Optimized Slowdown in Real-Time Task Systems

Ravindra Jejurikar Rajesh K. Gupta

Center for Embedded Computer Systems,
University of California, Irvine,
Irvine, CA 92697-3425, USA
1 (949) 824-8168

E-mail:jezz@cecs.uci.edu, gupta@cs.ucsd.edu

CECS Technical Report #04-10
April , 2004

Abstract

Slowdown factors determine the extent of slowdown a computing system can experience based on
functional and performance requirements. Dynamic Voltage Scaling (DVS) of a processor based on
slowdown factors can lead to considerable energy savings. We address the problem of computing slow-
down factors for dynamically scheduled tasks with specified deadlines. We present an algorithm to
compute a near optimal constant slowdown factor based on the bisection method. As a further gener-
alization, for the case of tasks with varying power characteristics, we present the computation of near
optimal slowdown factors as a solution to convex optimization problem using the ellipsoid method. The
algorithms are practically fast and have the same time complexity as the algorithms to compute the fea-
sibility of a task set. Our simulation results show on an ave@féenergy gains over known slowdown
techniques using static slowdown factors &@@d6gains with dynamic slowdown.

Contents

1 Introduction 1
2 Preliminaries 2
21 SystemModel 2
2.2 \Variable Speed Processors 3
2.3 Motivatingexample 3
3 Constant Static Slowdown 4
3.1 BisectionMethod 6
4 Uniform Slowdown Factors 7
4.1 OptimizationProblem 7
4.1.1 DeviTestOptimization 8
4.1.2 Constraints for Optimal Solution 8
4.1.3 Constraints with bounded processor utilization 9
4.2 Ellipsoid Method (Algorithm) 9
421 Background 9
4.2.2 Separation Oracle (algorithm) 10
4.2.3 Geometric Interpretation of Ellipsoid Method 10
5 Experimental Results 10
5.1 |Identical Power Characteristics e 12
5.2 Varying Power Characteristics e 13
5.3 Dynamic SIowdown 14
54 Computation TIme 14
6 Conclusions and Future Work 15
A Appendix 19
A.l1 Optimal Constant Slowdown 19
A.2 Convex Minimization Problem 20

List of Figures

1

(a) Task arrival times and deadlines (NOT a task schedule). (b) Task schedule at a
constant slowdown equal to the utilizatian= 0.70, and jobty » misses its deadline.

(c) Feasible schedule using density as the constant slowdown fiaetdd,83, however

not optimal. (d) Task schedule at the optimal constant slowdown-00.75. 4
Percentage Energy savings of the Bisection Method (BM) over the Devi Test Algorithm
(DTA) as the utilization under maximum speedisvaried. 13
Percentage Energy gains of the Ellipsoid Meth6tj over the Devi Test Optimization

method DT O) for varying task power characteristics. 14
Percentage Energy gains with Dynamic Slack Reclamation scheme. The top graph com-
pares the gains @M over DT A with the dynamic reclamation scheme. The gains of

EM overDT O along with dynamic reclamation are shown in the bottom graph. 15

List of Tables

1 Introduction

Power is an important metric for optimization in the design and operation of embedded systems. A
processor is central to an embedded system and contributes to a significant portion of the total power
consumption of the system. Modern processors have higher operating speeds and processing capacity
to meet the increasing computation demands of application. With the increasing speeds, the power
consumption of the processor also increases. Though processors are designed to handle large workloads,
the peak processing capacity may not be needed for all applications. This observation has led to two
primary ways of reducing the power consumption in embedded computing systems: prebassown
and processalowdown Slowdown using frequency and voltage scaling has been shown to be effective
in reducing the processor energy consumption [29, 30, 2].

Recent processors [12, 31] support slowdown, where we can vary the operating frequency and voltage
at run-time. The power consumptid?,depends on the operating voltage and frequency of the processor
and is given by:

P=Ceft-Viy- f (1)
whereCyqi+ is the effective switching capacitandgy is the supply voltage andl is the operating fre-
guency. Due to the quadratic relationship between power and voltage, a decrease in the supply voltage
decreases the power consumption. However, the transistor gate delay increases with a decrease in volt-
age, forcing a decrease in the operating frequency. The relationship between the transistor gate delay,
tinv, and supply voltage is given by: v
" Vdd
tII’]V (Vdd —\/th)a (2)
whereVyq is the operating voltage and, is the threshold voltage, has a value in the range 1 to 2 and
kis a technology constant [32, 26]. Note that a decrease in the supply voltage has a quadratic decrease
in the power consumption but only a linear reduction in the operating frequency, thus resulting in lower
energy consumption per unit work. The important point to note is that energy savings are achieved at
the cost of increased execution time. Energy reduction and meeting deadlines are often contradictory
goals and we have to judiciously manage the tradeoff between time and power to achieve our goal of
minimizing energy.

Among the earliest works on this problem, Yaio al. [33] presented an off-line algorithm to compute
the optimal speed schedule for a seNgbbs. The optimality is based on the EDF scheduling policy and
a continuous voltage range. Kwei al. [17] have extended this work by relaxing the assumption of a
continuous voltage range. Off-line scheduling using fixed priority tasks has been addressed in [24] [25]
and shown to be NP-hard [34]. As opposed to minimizing the energy consumption of a systerat.Rusu
al. have addressed the problem of maximizing the system value (utility) for a given energy budget [28,
27]. Scheduling of task graphs on multiple processors has also been addressed. Luo and Jha [20] have
considered scheduling of periodic and aperiodic task graphs in a distributed system. Non-preemptive
scheduling of a task graph on a multi processor system is considered by Gruian and Kuchcinski [10].
Zhanget. al. [36] have given a framework for task scheduling and voltage assignment for dependent
tasks on a multi-processor system. They have formulated the voltage scheduling problem as an integer
programming problem.

Dynamic voltage scaling techniques for real-time periodic task systems has been the focus of many
works, where known feasibility test have been extended to compute static slowdown factors [30, 9]. A
generalization of the energy minimization problem, which incorporates individual tasks with different

1

power consumption characteristics, is addressed by Aydin, Melhem anaNids®ote that the static
slowdown factors are computed based on worst case execution time of each task. Dynamic reclamation
techniques in [23, 2, 16] result in additional energy savings by reclaiming run-time slack that arises
due to variation in task execution time. Recent work, including our own, has addressed extension of
slowdown algorithms to handle task synchronization [35, 14] and aperiodic tasks [21]. Furthermore, the
need for leakage energy minimization, which is increasingly important in current and future generation
CMOS circuits [5], has lead to procrastination scheduling techniques proposed in [18, 15].

DVS for periodic tasks is well researched, however most works are based on the assumption that the
relative task deadline is equal to the task period. Based on this assumption, the Earliest Deadline First
(EDF) policy is known to be optimal [19, 4], and the system utilization can be used as a slowdown
factor [2]. When the deadlines differ from the period, a similar approach implies that the system density
[19] or similar feasibility results [6] can be used as a constant slowdown. However, as we show later in
this paper, this slowdown is far from optimal and we bridge this gap in our work. We extend previous
work by computing slowdown for periodic tasks with (1) task deadlines less than the period and (2)
varying power characteristics for the tasks. We proposeigection methodnd theellipsoid methodo
compute optimized static slowdown factors. We gain on an average 20% energy savings over the known
techniques with static slowdown and 40% savings with dynamic slowdown.

The rest of the paper is organized as follows: Section 2 formulates the problem with motivating
examples. This is followed by algorithms to compute energy efficient slowdown factors. We present
the bisection method in Sections 3 and the ellipsoid method is explained in Section 4. The experimental
results are given in Section 5 and Section 6 concludes the paper with future directions.

2 Preliminaries

In this section, we introduce the necessary notation and formulate the problem. We first describe the
system model followed by an example to motivate the problem.

2.1 System Model

A task set ofn periodic real time tasks is representedlas {11,...,Tn}. A taskT; is a 3-tuple
{Ti,Di,C}, whereT; is the period of the taskD; is the relative deadline with; < T;, andC; is the
WCET for the task at maximum speed. The phggseof a periodic task; is the release time of tHest
instanceof the task. A set of tasks said to bephaseif the first instances of each task is released at
the same time. A system, where all tasks are in phase@vithO, is referred to as synchronougask
system [3]. Thehyper-periodof the task set, is defined as the least common multiple (Icm) of the task
periods. The tasks are scheduled on a single processor system based on a preemptive scheduling policy
and all tasks are assumed to be independent. A task system is saifetsitdeif all tasks meet the
deadline. The processor utilization for the task Bet: 51! ; Ci/T; < 1 is a necessary condition for the
feasibility of any schedule [19]. Theensityof the systemA = 371, Gi/min(T;, D) < 1, is a sufficient
feasibility condition under EDF scheduling [19].

Each invocation of the task is calledab and thek!" invocation of task; is denoted asj x. Each job
Jk is represented by a 3-tup{ey, dk, ex} whereay is its arrival time,dx = ax + D; its absolute deadline
ande < G is its execution time at maximum speed. The time intefaaldy| is referred to as thpb
interval ande is the weight of the interval. Thiatensityof an intervall = [z, Z], denoted byg(l) is is

2

defined as in [33] g(I) = %,%, where the sum is over all job intervals with [ay, d] C [z Z] i.e. all
jobs with their intervals lying completely withifz, Z]. The interval * that maximizeg(l) is called the
critical interval for a given job setl. In this paper, we only compute the intensity of intervals of the
form [O,t], which can be efficiently computed. For a synchronous systémg(= 0), the intensity of
an interval[0,t], with all tasks executed at maximum speed, is given byﬁ‘zl(L%J +1)-C.

2.2 Variable Speed Processors

A wide range of processors like the Intel StrongARM processors [11], Intel XScale [12], Transmeta
Crusoe [31] support variable voltage and frequency levels, which can be varied at run-time. A task
slowdown factorcan be viewed as its normalized operating frequency. At a given instance, it is the
ratio of the current frequency to the maximum frequency of the processor. Note that the voltage and
frequency levels are tightly coupled, and a (frequency, voltage) pair is associateewiftslowdown
factor. The important point to note is when we perform a slowdown, we change the frequency along with
a proportionate change in voltage. We assume that the frequency can be varied over a discrete range,
with fmin and fynax being the minimum and maximum frequency respectively. We normalize the speed
to the maximum speed to have discrete points in the intényal, 1], wherenmin = fmin/ fmax

We assume that all invocations (jobs) of a particular task are assigned an equal time budget for execu-
tion and this is referred to asumiform slowdown The assigned time budget can be used for intra-task
voltage scaling, however in this work we assume that the budget is utilized by performing a uniform
slowdown during the entire task execution. Note that the time budget dictates the extent of slowdown
and can be expressed by the task slowdown factor. If all tasks are assigned the same static slowdown fac-
tor, itis called aconstant slowdownWith slowdown, the system utilization increases and is represented
byUy =3, %%‘ wheren; is the slowdown factor for task. We assume that the overhead incurred in
changing the processor speed is incorporated in the task execution time. Considering static and dynamic
slowdown, a speed change occurs only at a context switch. This overhead, similar to the context switch
overhead, is constant and can be incorporated in the worst case execution time of a task. We note that
the same assumption is made in previous works [1][2].

2.3 Motivating example

Consider a simple real time system with 2 periodic tasks,
11={2,2,1},12={5,3,1}

Figure 1(a) shows the jobs for each task at their arrival time and their workload at full speed. We have
explicitly shown the deadlines when the deadline differs from the period. The task set is feasible under
EDF scheduling at full speed. A slowdown equal to the processor utilizbtien1/2+ 1/5) = 0.7 is
optimal when the relative deadlines are equal to the task period. However, as seen in Figure 1(b), job
112 misses its deadline at a constant slowdowmef U = 0.7. Three units of work has to be done
in first 4 time units. At a slowdown of.@, it requires 81/0.7) = 4.285 time units and a task misses
its deadline. Thus, to ensure all task deadlines, the utilization cannot be used as a constant slowdown
factor. A constant slowdown equal to the density- (1/2+ 1/3) = 0.83, keeps the system feasible
[19]. (Note that for this example, the feasibility test described in [6] also results in the same slowdown
of 0.83.) The schedule at a slowdownrmpt= A = 0.83 is shown in Figure 1(c). Note that, this is not the

£ idle time in schedule

[T 1 'tisthe execution

time for the job

tisk dea%ne deadline
v 1]
Wopa] [a] 2] [a1] [1]
0 1 2 3 4 5 6 7 8 9 10

time —=
(a) Task set description: Task arrival times, deadlines and
WCET at maximum speed

task
& 1
X -missed
Y T4] [1471
0 1 2 3 4 i5 6 7 8 9 10
(b) Task schedule at=0.7 time —=
task
T2 idle
S N Y
Lo [T12] [12 | [12] [12 | [12]
0 1 2 3 4 5 6 7 8 9 10
(c) Task schedule at=0.83 time —=
task
T .
2 idle
SSS|
b 133 [133] 1.33 | [[133] 133 |
0 1 2 3 4 5 6 7 8 9 10
(d) Task schedule at=0.75 time —=

Figure 1. (a) Task arrival times and deadlines (NOT a task schedule). (b) Task schedule at a constant slowdown equal to the
utilization,n = 0.70, and jobty 2 misses its deadline. (c) Feasible schedule using density as the constant slowdown factor,

N = 0.83, however not optimal. (d) Task schedule at the optimal constant slowdotyr=o0.75.

optimal slowdown and the schedule has many idle intervals which can be exploited for further energy
savings. A slowdown off = 0.75 suffices as shown in Figure 1(c). Note that three units of workload
has to be finished within the intervi@, 4] and the intensity of the interval i¥8 = 0.75. Thusn = 0.75

is a lower bound on the constant slowdown &né 0.75 is the optimal constant slowdown.

A constant slowdown need not be optimal when the task deadline is less than the period. As seen
in the Figure 1, there is inherent idle time even at the optimal constant slowdown. This motivates the
computation of uniform slowdown factors for the tasks. Furthermore, different tasks can have different
power characteristics, and assigning slowdown factors based on task characteristics can be more energy
efficient.

3 Constant Static Slowdown

In this section, we propose algorithms to compute the constant slowdown factor under EDF scheduling
when the task deadlines can be less than the péboe T;). First, we present known feasibility tests

4

for periodic task systems which form the basis of our algorithms.

Theorem 1 [19] A task set of n periodic tasks, is feasible under EDF scheduling, if the deAsity,
ZI 1 DI

Theorem 2 [6] A task set of n periodic tasks, arranged in non-decreasing order of their relative dead-

lines, is feasible under EDF scheduling if :

-n

Theorem 1 and 2 are sufficient feasibility conditions. These tests are efficient andlingaintime,
however not optimal. Theorem 3 by Baruah al. gives an optimal test when the system utilization is
strictly less than 1.

Ti—D
_kz ka kKo< 3)
1

G,
T

Theorem 3 [3] A task set is feasible if the intensity of all intervalst], t < tmax= 1og {maxTi—Di)},
is less than or equal to 1. Thus the feasibility problem for synchronous systems on one processor is
solvable in time Q25 {maxT; — Dj)}).

By Theorem 3, it follows that the constraints for the feasibility of the task set can be specified as :
10 t —Dj
vi,t <t — — | +1)]-G<1 4
maxtigl(L T J-|—>C|_ (4)

The important point to note is that when we consider slowdown, the valuggaptlepends on the
utilization under slowdownJ),,, and is given bytmax = 1L_J[1Jn{ma>('l'i —Di)}. Zhenge. al. [37] also
present a similar result as given by Theorem 3, where they check the intensity of all inf@rtgls
t<thax= g (>t %(Ti — Di)}. Note that themaxgiven in Theorem 3 is just an upper bound/gf,,
where eachiT; — Dj) term is approximated by the maximum over @il— D;) terms.

We extend Theorem 1 and 2 to compute constant slowdown factors as given by Theorem 4 and 5. The
proof of the results follows directly from Theorem 1 and 2.

Theorem 4 Givenn independent periodic tasks, the feasibility of the task-set is guaranteed at a constant

slowdown of), if 137, 5 < 1.

Theorem 5 Given n periodic tasks, arranged in non-decreasing order of their relative deadlines, the

)Sl (5)

task set is feasible at a constant slowdowmn oif

V

L3243

5

Theorem 5 is a stronger result than Theorem 4 [6], however not optimal. The best slowdown satisfying
Theorem 5 can be computed efficiently and we refer to it aB#he Test Algorithm (DTAnamed after
the author who proposed the feasibility test. Note that feasibility test given by Theorem 3 is optimal,
however it does not compute the optimal slowdown factor. The optimal constant slowdown factor for a
periodic task set can be computed as given by Theorem 6.

Theorem 6 For a synchronous task system),: ¢ = 0, the maximum intensity over all intervg, t],

0 <t <H, where H is the hyper-period of the task set, is the optimal constant slowdown factor.

The proof of the result is present in Appendix A.1. Itis known that the intensity function can increase
only at discrete points represented by theSet{t; x) = kTi+Di[i = 1,...,n;k> 0} [3]. Thus it suffices
to check the intensity of the interval®,t] with t € S However, the cardinality of the s&can be
exponential in the number of tasks, resulting in a worst case exponential time complexity.

While we propose algorithms for synchronous task systems, note that the computed slowdown factors
can be used independent of the task phase. It is known that the maximum intensity interval of a syn-
chronous task set is an upper bound on the maximum intensity interval for the system, irrespective of
the task phase [19, 3]. Thus the results in this paper can be applied all periodic task systems.

Corollary 1 The slowdown factors computed for a synchronous system imply feasibility of the periodic

task set, independent of the individual task phase.

3.1 Bisection Method

We are interested in an efficient algorithm to compute the optimal constant slowdown. The feasibility
test given by Theorem 3 is much faster compared to the algorithm given by Theorem 6. Note however,
that the feasibility test cannot be directly used to compute slowdown factors. We observe that performing
a binary search over the range of slowdown factors can result in a faster algorithm. It is important to
note that the time valug,ax (in Theorem 3) is proportional tg)L_J”Tn, whereU,, is the system utilization
under slowdown. As we slowdown the system, the utilization of the system increases. As the utilization
approaches Iynaxtends to infinity. Thus in the worst case, we may have to check all intervals up to the
hyper-period of the task set, which requires worst case exponential time. To avoid the explagign of
we impose an additional constraint on the processor utilizatigrs 1 — €. Sincegy is a constant, it
boundstmaxto e51{max T — Dj)}. We present a pseudo polynomial time algorithm with this additional
constraint on utilization.

The algorithm begins with computing upper and lower bounds on the slowdown factor. The upper
bound on the constant slowdownrig = min(A, 1), whereA is the system density. The lower bound
on the constant slowdown is system utilization at maximum speed. However, at this slowdown, the
utilization becomes 1 anthax tends to infinity. To boundnax, we compute the slowdown, which
bounds the utilization to * €, and is given byn, = 1%:” We perform a binary search in the range
[N1,Nu) to compute the optimal constant slowdown. This technique is callebisketion methodnd is
described in Algorithm 1. In each iteration, we test the feasibility of the system at a slowdown-of
hznu by checking whether the intensity of all intervist] is < 1, witht < tmax= ﬁﬁ{ma{ﬁ —Di)}.

The feasibility test is given by Algorithm 2. If the system is feasible, we update the upper bogid to

6

Nu ¢ Nm. If the system is infeasible, we update the lower bound{p N < Nm. This completes
one iteration. We compute a nayy, in each iteration of the algorithm. The number of iterations is
polynomial in the binary representationmpfand we represent this bound ky. Thus the loop in line 4

of Algorithm 1 can be bounded bk. Since we bound the processor utilizatigfax is proportional to
maxD;j — Ti) and we have a pseudo polynomial time algorithm.

Algorithm 1 Bisection-Method(y, ...T)
1: Nsoln ¢ 1.0; {Initialization}

2: | ¢ 1o {Lower bound om : Up, is 1— &y}
3: Nu < min(A,1); {Upper bound om }

4: for (count« 1;count< ky;count« count+ 1) do

5 Nm¢« (Mi+Nu)/2;

6: if (Feasibility-TestQm)) then
& Nu < Nm;

8: Nsoln <= Nm;

9: else

10: NI < Nm;

11: endif

12: end for

If the utilization at the solution computed by the bisection method+s{, then we have an approxi-
mate solution. Otherwise, we have the optimum solution to the problem in pseudo polynomial time, an
exponential improvement over the worst case computation time for the optimal constant slowdown.

4 Uniform Slowdown Factors

In this section, we compute uniform slowdown factors as opposed to a constant slowdown factor.
Underuniform slowdownall instances of a task have the same static slowdown factor, however different
tasks can have different slowdown factors. Assigning different slowdown factors based on the task
characteristics is energy efficient, especially when the task-set is diverse with tasks having different
power characteristics [1].

4.1 Optimization Problem

We formulate the energy minimization problem as an optimization problemij keR" be a vector
representing the task slowdown factors, whételement of the vector represents the slowdowfor

Algorithm 2 Feasibility-Testq)
1: Uy = 251, §; { Utilization at slowdowm}

2. tmax= 1L_J—[1Jn; {tmaxVvalue atn}

3 if (Uy > 1—¢y) then

4: return FALSE;

5: end if

6: {Feasibility constraints on slowdown

70 (Victnae & Sita([52 +1)-Ci <t) then
8: return TRUE;

9: else

10: return FALSE;

11: end if

taskti. Let the power consumption of the taskas a function of slowdown be representedfiy)).
The optimization problem is to compute the optimal vectoe R" such that the system is feasible and
the total energy consumption of the system is minimized. The total eréygy.a function ofi and is
given below.

n

- G fi(ni)
Ef) =Y =—~
(n) 2T,

The constraints set for the feasibility of the system are described separately for each method.

(6)

4.1.1 Devi Test Optimization

The best knowrpolynomial sizecconstraints for optimizing the energy function are those given by
Theorem 2. Considering slowdown, the constraints are as follows:

Iszr]k Di Z

k=1

D" 3<1 (7)

Since a slowdown factors is the normalized frequency, we have the implicit consgrairt n; < 1.

The above constraints form a sufficient feasibility test. The result follows directly from Theorem 2. We
refer to the optimization problem under the constraints given by Equation 7 Beth@&est Optimization
(DTO) method.

4.1.2 Constraints for Optimal Solution

The constraints in Equation 7 are linear in the number of tasks, however the constraints are not optimal.
To compute an optimal solution, we consider the intensity constraints given by Theorem 3. The con-

8

straintC! given by Equation 8 specifies that the intensity of intef@al] under slowdown be less than
or equalto 1.
t — D. Ci

ttz Egl (8)

The intensity of an interval depends on the number of task instances in the interval. The number of
instances of task which contribute to the intensity of the intervalt] is given byo;(t) = (| 52 D'J +1)

and the execution time of each instanc€ign;. Equation 8 must be true for &l 0 < t < H where

H is the hyper-period of the task set. Note that the constraint set contains only the conél‘r,aints
wheret € S= {t(Lk) = kT + Dj|li = 1,...,n;k> 0}. In addition, we also have the implicit constraints:
Nmin < Ni < 1.

4.1.3 Constraints with bounded processor utilization

To compute the optimal solution, the constraint set contail® @< H, resulting in exponential number

of constraints. Similar to the bisection method, we constraint the system utilizatiop Byl — €, to
reduce the constraint set. This reduces the constraint set to include all congliaintse; 1 {maxT; —

Di)}, resulting in pseudo polynomial number of constraints. However, solving a system with pseudo
polynomial constraints is computationally intensive and it requires time, two orders magnitude larger
than the proposed ellipsoid method [13].

Note that, to check the feasibility of a slowdown vedipmwe need not check all the constraints in the
system. It suffices to check the constraints given by Theorem 3, where the number of constraints depend
on the utilizatiorJ,. The number of constraintgrywith each vector and checking the minimal required
constraints for a given vector can lead to faster algorithms. In the ellipsoid method, the constraints are
not specified explicitly and it is well suited for problems of this nature.

4.2 Ellipsoid Method (Algorithm)

In this section, we present a high level description of the ellipsoid algorithm [7]. We begin with
a description of the terms used in the ellipsoid method, and then apply it to our energy minimization
problem. The exact definitions are given in [8].

4.2.1 Background

A weak optimization problens to compute a solution that is close-to-optimum under specified perfor-
mance guarantees. Aamacle-polynomial time algorithnis an algorithm that calls an oracle algorithm a
polynomial number of times. Aveak separation oracles an algorithm that decides if a vector is in the
feasible space and if not, it generates a hyper-plane that approximately separates the feasible space from
the vector with some specified performance guarantees. We state the theorem which solves the weak
optimization problem given that we can solve the weak separation problem.

Theorem 7 [8] There exists an oracle-polynomial time algorithm that solves the weak optimization
problem for every circumscribed convex bad, n,R) given by a weak separation oracle.(i;n,R)

represents a convex body&R" and is contained in a sphere with center as the origin and radius R.)

9

The algorithm that computes the weak optimum solution is the ellipsoid method. The ellipsoid method
applies to problems where the feasible space and the optimization function are convex, and the gradient
of the optimization function can be computed. We show our problem formulation satisfies the above
properties for all convex differential power functiorig;) [13]. The main result of the ellipsoid method
is as follows. If we have a subroutine (called the separation oracle) that checks the feasibility of a vector
i and generates a separating hyper-plane if the vector is not feasible, then we can compute a close to
optimum solution in a polynomial number of calls to the separation oracle. The detailed theorems and
proofs stating this result are present in [8]. By Theorem 7, we can compute a weak optimum solution in
polynomial number of calls to the separation algorithm (separation oracle) using the ellipsoid method.

4.2.2 Separation Oracle (algorithm)

We present the separation oracle used by the ellipsoid method to compute slowdown factors. The separa-
tion oracle is based on the feasibility test given by Theorem 3ijlcepresent the task slowdown factors.

To bound the running time of the feasibility test, we impose an additional constraint on the utilization,
Un <1—¢y. The number of constraints to check is proportionql%@n. If a constrainCl is violated for

vectoru, then the hyper-plangC'i(1ij)(ij — u) satisfy the property of the separating hyper-plane @].
is differentiable and the separating hyper-plane is computed by evaluating the derivativat ekctor
u. This gives a pseudo polynomial time separation oracle.

4.2.3 Geometric Interpretation of Ellipsoid Method

We give a geometric interpretation of ellipsoid method. We start with an ellipsoid (convex body) con-
taining the feasible space and the given optimization function. We check the feasibility of the center
of the ellipsoid. If it is not feasible, the separation oracle returns a separating hypertplahat cuts

the ellipsoid into two halves (feasibility cut). If the center of the ellipsoid is feasible, we compute the
gradient of the optimization function at the center. This gradient hyper-plane splits the ellipsoid into two
halves (optimality cut). In both cases, we can identify the non-optimal half by the property of convex
functions. We include the optimal half into a new ellipsoid. In each iteration, the volume of the ellipsoid
decreases by a fixed ratio inversely proportional.té\fter a polynomial number of steps, the volume

of the ellipsoid is very smalle(,ojume @and we have a close-to-optimal solution. The ellipsoid method is
explained in Algorithm 3. NewEllipsoid() constructs the new ellipsoid and its center as shown in line
12. The details are given in [7].

5 Experimental Results

Simulation experiments were performed to evaluate our proposed techniques. We considered several
task sets, each containing 10-20 randomly generated tasks. We note that such randomly generated tasks
are a common validation methodology in previous works [30, 2, 1, 6]. Tasks were assigned a random
period and WCET in the range [20000,50000] and [100,5000] respectively. We tried to keep the hyper-
period low by rounding the periods to a multiple of 1000. To generate task with deadlines smaller than
the period, the deadlines were decreased by 0% to 25% of the task period, in steps of 5%.

10

Algorithm 3 Ellipsoid Methodty, ...Tn)

1: Set all elements afisoin to 1.0; {Initialization}

2: K « sphere around origin to include all feasible slowdown factoks:r) < 1; {Initial Ellipsoid}
3: Nfic «+ origin; {Center of the ellipsoig

4: while (voluméK) > €yojume) dO

5. if (Feasibility-Tes{fc)) then

6: h+ DOE(R)(n —fc) ; {The gradient of the energy function (optimality-cut)
& Nsoln <= MNc;

8: else

o: Let C* be the violated constraint;

10: h+ OCX)(A —Nc) ; {The gradient of the constrai@X (feasibility-cut)}
11: endif

12: (Knew Nnew) < NewEllipsoidK, h);

13: (K,Ne) < (Knews Nnew);

14: end while

15: returnnsoin;

Algorithm 4 Feasibility-Test():

Uy = z, L& {Utilization at slowdowrij}
tmax= m, {tmaxvalue at }
Constraint Set is :
St 1 C' < 1— g, {Utilization constrain}
Victyag C' fzi (52 + 1) & <1 {Feasibility constraints
N ;Cinmn<ni<1 {Processor constrairjts

if (all constraints are satisfieth)en

return TRUE;
else

return FALSE;

end if

11

We use a power model based on the dynamic power consumption of CMOS circuits [26] as given by
Equations 1 and 2. We note, however that our algorithm can be applied to more sophisticated power
models, particularly as leakage becomes a significant contribution [5]. Recent processors have low
operating voltages, and we use an operating voltage rangé&wfahd 18V. The threshold voltage is
assumed to be.B6V anda = 1.5. We have normalized the operating speed and support discrete voltage
levels in steps of @5 in the normalized range.

We compared the energy consumption for the following techniques presented in the paper:

e Devi Test Algorithm (DTA)

¢ Bisection Method (BM)

e Devi Test Optimization (DTO)
¢ Ellipsoid Method (EM)

We sete, to a value of 01 in bothBM andEM. This results in utilizing up to 99% of the processor,

while having practical run-times. The computed slowdown factor was mapped to the smallest discrete
level greater than or equal to it. Note that DTA and DTO are sufficient feasibility tests and a feasible
task set can be declared as infeasible, in which case we execute all tasks at the maximum=spBed (

5.1 Identical Power Characteristics

The slowdown factor can be efficiently computed by the DTA method, with a run time polynomial
in the number of task. However, it is not energy efficient and has maximum energy consumption. The
computation of the optimal intensity inspects all intervals up to the hyper-period of the task set which
can be very large. In our experiments, in spite of setting task periods as multiples of 1000, the hyper-
period interval was too large to evaluate the intensity of all intervals up to the hyper-period. With tasks
having identical power characteristics, tBll andEM have very close energy consumption. Similar is
the case foDTAandDT O. Since, thdBM computes a near optimal slowdown, the slowdown computed
by BM is always better thaBT A

Figure 2 shows the percentage energy gains oBildleover DT A, as a function of the utilization at
maximum speed and the deadline reduction. All tasks are assumed to execute up to their WCET. It is
seen that th&M outperformsDTA as the deadline are made stricter. With a decrease in relative task
deadlines, the slowdown factor computed DY A shoots up and tasks are executed at higher speed
consuming more energy. THBM method continues to compute near optimal slowdown factor to result
is energy gains. For higher utilization, a small decrease in relative deadline makes the system infeasible
underDTAand we set) = 1. However, the slowdown computed B continues to increase and the
gains seem to decrease at utilization of 80% and 90%. At lower utilization (at maximum speed), the
density continues to increases with a decrease in deadline and hence there is a steady increase in gains.
The gains seem to lower as utilization decreases due to the relation between power and slowdown. An
improvement in the slowdown factor, results in more gains when the slowdown is higher. For this
reason, the gains seem to decrease as the utilization falls below 60%. Thus in alBdAge=forms
better with a decrease in deadline. We see as much as 35% energy gains over the DTA with the average
energy savings being 20%.

12

Identical Power Characteristics

(%) Energy gains

(%) Utilization

Figure 2. Percentage Energy savings of the Bisection Method (BM) over the Devi Test Algorithm (DTA) as the utilization

under maximum speed is varied.

5.2 Varying Power Characteristics

Due to the diverse nature of the tasks in a system, tasks can have distinct power characteristics [1].
The problem formulation in Section 4 works for all convex differential power characteristics. However,
for experimental results we restrict power characteristics tbnigar [1], where tasks have a constant
power coefficient. We say a task has power coeffickeiot represent a task with a power consumption
k times the base case. This is equivalent to tasks having a switching capadignida,Equation 1k
times the base case. The workload for each task is set to its worst case execution time. We consider the
following two distributions for the power coefficients:

e Bimodal Distribution : where there are two types of tasks in the system, with 50% having a power
coefficient of 1 and the others having a power coefficient

e Uniform Distribution , where the power function coefficients of the tasks are uniformly dis-
tributed between 1 arkl We varyk in the rangd1, 4].

We compare the energy consumption of &l andDT O for task sets with a utilization between
60%-80% and execution time set to their WCET. Figure 3 shows the percentage gathaser DT O.
Since both methods compute slowdown factors considering the task power characteristics, the energy
gains do not vary with the power coefficidnaind its distribution. The energy savings depends on the

13

Bimodal Distribution Uniform Distribution

(%) Energy gains (%) Energy gains

25 25

3
Power Coefficient

3
Power Coefficient

35 35

Figure 3. Percentage Energy gains of the Ellipsoid Metlkollj over the Devi Test Optimization metho@{ O) for varying

task power characteristics.

amount of slack that the slowdown method can identify. As the deadline is decr&is@ddentifies

less slack and th&M performs better. Th&M uses a near optimal feasibility test and utilizes the
maximum available slack. Similar gains are seen for the case of uniform and bimodal distribution of
power coefficients.

5.3 Dynamic Slowdown

Dynamic reclamation techniques results in further energy savings by reclaiming the run-time slack
that arises due to variations in the task execution time. We use the Generic Dynamic Reclaiming Algo-
rithm (GDRA) [1] by Aydin et. al. The authors have shown that a run-time slack of a higher priority task
can be utilized by lower priority jobs, while ensuring all task deadlines. The details are present in [1].

We vary the best case execution time (bcet) of a task from 100% to 10% of its WCET (wcet). Tasks
were generated by a Gaussian distribution with mpan(wcet+ bcet) /2 and a standard deviation =
(wcet— bcet) /6. We performed experiments on tasks with varying utilization and power characteristics
and observed the same trend. As before, we comphtevith DTA for the case of identical power
characteristics. For the case of varying task power characteristics, we cdaiaveéh DOA In all the
techniques, we use tli@RAtechnique over the static slowdown factors to compute dynamic slowdown.
The gains are shown in Figure 4. As expected, the energy gains increase with the decrease in deadline.
It is seen that the average gains steadily increase as the execution time decreases. Thus, identifying the
maximum slack through the computation of static slowdown factors helps in dynamic reclamation as
well.

5.4 Computation Time

The computation times for the various techniques are of different orders of magnitude. In our ex-
amples, the hyper-period was usually too large and computing the optimal intensity was not possible.
BM computed the solution in orders of milliseconds. It took 1 to 10 seconds to compute the solution
using EM. Each iteration of the ellipsoid method requires matrix computations to compute the new
ellipsoid and its center, which is computation intensive. However, note that the matrix computations
in EM require time polynomial in the number of tasks, making our technique scalableDTAeuns

14

Dynamic Slowdown with identical task power coefficients Dynamic Slowdown with varying task power characteristics (k=2.5)

Figure 4. Percentage Energy gains with Dynamic Slack Reclamation scheme. The top graph compares thi8 lyhoveof
DT Awith the dynamic reclamation scheme. The gain&dfl over DT O along with dynamic reclamation are shown in

the bottom graph.

in linear time and the computation is negligible. The computation tim®0O is also small, since it

has only linear number of constraints. We conducted the experiments on a Sun workstation. Since the
computations are performed off-line, we justify a computation time of few milliseconds to seconds for
energy gains.

6 Conclusions and Future Work

We have presented algorithms to compute static slowdown factor under EDF scheduling, when the
task deadlines are smaller than the task periods. We see that identifying slack by means of static slow-
down factors results in energy savings through static and dynamic slowdown. We proposed the bisection
method to compute constant static slowdown factors and an algorithm based on ellipsoid method to com-
pute uniform slowdown factors. Experimental results show on an average 20% energy gains over the
known slowdown techniques. The average gains extend to 40% with dynamic slowdown. The algorithms
have a pseudo polynomial time complexity and are practically fast. The techniques are energy efficient
and can be easily implemented in an RTOS. This will have a great impact on the energy utilization of
portable and battery operated devices.

In our future work, we plan to extend these techniques to compute optimal discrete task slowdown
factors.

Acknowledgments

The authors would like to specially thank George Lueker for explaining the ellipsoid method and it
applicability to the problem. We acknowledge support from National Science Foundation (Award CCR-
0098335) and from Semiconductor Research Corporation (Contract 2001-HJ-899). We would also like
to thank the reviewers and the members of CECS for their comments on the paper.

15

References

[1] H. Aydin, R. Melhem, D. Moss, and P. M. Alvarez. Determining optimal processor speeds for
periodic real-time tasks with different power characteristic?rvceedings of EuroMicro Confer-
ence on Real-Time Systerdan. 2001.

[2] H. Aydin, R. Melhem, D. Moss; and P. M. Alvarez. Dynamic and aggressive scheduling tech-
niques for power-aware real-time systemsPtaceedings of IEEE Real-Time Systems Sympgesium
Dec. 2001.

[3] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms and complexity concerning the preemp-
tive scheduling of periodic, real-time tasks on one processdEHE Transactions on Computers
1991.

[4] G. C. ButtazzoHard Real-Time Computing Systeniduwer Academic Publishers, 1995.

[5] J. A. Butts and G. S. Sohi. A static power model for architectdnth Symposium on Microarchi-
tecture 2000.

[6] U. Devi. An improved schedulability test for uniprocessor periodic task systenBrobeedings
of EuroMicro Conference on Real-Time Systedous. 2003.

[7] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algorithms and combinatorial optimization.
In Combinatorica pages 169-97, 1981.

[8] M. Grotschel, L. Lovasz, and A. Schrijvgaeometric Algorithms and Combinatorial Optimization
Springer Verlag, 1988.

[9] F. Gruian. Hard real-time scheduling for low-energy using stochastic data and dvs processors.
In Proceedings of International Symposium on Low Power Electronics and Dgmges 46-51,
Aug. 2001.

[10] F. Gruian and K. Kuchcinski. LEneS: task scheduling for low-energy systems using variable supply
voltage processors. llaroceedings of the Asia South Pacific Design Automation Conferdane
2001.

[11] Intel StrongARM Processor. Intel In€http://www.arm.com/armtech/StrongARM)
[12] Intel XScale Processor. Intel In(http://developer.intel.com/design/intelxscale)

[13] R. Jejurikar and R. Gupta. Optimized slowdown in real-time task system&E®S Technical
Report #04-10, University of California Irvinépr. 2004.

[14] R. Jejurikar and R. Gupta. Dual mode algorithm for energy aware fixed priority scheduling with
task synchronization. IWorkshop on Compilers and Operating System for Low Pp8&pt. 2003.

[15] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time em-
bedded systems. Rroceedings of the Design Automation Conferedoa. 2004.

16

[16] W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling algorithm for dynamic-priority hard
real-time systems using slack time analysis. Pioceedings of Design Automation and Test in
Europe Mar. 2002.

[17] W. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically variable voltage
processors. IiProceedings of the Design Automation Conferempeges 125-130, 2003.

[18] Y. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for reducing leakage power in hard
real-time systems. IBcuroMicro Conf. on Real Time Systerdan. 2003.

[19] J. W. S. Liu.Real-Time System®rentice-Hall, 2000.

[20] J. Luo and N. Jha. Power-conscious joint scheduling of periodic task graphs and a periodic tasks in
distributed real-time embedded systemsPtaceedings of International Conference on Computer
Aided Designpages 357—-364, Nov. 2000.

[21] P. Mejia-Alvarez, E. Levner, and D. Mosse. Adaptive scheduling server for power-aware real-time
tasks.ACM Transactions on Embedded Computing Syste@3, Nov. 2003.

[22] C. H. Papadimitriou and K. SteiglitzCombinatorial Optimization Algorithms and Complexity
Printice Hall, 1982.

[23] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating
systems. IrProceedings of 18th Symposium on Operating Systems Princifles.

[24] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time systems on variable
voltage processors. IRroceedings of the Design Automation Conferemzges 828—-833, Jun.
2001.

[25] G. Quan and X. Hu. Minimum energy fixed-priority scheduling for variable voltage processors. In
Proceedings of Design Automation and Test in Euydyar. 2002.

[26] J. M. Rabaey, A. Chandrakasan, and B. NikoDigital Integrated Circuits Printice Hall, 2003.

[27] C. Rusu, R. Melhem, and D. Mosse. Maximizing rewards for real-time applications with energy
constraints. IPACM Transactions on Embedded Computer Systantepted.

[28] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system value while satisfying time and energy
constraints. IrProceedings of IEEE Real-Time Systems Sympo$&hen 2002.

[29] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time systems. In
Proceedings of the Design Automation Conferedca. 1999.

[30] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded systems on variable
speed processors. Rroceedings of International Conference on Computer Aided Depages
365-368, Nov. 2000.

[31] Transmeta Crusoe Processor. Transmeta(tp://www.transmeta.com/technology)

17

[32] N. Weste and K. EshraghiaRrinciples of CMOS VLSI Desigiddison Wesley, 1993.

[33] F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU end?gycéedings
of IEEE Symposium on Foundations of Computer Scigrages 374—-382, 1995.

[34] H. Yun and J. Kim. On energy-optimal voltage scheduling for fixed-priority hard real-time systems.
Trans. on Embedded Computing $¥$3):393—-430, 2003.

[35] F. Zhang and S. T. Chanson. Processor voltage scheduling for real-time tasks with non-preemptible
sections. IrProceedings of IEEE Real-Time Systems Sympo$haa 2002.

[36] Y.Zhang, X.S. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy minimization.
In Proceedings of the Design Automation Confere2€92.

[37] Q. Zheng and K. G. Shin. On the ability of establishing real-time channels in point-to-point packet-
switched networkslEEE Transactions on Communicatior2(2/3/4):1096—-1105, Feb/Mar/Apr.
1994.

18

A Appendix
A.1 Optimal Constant Slowdown

Theorem 6 For a synchronous task systew; ¢ = 0, the maximum intensity over all intervid, t],
0 <t <H, whereH is the hyper-period of the task set, is the optimal constant slowdown factor.

Proof 1 For a synchronous task system, the intensity of any intétvaj] is less than or equal to the

intensity of the interval of the same length beginning at time zero [3] :

g([ts,t2]) < g([0,t2—ta])

Thus it suffices to check the intensity of intervals beginning at time zero* betthe maximum intensity
over all intervals|0,t], 0 < t < H. We now show that the intensity of all intervilsH +t] is bounded
by d'.

Since all tasks have a phage= 0, all tasks have a task instance (job) with deadline H. No tasks
exists which arrives before the hyper-period H with a deadline after H. Hence, the jobs that contribute
to the intensity of the intervdD, H + t] can be partitioned into jobs that arrive (and complete) before
H and those that arrive after time H. Thus the intensity of intef0aH +t] is the weighted sum of the

intensity contributions of the two intervals as shown below:

G110 H+t]) = 7 (H-g([0.H)) +t-g([H.H+1])

For synchronous task sets, the task arrivals at thasd and at time H are identical and i1, H +t]) =
9([0,t]). Thus

1
A H-od0.H]) +t-g([0.t)}

Since ¢ is the maximum intensity over all interval up to the hyper-period,

g([0,H+1]) =

1

0. H+1]) <

{H-g"+t-g"}
— g*
Since the intensity of all interval®, H +t] is bounded by the maximum intensity over all intervals

is g*. The intensity of an interval is a lower bound on the constant slowdown during the interval and

this proves that g§is the optimal constant slowdown.

19

A.2 Convex Minimization Problem

We prove that the in the minimization problem given by Equations 6, and 8 is a convex minimization
problem. We use the following result of convex functions :

e If Bis a constant witf8 > 1 or 3 < 0 then a function ovex, x® is convex [22].
e The sum of two convex functions is convex [22].
e Given a convex functiorf(x) and a positive constanfc- f(x) is a convex [22].
We want to minimize the total system eneifgv). It is a function of the task voltagé and is given
by :
n
E(v) = ZlNi V2.G
i:
wherev is a vector inR" representing the voltage values of thiasks in the system.
By the above result§/? is convex. The functiol; - V2 - Ci, is convex sincé\; andC; are constants.
The energy functioiE(v) is the sum oh convex functions and hence convex. This proves the convexity

of functionE(v)
We now prove that each constra@itis convex. Each constrai@f is represented as :

' 3 (15 1) d(v) <t

If the functiond;(V;) is convex, then the constrai@t is the sum of convex functions and hence convex.
We now prove thati(V;) is convex.

1_\/th o

(V) =G MGy,

SinceG;, Vi anda are constants, we need to prove convexityvie%. SinceV; > V;h, we can shift
the origin toV;, to have,

Vi +Vin
di(Vi) = T
:\/il—d —I_\/th'\/i_a

Sincea > 1, (1—a) and(—a) are negative ant!~® andV;~® are convex. Thusi(Vi), a sum of
convex functions is convex. This proves that all the constraints are convex in nature. The intersection of
convex constraints results in a convex body. This proves that the feasible space is a convex body and the
function to minimize is convex to have a convex minimization problem.

20

