle is based on the feasibility test given by Theorem 3. Let~η represent the task slowdown factors.
To bound the running time of the feasibility test, we impose an additional constraint on the utilization,
Uη� 1�εu. The number of constraints to check is proportional toUη

1�Uη
. If a constraintCti is violated for

vectoru, then the hyper-plane∇Cti(~η)(~η�u) satisfy the property of the separating hyper-plane [8].Ct

is differentiable and the separating hyper-plane is computed by evaluating the derivative ofCt at vector
u. This gives a pseudo polynomial time separation oracle.

4.2.3 Geometric Interpretation of Ellipsoid Method

We give a geometric interpretation of ellipsoid method. We start with an ellipsoid (convex body) con-
taining the feasible space and the given optimization function. We check the feasibility of the center
of the ellipsoid. If it is not feasible, the separation oracle returns a separating hyper-plane,H, that cuts
the ellipsoid into two halves (feasibility cut). If the center of the ellipsoid is feasible, we compute the
gradient of the optimization function at the center. This gradient hyper-plane splits the ellipsoid into two
halves (optimality cut). In both cases, we can identify the non-optimal half by the property of convex
functions. We include the optimal half into a new ellipsoid. In each iteration, the volume of the ellipsoid
decreases by a fixed ratio inversely proportional ton. After a polynomial number of steps, the volume
of the ellipsoid is very small (εvolume) and we have a close-to-optimal solution. The ellipsoid method is
explained in Algorithm 3. NewEllipsoid() constructs the new ellipsoid and its center as shown in line
12. The details are given in [7].

5 Experimental Results

Simulation experiments were performed to evaluate our proposed techniques. We considered several
task sets, each containing 10-20 randomly generated tasks. We note that such randomly generated tasks
are a common validation methodology in previous works [30, 2, 1, 6]. Tasks were assigned a random
period and WCET in the range [20000,50000] and [100,5000] respectively. We tried to keep the hyper-
period low by rounding the periods to a multiple of 1000. To generate task with deadlines smaller than
the period, the deadlines were decreased by 0% to 25% of the task period, in steps of 5%.
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Algorithm 3 Ellipsoid Method(τ1; :::τn)
1: Set all elements ofηsoln to 1:0; fInitializationg

2: K sphere around origin to include all feasible slowdown factors: 0< ηi � 1; fInitial Ellipsoidg

3: ~ηc origin; fCenter of the ellipsoidg

4: while ( volume(K) > εvolume) do

5: if ( Feasibility-Test(~ηc) ) then

6: h ∇E(~η)(~η�~ηc) ; fThe gradient of the energy function (optimality-cut)g

7: ηsoln ηc;

8: else

9: Let Cx be the violated constraint;

10: h ∇Cx(~η)(~η�~ηc) ; fThe gradient of the constraintCx (feasibility-cut)g

11: end if

12: (Knew;ηnew) NewEllipsoid(K;h);

13: (K;ηc) (Knew;ηnew);

14: end while

15: returnηsoln;

Algorithm 4 Feasibility-Test(~η):

Uη = ∑n
i=1

1
ηi

Ci
Ti

; fUtilization at slowdown~ηg

tmax=
Uη

1�Uη
; ftmaxvalue at~η g

Constraint Set is :

Cu : ∑n
i=1

1
ηi

Ci
Ti
� 1� εu fUtilization constraintg

8t<tmax; Ct : 1
t ∑n

i=1(b
t�Di

Ti
c+1) � Ci

ηi
� 1 fFeasibility constraintsg

8n
i=1 ; Ci : ηmin� ηi � 1 fProcessor constraintsg

if (all constraints are satisfied)then

return TRUE;

else

return FALSE;

end if
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We use a power model based on the dynamic power consumption of CMOS circuits [26] as given by
Equations 1 and 2. We note, however that our algorithm can be applied to more sophisticated power
models, particularly as leakage becomes a significant contribution [5]. Recent processors have low
operating voltages, and we use an operating voltage range of 0:6V and 1:8V. The threshold voltage is
assumed to be 0:36V andα = 1:5. We have normalized the operating speed and support discrete voltage
levels in steps of 0:05 in the normalized range.

We compared the energy consumption for the following techniques presented in the paper:

� Devi Test Algorithm (DTA)

� Bisection Method (BM)

� Devi Test Optimization (DTO)

� Ellipsoid Method (EM)

We setεu to a value of 0:01 in bothBM andEM. This results in utilizing up to 99:9% of the processor,
while having practical run-times. The computed slowdown factor was mapped to the smallest discrete
level greater than or equal to it. Note that DTA and DTO are sufficient feasibility tests and a feasible
task set can be declared as infeasible, in which case we execute all tasks at the maximum speed (η = 1).

5.1 Identical Power Characteristics

The slowdown factor can be efficiently computed by the DTA method, with a run time polynomial
in the number of task. However, it is not energy efficient and has maximum energy consumption. The
computation of the optimal intensity inspects all intervals up to the hyper-period of the task set which
can be very large. In our experiments, in spite of setting task periods as multiples of 1000, the hyper-
period interval was too large to evaluate the intensity of all intervals up to the hyper-period. With tasks
having identical power characteristics, theBM andEM have very close energy consumption. Similar is
the case forDTAandDTO. Since, theBM computes a near optimal slowdown, the slowdown computed
by BM is always better thanDTA.

Figure 2 shows the percentage energy gains of theBM over DTA, as a function of the utilization at
maximum speed and the deadline reduction. All tasks are assumed to execute up to their WCET. It is
seen that theBM outperformsDTA as the deadline are made stricter. With a decrease in relative task
deadlines, the slowdown factor computed byDTA shoots up and tasks are executed at higher speed
consuming more energy. TheBM method continues to compute near optimal slowdown factor to result
is energy gains. For higher utilization, a small decrease in relative deadline makes the system infeasible
underDTA and we setη = 1. However, the slowdown computed byBM continues to increase and the
gains seem to decrease at utilization of 80% and 90%. At lower utilization (at maximum speed), the
density continues to increases with a decrease in deadline and hence there is a steady increase in gains.
The gains seem to lower as utilization decreases due to the relation between power and slowdown. An
improvementδ in the slowdown factor, results in more gains when the slowdown is higher. For this
reason, the gains seem to decrease as the utilization falls below 60%. Thus in all cases,BM performs
better with a decrease in deadline. We see as much as 35% energy gains over the DTA with the average
energy savings being 20%.
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Identical Power Characteristics
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Figure 2. Percentage Energy savings of the Bisection Method (BM) over the Devi Test Algorithm (DTA) as the utilization

under maximum speed is varied.

5.2 Varying Power Characteristics

Due to the diverse nature of the tasks in a system, tasks can have distinct power characteristics [1].
The problem formulation in Section 4 works for all convex differential power characteristics. However,
for experimental results we restrict power characteristics to belinear [1], where tasks have a constant
power coefficient. We say a task has power coefficientk to represent a task with a power consumption
k times the base case. This is equivalent to tasks having a switching capacitance,Ce f f in Equation 1,k
times the base case. The workload for each task is set to its worst case execution time. We consider the
following two distributions for the power coefficients:

� Bimodal Distribution : where there are two types of tasks in the system, with 50% having a power
coefficient of 1 and the others having a power coefficientk.

� Uniform Distribution , where the power function coefficients of the tasks are uniformly dis-
tributed between 1 andk. We varyk in the range[1;4].

We compare the energy consumption of theEM andDTO for task sets with a utilization between
60%-80% and execution time set to their WCET. Figure 3 shows the percentage gain ofEM overDTO.
Since both methods compute slowdown factors considering the task power characteristics, the energy
gains do not vary with the power coefficientk and its distribution. The energy savings depends on the
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Figure 3. Percentage Energy gains of the Ellipsoid Method (EM) over the Devi Test Optimization method (DTO) for varying

task power characteristics.

amount of slack that the slowdown method can identify. As the deadline is decreased,DTO identifies
less slack and theEM performs better. TheEM uses a near optimal feasibility test and utilizes the
maximum available slack. Similar gains are seen for the case of uniform and bimodal distribution of
power coefficients.

5.3 Dynamic Slowdown

Dynamic reclamation techniques results in further energy savings by reclaiming the run-time slack
that arises due to variations in the task execution time. We use the Generic Dynamic Reclaiming Algo-
rithm (GDRA) [1] by Aydin et. al.The authors have shown that a run-time slack of a higher priority task
can be utilized by lower priority jobs, while ensuring all task deadlines. The details are present in [1].

We vary the best case execution time (bcet) of a task from 100% to 10% of its WCET (wcet). Tasks
were generated by a Gaussian distribution with mean,µ= (wcet+bcet)=2 and a standard deviation,σ =
(wcet�bcet)=6. We performed experiments on tasks with varying utilization and power characteristics
and observed the same trend. As before, we compareBM with DTA for the case of identical power
characteristics. For the case of varying task power characteristics, we compareEM with DOA. In all the
techniques, we use theGDRAtechnique over the static slowdown factors to compute dynamic slowdown.
The gains are shown in Figure 4. As expected, the energy gains increase with the decrease in deadline.
It is seen that the average gains steadily increase as the execution time decreases. Thus, identifying the
maximum slack through the computation of static slowdown factors helps in dynamic reclamation as
well.

5.4 Computation Time

The computation times for the various techniques are of different orders of magnitude. In our ex-
amples, the hyper-period was usually too large and computing the optimal intensity was not possible.
BM computed the solution in orders of milliseconds. It took 1 to 10 seconds to compute the solution
usingEM. Each iteration of the ellipsoid method requires matrix computations to compute the new
ellipsoid and its center, which is computation intensive. However, note that the matrix computations
in EM require time polynomial in the number of tasks, making our technique scalable. TheDTA runs
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Dynamic Slowdown with identical task power coefficients
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Dynamic Slowdown with varying task power characteristics (k=2.5)
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Figure 4. Percentage Energy gains with Dynamic Slack Reclamation scheme. The top graph compares the gains ofBM over

DTAwith the dynamic reclamation scheme. The gains ofEM overDTOalong with dynamic reclamation are shown in

the bottom graph.

in linear time and the computation is negligible. The computation time forDTO is also small, since it
has only linear number of constraints. We conducted the experiments on a Sun workstation. Since the
computations are performed off-line, we justify a computation time of few milliseconds to seconds for
energy gains.

6 Conclusions and Future Work

We have presented algorithms to compute static slowdown factor under EDF scheduling, when the
task deadlines are smaller than the task periods. We see that identifying slack by means of static slow-
down factors results in energy savings through static and dynamic slowdown. We proposed the bisection
method to compute constant static slowdown factors and an algorithm based on ellipsoid method to com-
pute uniform slowdown factors. Experimental results show on an average 20% energy gains over the
known slowdown techniques. The average gains extend to 40% with dynamic slowdown. The algorithms
have a pseudo polynomial time complexity and are practically fast. The techniques are energy efficient
and can be easily implemented in an RTOS. This will have a great impact on the energy utilization of
portable and battery operated devices.

In our future work, we plan to extend these techniques to compute optimal discrete task slowdown
factors.
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A Appendix

A.1 Optimal Constant Slowdown

Theorem 6: For a synchronous task system,8i : φi = 0, the maximum intensity over all interval[0; t],
0< t �H, whereH is the hyper-period of the task set, is the optimal constant slowdown factor.

Proof 1 For a synchronous task system, the intensity of any interval[t1; t2] is less than or equal to the

intensity of the interval of the same length beginning at time zero [3] :

g([t1; t2])� g([0; t2� t1])

Thus it suffices to check the intensity of intervals beginning at time zero. Let g� be the maximum intensity

over all intervals[0; t], 0< t � H. We now show that the intensity of all intervals[0;H + t] is bounded

by g�.

Since all tasks have a phaseφi = 0, all tasks have a task instance (job) with deadline H. No tasks

exists which arrives before the hyper-period H with a deadline after H. Hence, the jobs that contribute

to the intensity of the interval[0;H + t] can be partitioned into jobs that arrive (and complete) before

H and those that arrive after time H. Thus the intensity of interval[0;H + t] is the weighted sum of the

intensity contributions of the two intervals as shown below:

g([0;H+ t]) =
1

H + t
(H �g([0;H])+ t �g([H;H+ t]))

For synchronous task sets, the task arrivals at time0 and and at time H are identical and g([H;H+ t]) =

g([0; t]). Thus

g([0;H + t]) =
1

H + t
fH �g([0;H])+ t �g([0; t])g

Since g� is the maximum intensity over all interval up to the hyper-period,

g([0;H+ t])�
1

H + t
fH �g�+ t �g�g

= g�

Since the intensity of all intervals[0;H+ t] is bounded by g�, the maximum intensity over all intervals

is g�. The intensity of an interval is a lower bound on the constant slowdown during the interval and

this proves that g� is the optimal constant slowdown.
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A.2 Convex Minimization Problem

We prove that the in the minimization problem given by Equations 6, and 8 is a convex minimization
problem. We use the following result of convex functions :

� If β is a constant withβ� 1 or β� 0 then a function overx, xβ is convex [22].

� The sum of two convex functions is convex [22].

� Given a convex functionf (x) and a positive constantc, c� f (x) is a convex [22].

We want to minimize the total system energyE(v). It is a function of the task voltageVi and is given
by :

E(v) =
n

∑
i=1

Ni �V
2
i �Ci

wherev is a vector inRn representing the voltage values of then tasks in the system.
By the above results,V2

i is convex. The functionNi �V2
i �Ci , is convex sinceNi andCi are constants.

The energy functionE(v) is the sum ofn convex functions and hence convex. This proves the convexity
of functionE(v)

We now prove that each constraintCt is convex. Each constraintCt is represented as :

Ct :
n

∑
i=1

(b
t�Di

Ti
c+1) �di(Vi)� t

If the functiondi(Vi) is convex, then the constraintCt is the sum of convex functions and hence convex.
We now prove thatdi(Vi) is convex.

di(Vi) =Ci �Vi(
1�Vth

Vi�Vth
)α

SinceCi, Vth andα are constants, we need to prove convexity ofVi
(Vi�Vth)α . SinceVi >Vth, we can shift

the origin toVth to have,

di(Vi) =
Vi +Vth

Vα
i

=V1�α
i +Vth �Vi

�α

Sinceα > 1, (1�α) and(�α) are negative andV1�α
i andVi

�α are convex. Thusdi(Vi), a sum of
convex functions is convex. This proves that all the constraints are convex in nature. The intersection of
convex constraints results in a convex body. This proves that the feasible space is a convex body and the
function to minimize is convex to have a convex minimization problem.
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