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Microfluidics, in combination with time-lapse microscopy, is a transformative technology that significantly

enhances our ability to monitor and probe biological processes in living cells. However, high-throughput

microfluidic devices mostly require sophisticated preparatory and setup work and are thus hard to adopt

by non-experts. In this work, we designed an easy-to-use microfluidic chip, which enables tracking of 48

GFP-tagged yeast strains, with each strain under two different stimulus conditions, in a single experiment.

We used this technology to investigate the dynamic pattern of protein expression during the yeast mating

differentiation response. High doses of pheromone induce cell cycle arrest and the shmoo morphology,

whereas low doses of pheromone lead to elongation and chemotrophic growth. By systematically

analyzing the protein dynamics of 156 pheromone-regulated genes, we identified groups of genes that

are preferentially induced in response to low-dose pheromone (elongation during growth) or high-dose

pheromone (shmoo formation and cell cycle arrest). The protein dynamics of these genes may provide

insights into the mechanisms underlying the differentiation switch induced by different doses of

pheromone.

Insight, innovation, integration
An easily operated high-throughput microfluidic chip was designed to realize the confinements of 48 different GFP-tagged yeast strains under two different
conditions. Using this chip, we systematically studied the protein expression patterns of the mating pathway under high-dose (shmoo state) and low-dose
(elongation state) alpha-factor treated conditions. By cluster analysis and comparing the dynamic response of the 156 mating related protein expression level
between shmoo states and elongation states, proteins which have similar and obviously different performance in the two different states were discussed, which
may contribute to the understanding of mating pathway networks.

1. Introduction

Cells respond to extracellular signals through intercellular signaling
pathways. To help the cell adapt to the new environments, the
reactions of the proteins involved in the signaling pathway often
have dynamic features. Systematic studies of dynamic protein
expression patterns after external stimulation may confine the
possible signaling pathway networks and reveal the underlying
mechanisms of the signaling networks.

The budding yeast mating pathway is a typical mitogen-
activated protein kinase (MAPK) system that plays an important
role in many other cellular processes.1 The studies of the yeast
mating pathway have revealed important information about
eukaryotic signaling networks.2–5 In addition, yeast would
exhibit different phenotypes depending on the extracellular
pheromone concentration.6,7 This phenomenon makes the
yeast mating pathway a prototypical cell fate decision process.

The pheromone-induced behaviour in yeast cells involves
important biological processes, such as cell mating, cell polariza-
tion and cell fusion. The mating pathway in yeast cells has been
studied for decades, and the primary process before transcription
is almost completely understood (Fig. 1). An extracellular
pheromone can be recognized by a receptor in the cell membrane,
and then the signal is transmitted through the MAPK cascade
involving the proteins STE5, STE11, STE7, FUS3 and KSS1. Even-
tually, the transcription factor STE12 would be activated, and bind
to the pheromone response element (PRE), and then regulate the
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transcription of downstream proteins. In this process, the
transcription factor STE12 plays a central role in the yeast
mating pathway.3

When exposed to different pheromone concentrations, yeasts
would show different morphological changes. Two normal pheno-
types are shmoo growth and elongation growth, which can be
clearly distinguished phenomenologically. When yeast cells are
exposed to a high dose of pheromone, the cells undergo cell arrest
and form a pear-like shape termed ‘shmoo’.6,8 In contrast, under
low-dose conditions, cells undergo temporary cell arrest, elongate
from one position and form elongated cylindrical shapes termed
‘elongation’.8 We speculated that cells employ different proteins or
trigger different protein expression patterns, leading to the two
different phenotypes, although these proteins are mainly regulated
by the same transcription factor, STE12. These different protein
expression patterns should be important for revealing the
mechanisms underlying the mating pathway.

Several technologies have been used to study the yeast mating
pathway at the mRNA or protein expression level, such as the DNA
microarray method,9 mass spectroscopy technology,10 western
blot and genetic manipulation.11 However, these methods are
limited by low time resolution and the lack of measurements in
living-cells, and the DNA microarray method cannot reveal the
protein expression level because of the fact that the mRNA level
has little correlation with protein expression.12,13 The mass
spectroscopy and western blot methods cannot measure the
expression of large numbers of proteins conveniently. The
microfluidic chip method has the advantage of high time
resolution and the allowance of high-throughput experiments
in one chip.14,15 Recently, one microfluidic chip has been
used to measure the yeast response to changing alpha-factor

environments for different genetic perturbations.16 However,
the fabrication and operation of this chip are very complex.
Moreover, only a few gene-knockout strains can be loaded and
used to study gene functions at the same time. Here, we provided
a novel microfluidic device to overcome these disadvantages and
perform a high-throughput protein dynamic expression study.
Our method can record the dynamic of the protein expression of
48 different GFP-tagged yeast strains under two conditions at the
same time. Using batch image processing software, we obtained
and compared the relative dynamic expression patterns of 156
mating pathway proteins for the shmoo and elongation pheno-
types and finally identified certain proteins that exhibited the
greatest difference in dynamic expression patterns between the
two phenotypes.

2. Materials and methods
Strains and cell culture

The a-type budding yeast cells we used were from a collection of
S. cerevisiae-tagged open reading frames (ORFs) generated by
Dr. Erin O’Shea and Dr. Jonathan Weissman at UCSF.17 The strains
in the collection are GFP-tagged which means that green fluores-
cence intensity can reflect the target protein concentration. Thus,
this is an excellent tool for analyzing the response of one specific
protein to external stimuli. According to previous papers, we chose
156 potentially important proteins that had an obvious fold change
in DNA microarray experiments or are downstream proteins of the
gene STE12 as determined by mass spectrometry (MS) technology,
or are important transcription factors (Fig. 1(b)).9,18 The names of
labelled proteins are listed in the ESI.† The corresponding strains
we used contain the Schizosaccharomyces pombe His5+ gene, so
we used SD medium (His�) to culture yeast cells for approxi-
mately 8 hours before experiments. When the yeast cells are in
the exponential phase, we can load the cells into our micro-
fluidic chip and begin the experiment.

Microfluidic chip design and operation

We designed and fabricated a high-throughput microfluidic
chip for our experiment (Fig. 2(b)). One microfluidic chip
contains 96 parallel channels, and we can load strains into
different channels. The loaded strains can be fixed well in the
observation chamber in each channel (approximately 4 mm
high, 200 mm wide; yellow area in Fig. 2(c)) because the size
of the yeast is similar to the height of the observation chamber.
The strains in the upper 48 channels are in the same culture
environment, and the strains in the lower 48 channels are in
the other culture environment. At the end of the observation
chamber, there are necks (approximately 8 mm wide, 2 mm high;
green parts in Fig. 2(c)). The loaded cells cannot pass the necks,
but the cell culture medium can travel through the necks
towards the observation chambers.

After the microfluidic chip was degassed in a vacuum for
15 min, the yeast cells were directly loaded from loading holes
into the observation chamber using a 10 ml pipette. The culture
medium can be injected from four inlets to all the channels

Fig. 1 (a) Mating signaling in a-type budding yeast. The STE2 receptor in
the membrane binds the alpha-factor, causing the release of the Gbg
heterodimer from the G-protein heterotrimer. Then, the Gb protein binds
to STE20 and the STE5 scaffold protein. The STE5 protein activates the
downstream kinases STE11, STE7 and FUS3 or KSS1, which promote the
release of DIG1 or DIG2 from STE12. STE12 binds to the pheromone
response element (PRE) and activates downstream proteins, including
transcription factors and functional proteins. (b) The process of selecting
156 genes for testing. Altogether, there are 6604 ORFs in budding yeast,
and we have 4159 strains in our library, in which every strain represents
one type of GFP-fused protein. We chose 72 STE12 downstream genes
from the Saccharomyces Genome Database and a previous paper.18 We
chose 52 mating-specific genes from a mRNA expression database9 and
the Saccharomyces Genome Database. We also chose 41 important
transcription factors (TFs) from the Saccharomyces Genome Database.
However, 9 genes overlapped between these three sources.
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through pumps with a constant flow rate of 400 ml h�1. After all
the strains were loaded into the observation chambers, yeast
cells were cultured in SD medium in the microfluidic chip for
approximately 60 minutes before the medium containing the
alpha-factor was injected into the chambers (more details of
the device design, fabrication and operation can be found in
the ESI† and Fig. S1).

System setup and automated image acquisition

We set up an automated image acquisition system using a
Nikon Ti-E microscope, a computer system and syringe pumps
(Fig. 2(a)). The system can automatically acquire phase differ-
ence and fluorescence images in 96 selected positions through
NIS-Elements advanced research software. We obtained a series
of images for all 96 positions, and the time interval between
two images was 5 minutes. The entire process of image acquisi-
tion would take 10 hours. The temperature was maintained at
30 1C throughout the entire experiment using a temperature
control system.

Image processing and data processing

Using our microfluidic chip and image acquisition system, we
could obtain sequential phase difference pictures and fluorescence
pictures containing more or fewer yeast cells (Fig. 3(a)). In the
phase difference pictures, the intracellular region appears black,
while the cell margin was bright white and the extracellular region
was also black. This feature helps to distinguish the cellular region
in the phase difference picture. We used the Dynamic Directional
Gradient Vector Flow (DDGVF) algorithm,19 which has been widely
used in cell segmentation for precise identification of cell margin;
then we could obtain mask pictures that cover the yeast cells
(Fig. 3(d)). Using mask pictures, phase difference pictures and
fluorescence pictures (Fig. 3(b)), we could also track yeast cells and

read out the cellular GFP concentration using a Matlab program
provided by the lab Hao Nan Lab at UCSD; thus, the average GFP
concentration data could be obtained eventually (Fig. 3(c)).
Although we could obtain single-cell protein expression data, we
did not focus our attention on this information; instead, we studied
the average protein expression of approximately 20–50 cells.

3. Results and discussion
3.1 Experimental results

We tested the expression profiles of 156 mating pathway related
proteins under high-dose and low-dose alpha-factor conditions,
which induce shmoo formation and elongation formation,
respectively. The concentration of the alpha-factor pheromone
was 10 mg ml�1 or 1 mg ml�1, respectively, under the high-dose
or low-dose conditions. Our test and previous papers indicate
that the high-dose concentration of 10 mg ml�1 is a saturating
concentration for yeast shmoo formation, and the low-dose
condition is suitable for elongation state formation.20 Fig. 4(a)
and (b) show the expression patterns of the 156 proteins. Our
results demonstrate that for most of the proteins, the expres-
sion is up-regulated in both the shmoo and elongation states.
For the shmoo state, 117 proteins have a fold greater than 1.5,
and 61 proteins have a fold change greater than 2. For the
elongation state, 116 proteins have a fold change greater than
1.5 and 53 proteins have a fold change greater than 2. The
expression was down-regulated or unchanged for only a few of
the tested proteins. However, for some proteins, the expression
profile clearly differs between the shmoo and elongation states.
We can depict this difference quantitatively in the response time,
response amplitude and dynamic patterns. We also compared our
results with previous data from the DNA microarray method.9

Fig. 2 Schematic of our system containing (a) a computer system with specific software, a Nikon Ti-E microscope, syringe pumps and (b) a microfluidic
chip. (c) Schematic diagram of the observation chambers and necks. The green parts are 2 mm-high necks. The yellow area is a 4 mm-high chamber.
The red part is a 20 mm-high channel.
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Because mRNA expression data have poor time resolution and a
short observation time (120 minutes) and because only data on
high-dose alpha-factor treatment are available, we compared
the fold change of protein expression with that of mRNA
expression during the 120 minute period after high-dose
alpha-factor treatment. In our experiment, 61 proteins have a
fold change greater than 1.5. In the DNA microarray experi-
ment, only 14 of these 61 genes had a fold change greater than
1.5, and only 20 had a fold change greater than 1. We conclude
that the mRNA expression is not very consistent with the
protein expression. Some previous papers have already reported
the weak correlation between protein and mRNA expres-
sion.12,13 Our comparison supported this opinion. At the pro-
tein level, the protein KSS1, which has an important role in the
mating pathway, has a fold change greater than 2 in both the
shmoo and elongation states, a finding that is similar to the
results of previous research.20 Additionally, the protein FAR1,
which is involved in pheromone response and is necessary for
cell cycle arrest, also has a fold change greater than 2 in the
shmoo state, which is also similar to the results of previous
research.21

3.2 Quantitative study of the protein expression level
differences between different conditions

Because most of the proteins were up-regulated, we selected the
maximum value of the fluorescence intensity and the response

amplitude as useful measurements of protein expression. We
constructed one index R to measure the difference in expres-
sion between the high- and low-dose conditions. The formula
for R is

R ¼ log2
m1

m2

� �

In this equation, m1 is the maximum value of the mean
fluorescence intensity for the shmoo state, while m2 is the
maximum value of the mean fluorescence intensity for the
elongation state.

We calculated the R values for every protein we tested and
ranked these proteins based on the R values (Table 1). A greater
R value means a protein has a stronger response in the shmoo
state than the elongation state. In contrast, a smaller R value
means a protein has a stronger response in the elongation state
than the shmoo state. The proteins in the upper region of
Fig. 4(a) and (b) have large R values and higher expression in
the shmoo state (Fig. 4(a)). The proteins in the lower region of
Fig. 4(a) and (b) have small R values and higher expression in
the elongation state (Fig. 4(b)). The proteins in the middle
region of Fig. 4(a) and (b) have R values close to zero but a
shorter time between the treatment and the peak expression in
the shmoo state than the elongation state.

From the distribution graph of the R values (Fig. 4(c)), we
find that most of the R values are close to zero which means

Fig. 3 Schematic diagram of image processing for microscope-captured pictures. (a) The ND2 format file we obtained from the microscope software.
(b) The ND2 format file can be divided to 23 232 (121 � 96 � 2) pictures using NIS-Elements AR software. We created 96 folders in the computer, and
each folder contained four subfolders, C1, C2, m1 and the output. In total, 121 phase difference pictures were placed in folder C1, and 121 fluorescence
pictures were placed in folder C2. Folder m1 was produced to hold the mask pictures from the next step. The output folder was produced to hold the
output data and pictures from the next step. This entire process is automated using one Python script. (c) Using a Matlab program provided by the lab of
Hao Nan at UCSD, we could automatically perform mask production (based on the DDGVF algorithm), cell tracking, the picture output (merging of phase
difference pictures and a colored mask) and the data output. The mask pictures, output pictures and output data were placed in two different folders.
(d) Based on the output data from the last step, we could obtain the time-series area-average fluorescence value of a single cell. Eventually, we could
calculate the time-series average fluorescence values of all the cells in one observation chamber and plot the protein expression curve.
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that the difference between the two states is not significant for
these proteins. There are more proteins that have a positive R
value than a negative R value. On average, the protein expres-
sion in the shmoo state is higher than in the elongation state.
Additionally, the largest R value is approximately 1.7, and the
smallest R value is approximately�1.5. We chose the 15 proteins
with the largest R values and the 15 with the smallest R values

because these proteins have the largest relative difference in the
dynamic expression patterns between the two different states.
Furthermore, these proteins may have different functions in the
mating pathway network when the concentrations in the external
environment are significantly different. Fig. 5 shows the expres-
sion curves of some proteins in the two states. Fig. 5(a) shows the
proteins YIL083C, Ume6 and KSS1, all of which have a large R
value. Fig. 5(b) shows the proteins Hir3, Leu3 and YKl222C, all of
which have a small R value. Fig. 5(c) shows the proteins CDC39,
HAL9 and GAL11, all of which have an R value close to 0. Fig. 5(d)
and (e) show pictures of the proteins KSS1 and YKL222C,
whose R values are 1.21 and �0.74, respectively. Under high-
dose stimulation, yeast cells undergo shmoo formation and the
protein KSS1 would be expressed more rapidly and at higher
levels (Fig. 5(d)). In contrast, for the low-dose stimulation, yeast
cells undergo elongation formation, and the protein YKL222C
would be expressed at higher levels.

Based on the calculated R values, the proteins YIL083C, MFA1,
TEC1, KSS1, UME6, CAC2, ECM18, PPH3, CSE4, ZAP1, YMR204C,
ASN1, CRH1, STE11, YLL013C are the most highly regulated in the
shmoo state compared to the elongation state (Table 1). All of the
fifteen proteins are up-regulated in the shmoo state, and most of
the fifteen proteins are not regulated in the elongation state.
The proteins KSS1, MFA1, CAC2, TEC1, PPH3 and ZAP1 are also
up-regulated in the elongation state, but the increases in the
expression of these proteins are smaller than in the shmoo state.
The protein MFA1 is an essential protein excreted by a-type yeast
cells to act on alpha-type yeast cells, and this protein is involved in
conjugation with cellular fusion.22 The protein MFA1 has a stronger
response in the shmoo state, possibly because yeast cells feel a
stronger signal from other types of cells and produce more MFA1
protein to act on other types of cells. The gene STE11 and KSS1 are
major proteins that participate in the mating pathway.3 The gene
TEC1 can bind to the transcription factor STE12 and form a complex
to exert biological effects.23 The gene PPH3 participates in the
regulation of many biological processes, such as glucose-mediated
signaling pathways, nitrogen compound metabolic processes and
the meiotic recombination checkpoint.24–26

Table 1 Table of selected proteins. (a) The fifteen proteins with the largest
R values. (b) The fifteen proteins with the smallest R values

(a) (b)

Protein name R value Protein name R value

YIL083C 1.76 HIR3 �0.47
MFA1 1.22 DOT6 �0.51
TEC1 1.22 PRP39 �0.55
KSS1 1.21 MIG1 �0.61
UME6 1.10 AGA1 �0.62
CAC2 0.93 STE2 �0.65
ECM18 0.86 RAD51 �0.69
PPH3 0.84 RLM1 �0.70
CSE4 0.83 SSF2 �0.73
ZAP1 0.75 YKL222C �0.74
YMR204C 0.73 MSI1 �0.87
ASN1 0.73 BEM4 �0.87
CRH1 0.69 HCM1 �0.91
STE11 0.67 SPT10 �0.95
YLL013C 0.67 LEU3 �1.52

Fig. 4 Diagrams showing the protein expression and the distribution
graph of the R value. (a) Dynamic protein expression patterns in the shmoo
state containing 400 minutes after the alpha-factor input (sorted by the R
value). (b) Dynamic protein expression patterns in the elongation state
(sorted by the R value). The protein expression of every protein in (a and b)
is normalized using both the largest and smallest fluorescence values for
the two phenotypes. For each protein, the largest fluorescence value of
the two phenotypes is normalized to 1. The smallest fluorescence value of
the two phenotypes is normalized to 0. The other fluorescence values are
normalized based on a linear transformation. (c) Distribution graph of the R
values of 156 proteins.
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However, some other genes, such as LEU3, SPT10, HCM1,
BEM4, MSI1, YKL222C, SSF2, RLM1, RAD51, STE2, AGA1,

MIG1, PRP39, DOT6 and HIR3 have a stronger response in
the elongation state than in the shmoo state (Table 1). RLM1 is

Fig. 5 Expression results of some example proteins. (a) Expression curves of three proteins with large R values for the two phenotypes. The suffix H and
solid lines represent the high-dose condition and the shmoo state. The suffix L and dotted lines represent the low-dose condition and the elongation
state. We add the alpha-factor to the channels at time 0. (b) Expression curves of three proteins with small R values for the two phenotypes. We add the
alpha-factor to channels at time 0. (c) The expression curves of the two phenotypes of three proteins that have an R value close to 0. (d) Phase difference
pictures merged with fluorescence pictures of the protein KSS1 in the shmoo and elongation states. (e) Phase difference pictures merged with
fluorescence pictures of the protein YKL222C in the shmoo and elongation states.
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a transcription factor that is regulated by the cell wall integrity
MAP kinase.27 RLM1 regulates at least 25 downstream genes,
most of which are related to cell wall biogenesis.27,28 Our
experimental data indicate that when cells are exposed to
pheromone, the RLM1 protein is up-regulated under both
high-dose and low-dose conditions. However, the R value of
RLM1 is very low, which means that yeast cells express more
RLM1 protein under low-dose conditions than high-dose con-
ditions. This finding is consistent with the fact that the
cells would experience more cell wall synthesis stress during
elongation growth. Oxidative stress can also activate RLM1
transcription in yeast cells.27 This finding shows that RLM1 is
up-regulated by different stresses and that the RLM1 protein is
an important product of different stress response pathways.
Among the other genes, BEM4 is involved in the control of polarized
growth and bud emergence and is a negative regulator of the mating
pathway.29 The gene DOT6 is related to transcriptional regulation,
cell cycle progression and developmental events.30,31 The genes SSF2
and AGA1 are related to cellular fusion.32,33 However, previous
studies suggest that some other genes may not directly play a role
in the mating process. For example, HIR3 is a repressor of histone
gene transcription,34 MSI1 is a component of chromatin assembly
factor1 (CAF-1),35 LEU3 is a factor that controls a group of leucine-
specific genes,36 SPT10 is required for some transcriptional regula-
tion in yeast,37 and RAD51 is a DNA repair protein.38 We speculate
that these proteins may have unknown functions in pheromone-
induced elongation growth.

3.3 Cluster analysis using the dynamic data of 156 proteins

We used cluster analysis method to analyze our protein expression
data by the Matlab clustergram function (Fig. 6). Fig. 6(a) shows the
protein clusters in the shmoo state. We could recognize that there
are several clusters using our data (Fig. 6). We found a lot of proteins
that have similar biological functions which would be classified into
one cluster. For example, proteins SFP1, BDF2 and RCS1 were all
related to DNA replication stress and these proteins were all
clustered in the adjacent positions in the up region in Fig. 6(a).
We labeled the three largest clusters with yellow (cluster 1), red
(cluster 2), green (cluster 3) colors in Fig. 6(a). Cluster 1 represents
that the protein expression was activated firstly, and then adapted.
Cluster 2 represents that the protein expression was down-regulated
after alpha-factor treatment. Cluster 3 represents that the protein
expression was also activated but maintained in the activated state
for a longer time than cluster 1. We found that some growth-relevant
proteins were classified into cluster 2, such as RIM101, AZF1, MIG1.
These proteins were down-regulated since cells’ growth rate would
decrease after alpha-factor treatment. Most of the proteins directly
related to the mating pathway were classified into clusters 1 or 3.
These proteins were up-regulated but would perform at different
response times and duration times in the activation state. Most of
the proteins associated with cell wall integrity and synthesis were in
cluster 3. Most of the proteins related to stress response were in
clusters 1 or 3. Specifically, the proteins related to osmotic stress and
oxidative stress were in cluster 1.

Fig. 6(b) shows the protein expression in the elongation
state. We found that the time between treatment and the peak

expression was longer in the elongation state than in the
shmoo state in clusters 1 and 3. In cluster 2, most of the
proteins were not down-regulated in the elongation state. This
shows that the proteins showed different dynamic behaviors
between shmoo and elongation states. Using the cluster analy-
sis method, we could find some modules in the mating process
and this would deepen our understanding about the protein
function and the underlining protein regulation network.

4. Conclusion

Using our designed microfluidic chip and constructed observa-
tion system, we successfully measured the expression response
process of potential significant proteins in the yeast mating
pathway and obtained the protein expression patterns for two
phenotypes. Based on our calculated protein R values, we
selected the proteins that have the greatest different in perfor-
mance between different cell states from all the proteins tested.

In our experiment, most of the proteins were up-regulated,
as indicated by the average GFP concentration. However, in
both the shmoo and elongation states, we observed a growth
rate change that might increase the average GFP concentration.
This situation is not a major problem for our discussion
because the average cell growth rate for equivalent-dose condi-
tions was similar in different chambers (Fig. S2, ESI†).
Although the cell growth rate change may increase the protein
expression to a higher value, it does not affect the ranking of
the proteins based on the R value. In conclusion, our system
provides a good method for studying the protein response to an
external pheromone.

Fig. 6 Cluster analysis by the protein dynamic data of the shmoo state.
(a) Protein expression data in the shmoo state. We could recognize
three main clusters using dynamic data. We injected the alpha-factor at
time t = 0. (b) Protein expression data in the elongation state. In (b), we
maintained the protein order as to compare with (a).
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Our designed microfluidic chip is a powerful tool for high-
throughput microfluidic experiments; it allows investigation of the
response of 48 proteins in two different extracellular environments
at the same time on one chip. Our system guarantees that the yeast
cells are in a similar environment which would enhance the
comparability, convenience and repeatability of the experiment.
Combined with a microscope system, our chip can easily detect
protein expression and morphology changes with high time resolu-
tion and longer observation times than traditional methods. How-
ever, our method is not appropriate for very long observation times
because daughter cells remain in the chambers. Although our chip
is helpful for studying many biological processes, it is not suitable
for researching fast protein regulation processes, protein modifica-
tion processes and some space constraint sensitive process, such as
yeast spore formation.

Besides microfluidic chips, it is easy to achieve batch
processing for 96 chambers’ pictures using our image processing
program. In conclusion, this method would greatly shorten our
image processing time and help to obtain large amounts of
experimental data, which would contain much information
about the related biological process, and the method is not
limited to the mating process studied here.
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