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Regular Expressions and Regular Languages

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R
such that L(R) = L

i.e., Regular expressions have the same “expressive power” as finite
automata.

Proof.

» Given regular expression R, can construct NFA N such that
L(N) = L(R)

» Given DFA M, will construct regular expression R such that
L(M) = L(R) OJ
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DFA to Regular Expression

» Given DFA M, will construct regular expression R such that
L(M) = L(R). In two steps:
» Construct a “Generalized NFA" (GNFA) G from the DFA M
» And then convert G to a regex R
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Generalized NFA

» A GNFA is similar to an NFA, but:
» There is a single accept state.
» The start state has no incoming transitions, and the accept
state has no outgoing transitions.
> These are “cosmetic changes”: Any NFA can be converted to
an equivalent NFA of this kind.
» The transitions are labeled not by characters in the alphabet,
but by regular expressions.
> For every pair of states (g1, g2), the transition from q: to g is
labeled by a regular expression p(q1, g2).
» “Generalized NFA" because a normal NFA has transitions
labeled by €, elements in X (a union of elements, if multiple
edges between a pair of states) and () (missing edges).
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» Transition: GNFA non-deterministically reads a block of
characters from the input, chooses an edge from the current
state g; to another state g, and if the block of symbols
matches the regex p(qi, g2), then moves to qo.



Generalized NFA

» Transition: GNFA non-deterministically reads a block of
characters from the input, chooses an edge from the current
state g; to another state g, and if the block of symbols
matches the regex p(qi, g2), then moves to qo.

» Acceptance: G accepts w if there exists some sequence of
valid transitions such that on starting from the start state,
and after finishing the entire input, G is in the accept state.
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Accepting run of G on 11110100 is
1 11
do —G 91 —G q1



Generalized NFA: Example

10*10*

Example GNFA G

Accepting run of G on 11110100 is
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Generalized NFA: Example

10*10*

Example GNFA G

Accepting run of G on 11110100 is
1 11 101 00
o —G¢Qq1 —6q1 ——6q1 76 q2
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Generalized NFA: Definition

Definition
A generalized nondeterministic finite automaton (GNFA) is
G =(Q.X,q0,9r, p), where

> Q@ is the finite set of states

> 3 is the finite alphabet
> go € Q initial state
> gr € Q, a single accepting state

p:(Q\{gr}) x (Q\{q0}) = Rs, where Ry is the set of all
regular expressions over the alphabet ¥

v
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Generalized NFA: Definition

Definition

For a GNFA M = (Q, X, qo, gF, p) and string w € *, we say M
accepts w iff there exist x1,...,x; € ¥* and states rp, ..., ry such
that

> W = X1X2X3 " " * Xt
> rop=qo and rr = gr
» for each i € [1,t], x; € L(p(ri-1,1i)),
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A DFA M = (Q, %, 9, qo, F) can be easily converted to an
equivalent GNFA G = (Q', X, g4, g, p):
> Q= QU {qo. gr} where QN {qo, g} =0

€ if g1 = g and g2 = qo
> p(a1,q2) = q €, if g € Fand g = gf

U{a|6(q1,a):q2}3 otherwise
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Converting DFA to GNFA
A DFA M = (Q, %, 9, qo, F) can be easily converted to an
equivalent GNFA G = (Q', X, g4, g, p):
> Q= QU {qo. gr} where QN {qo, g} =0

€ if g1 = g and g2 = qo
> p(a1,q2) = q €, if g € Fand g = gf

U{a|6(q1,a):q2}3 otherwise

§
SN
‘ §

Prove: L(G) = L(M).
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GNFA to Regex

» Suppose G is a GNFA with only two states, gqo and gr.
» Then L(R) = L(G) where R = p(qo, gF)-
» How about G with three states?

Ry (R4) U(R1R5R3)

RO

O

R>



GNFA to Regex

» Suppose G is a GNFA with only two states, gqo and gr.
» Then L(R) = L(G) where R = p(qo, gF)-
» How about G with three states?

Ry (R4) U(RlR;Rg)

RO

O

R>

» Plan: Reduce any GNFA G with k > 2 states to an equivalent
GFA with k — 1 states.



GNFA to Regex: From k states to kK — 1 states

Definition (Deleting a GNFA State)

Given GNFA G = (Q, %, qo, gF, p) with |Q| > 2, and any state
q" € @\ {qo, g}, define GNFA rip(G, ¢*) = (Q', X, qo, qF, ') as

follows:
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Definition (Deleting a GNFA State)

Given GNFA G = (Q, %, qo, gF, p) with |Q| > 2, and any state
q" € Q\ {qo, gr}, define GNFA rip(G. ¢") = (Q', X, qo, gF, p') as

follows:
» Q' =Q\{q"}.
> Forany (q1,92) € Q" \{qr} x Q"\ {qo} (possibly g1 = q2), let

0’ (q1,92) = (RiR5R3) U Ry,

where Ry = p(q1,9%), R2 = p(q*,9"), Rs = p(q*, q2) and
Ra = p(q1, q2).



GNFA to Regex: From k states to kK — 1 states

Definition (Deleting a GNFA State)

Given GNFA G = (Q, %, qo, gF, p) with |Q| > 2, and any state
q" € Q\ {qo, gr}, define GNFA rip(G. ¢") = (Q', X, qo, gF, p') as

follows:
» Q' =Q\{q¢}.
» For any (g1, 92) € Q' \{gr} x Q"\{qo} (possibly q1 = q2), let

0’ (q1,92) = (RiR5R3) U Ry,

where Ry = p(q1,q9%), R2 = p(q*,9*), R3 = p(q*, g2) and
Ra = p(q1, 92).

Claim. For any g* € Q\ {qo, gr}, G and rip(G, g*) are equivalent.
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we L(G) = we L(G)

Proof.
» we L(G) = w = x1xax3---Xx¢, and a sequence of states
o =ro,n,-..,rt =qr s.t. x; € L(p(ri-1,r)).
» Let (go = %0,---,S4 = gF) be the subsequence of states
obtained by deleting all occurrences of g*.
» For any run of g* — i.e., an interval [a, b] s.t.
ra1Zq =r=...=r, 17 rp—let xjgp] = Xa- " Xp.

» If 5; 1 =ra1 and s; =, then X, ) € L(p'(Sj-1,5)))



GNFA to Regex: From k states to kK — 1 states
we L(G) = we L(G)

Proof.
» w € L(G) = w = x1xpx3---X¢, and a sequence of states
qo =ro,m,...,re = qr s.t. x; € L(p(ri—1,ri)).
» Let (go = %0,---,54 = gF) be the subsequence of states
obtained by deleting all occurrences of g*.
» For any run of g* — i.e., an interval [a, b] s.t.
fa1F Q- =r=...=rp_17# rp,— let X[a,b] = Xa " Xp-

> If 5; 1 =ra1 and s; = 1, then x, 4 € L(p'(sj-1,5}))

> Let Ri = p(sj-1,9%), R2 = p(q*,q*), Rs = p(q*,s;) and
R4 = p(SJ_l,SJ) Then p,(Sj_l, Sj) = R4 U (R1R§R3)
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we L(G) = we L(G)

Proof.
» w € L(G) = w = x1xpx3---X¢, and a sequence of states
qo =ro,m,...,re = qr s.t. x; € L(p(ri—1,ri)).
» Let (go = %0,---,54 = gF) be the subsequence of states
obtained by deleting all occurrences of g*.
» For any run of g* — i.e., an interval [a, b] s.t.
fa1F Q- =r=...=rp_17# rp,— let X[a,b] = Xa " Xp-

> If 5; 1 =ra1 and s; = 1, then x, 4 € L(p'(sj-1,5}))
> Let Ry = p(sj-1,9"), R2 = p(q*,9"), Rs = p(q*,s;) and
R4 = p(SJ_l,SJ) Then p,(Sj_l, Sj) = R4 U (R1R§R3)
» Case a=b. (s55-1,5) = (-1, ) and X(a,5] = xp € L(R4).



GNFA to Regex: From k states to kK — 1 states
we L(G) = we L(G)
Proof.

» w € L(G) = w = x1xpx3---X¢, and a sequence of states
qo=ro,ri,...,re = qr s.t. x; € L(p(ri—1, 1))

» Let (go = %0,---,54 = gF) be the subsequence of states
obtained by deleting all occurrences of g*.

» For any run of g* — i.e., an interval [a, b] s.t.
fa1F Q- =r=...=rp_17# rp,— let X[a,b] = Xa " Xp-

» If 5; 1 = ra1 and s; = rp,, then x, ) € L(p'(Sj-1,5)))
> Let Ry = p(sj-1,9"), R2 = p(q*,9"), Rs = p(q*,s;) and
R4 = p(SJ_l,SJ) Then p,(Sj_l, Sj) = R4 U (R1R§R3)
» Case a=b. (s55-1,5) = (-1, ) and X(a,5] = xp € L(R4).
» Casea=b+1+u x3€L(R), Xat1,---,X—1 € L(R2) and
Xp € L(R3) So Xa, b] S L(R1R5R3)
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we L(G) = we L(G)

Proof.
» we L(G) = w = x1xax3---Xx¢, and a sequence of states
o =ro,n,-..,rt =qr s.t. x; € L(p(ri-1,r)).
» Let (go = %0,---,S4 = gF) be the subsequence of states
obtained by deleting all occurrences of g*.
» For any run of g* — i.e., an interval [a, b] s.t.
ra1Zq =r=...=r, 17 rp—let xjgp] = Xa- " Xp.
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> Let y1,...,yq be the sequence of blocks of the form x(, 4.
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GNFA to Regex: From k states to kK — 1 states
we L(G) = we L(G)

Proof.
» we L(G) = w = x1xax3---Xx¢, and a sequence of states
o =ro,n,-..,rt =qr s.t. x; € L(p(ri-1,r)).
» Let (go = %0,---,S4 = gF) be the subsequence of states
obtained by deleting all occurrences of g*.
» For any run of g* — i.e., an interval [a, b] s.t.
ra1Zq =r=...=r, 17 rp—let xjgp] = Xa- " Xp.

» If 5; 1 =ra1 and s; =, then X, ) € L(p'(Sj-1,5)))
> Let y1,...,yq be the sequence of blocks of the form x(, 4.
» Then w = y;1---yqg and y; € L(p'(sj-1,5)))-

e, weL(G) = welL(G).
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GNFA to Regex: From k states to kK — 1 states
w e L(G') = we L(G)

Proof (contd).

» weL(G') = w =y yq and a sequence of states
qo =S0,---,54 = qrF s.t. yj € L(p'(sj-1,5)))
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w e L(G') = we L(G)

Proof (contd).

» weL(G') = w =y yq and a sequence of states
qo = %0,---,5¢ = qF s:t. ¥j € L(p/(sj-1,5)) =
L((p(sji-1,a")p(a", a")"p(q", ri)) U p(sj-1, ;)
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w e L(G') = we L(G)

Proof (contd).

» weL(G') = w =y yq and a sequence of states
qo =5S0,---,54 = qF s.t. yj € L(p'(sj-1,5))) =
L((p(sj-1. g")p(a", a*) p(q*, ri)) U p(sj-1, 7)) =
L(RiR3R3) U L(R4).



GNFA to Regex: From k states to kK — 1 states
w e L(G') = we L(G)

Proof (contd).

» weL(G') = w =y yq and a sequence of states
qo = S0, ---,54 = qF s.t. yj € L(p(sj-1,5)) =
L((p(sj-1,q%)p(a", a%)"p(q", ri)) U p(sj-1,5)) =
L(RLRER3) U L(Ry).

» To build a sequence of blocks x1,...,x; and a sequence of
states go = ro, ..., = gF to show w € L(G):
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Proof (contd).

» weL(G') = w =y yq and a sequence of states
qo = S0, ---,54 = qF s.t. yj € L(p(sj-1,5)) =
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» To build a sequence of blocks x1,...,x; and a sequence of
states go = ro, ..., = gF to show w € L(G):
» Case y; € L(Rs). Retain the block y; and retain s;_; and s; as
adjacent states.
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w e L(G') = we L(G)

Proof (contd).

» weL(G') = w =y yq and a sequence of states
qo = %0,---,5¢ = qF s:t. ¥j € L(p/(sj-1,5)) =
L((p(sj-1,9")p(q", a*)"p(a", ri)) U p(sj-1, ) =
L(RiR5R3) U L(Rs).
» To build a sequence of blocks x1,...,x; and a sequence of
states go = ro, ..., = gF to show w € L(G):
» Case y; € L(Rs). Retain the block y; and retain s;_; and s; as
adjacent states.
» Case yj € L(RiR5R3). yj =z - - - zy41 Where zp € L(Ry),
z1,...,2, € L(R2) and z,41 = L(R3) (for some finite u). Insert
u+ 1 copies of g* between s;_; and s;. Divide y; into u 4 2
blocks (zo, - .., Zut1)- O



GNFA to Regex: From k states to kK — 1 states
w e L(G') = we L(G)

Proof (contd).

» weL(G') = w =y yq and a sequence of states
qo =5S0,---,54 = qF s.t. yj € L(p'(sj-1,5))) =
L((p(sj-1. g")p(a", a*) p(q*, ri)) U p(sj-1, 7)) =
L(RiR5R3) U L(Rs).
» To build a sequence of blocks x1,...,x; and a sequence of
states go = ro, ..., = gF to show w € L(G):
» Case y; € L(Rs). Retain the block y; and retain s;_; and s; as

adjacent states.
» Case yj € L(RiR5R3). yj =z - - - zy41 Where zp € L(Ry),

z1,...,2, € L(R2) and z,41 = L(R3) (for some finite u). Insert
u+ 1 copies of g* between s;_; and s;. Divide y; into u 4 2
blocks (zo, - .., Zut1)- O

(See notes for a formal argument.)
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» So given G, by applying rip repeatedly (choosing g* arbitrarily
each time), we can get a GNFA G’ with two states s.t.

L(G) = L(G"). Formally, by induction on the number of states
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DFA to Regex: Summary

Lemma

For every DFA M, there is a regular expression R such that
L(M) = L(R).

» Any DFA can be converted into an equivalent GNFA. So let G
be a GNFA s.t. L(M) = L(G).

» For any GNFA G = (Q, X%, qo, gr, p) with |Q| > 2, for any
g* € @\ {qo,qr}, G and rip(G, ¢*) are equivalent. rip(G, g*)
has one fewer state than G.

» So given G, by applying rip repeatedly (choosing g* arbitrarily
each time), we can get a GNFA G’ with two states s.t.
L(G) = L(G"). Formally, by induction on the number of states
in G.

» For a 2-state GNFA G, L(G’) = L(R), where R = p(qo, qF)-
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4@ 0*1(0 U (10*1))* @
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DFA to Regex: Example (2)

o 5 = = £ DA



DFA to Regex: Example (2)

o 5 = = £ DA



DFA to Regex: Example (2)

o 5 = = £ DA
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o

(a(aaUb)" bUD)((bal a)(aan)*abUbb)*((baU a)(aaUb)* Ug)V a(aaUb)
a a
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