CSE 135: Introduction to Theory of Computation Regular Expressions and Regular Languages (DFA to Regular Expressions)

Sungjin Im

University of California, Merced

02-10-2015

Regular Expressions and Regular Languages

Why do they have such similar names?

Regular Expressions and Regular Languages

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that L(R) = L

i.e., Regular expressions have the same "expressive power" as finite automata.

Proof.

- ▶ Given regular expression R, can construct NFA N such that L(N) = L(R)
- ▶ Given DFA M, will construct regular expression R such that L(M) = L(R)

DFA to Regular Expression

▶ Given DFA M, will construct regular expression R such that L(M) = L(R).

DFA to Regular Expression

▶ Given DFA M, will construct regular expression R such that L(M) = L(R). In two steps:

DFA to Regular Expression

- ▶ Given DFA M, will construct regular expression R such that L(M) = L(R). In two steps:
 - Construct a "Generalized NFA" (GNFA) G from the DFA M
 - ▶ And then convert G to a regex R

▶ A GNFA is similar to an NFA, but:

- ► A GNFA is similar to an NFA, but:
 - ▶ There is a single accept state.

- A GNFA is similar to an NFA, but:
 - ▶ There is a single accept state.
 - The start state has no incoming transitions, and the accept state has no outgoing transitions.

- A GNFA is similar to an NFA, but:
 - ► There is a single accept state.
 - ► The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - ► These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.

- A GNFA is similar to an NFA, but:
 - ► There is a single accept state.
 - ► The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.
 - ► The transitions are labeled not by characters in the alphabet, but by regular expressions.

- A GNFA is similar to an NFA, but:
 - ► There is a single accept state.
 - ► The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.
 - The transitions are labeled not by characters in the alphabet, but by regular expressions.
 - For every pair of states (q_1, q_2) , the transition from q_1 to q_2 is labeled by a regular expression $\rho(q_1, q_2)$.

- A GNFA is similar to an NFA, but:
 - ► There is a single accept state.
 - ► The start state has no incoming transitions, and the accept state has no outgoing transitions.
 - These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.
 - The transitions are labeled not by characters in the alphabet, but by regular expressions.
 - For every pair of states (q_1, q_2) , the transition from q_1 to q_2 is labeled by a regular expression $\rho(q_1, q_2)$.
 - "Generalized NFA" because a normal NFA has transitions labeled by ϵ , elements in Σ (a union of elements, if multiple edges between a pair of states) and \emptyset (missing edges).

► Transition: GNFA non-deterministically reads a block of characters from the input, chooses an edge from the current state q_1 to another state q_2 , and if the block of symbols matches the regex $\rho(q_1, q_2)$, then moves to q_2 .

- ▶ Transition: GNFA non-deterministically reads a block of characters from the input, chooses an edge from the current state q_1 to another state q_2 , and if the block of symbols matches the regex $\rho(q_1, q_2)$, then moves to q_2 .
- ▶ Acceptance: *G* accepts *w* if there exists some sequence of valid transitions such that on starting from the start state, and after finishing the entire input, *G* is in the accept state.

Example GNFA G

Accepting run of G on 11110100 is

Example GNFA G

Accepting run of G on 11110100 is $q_0 \xrightarrow{1}_G q_1$

Example GNFA G

Accepting run of G on 11110100 is $q_0 \xrightarrow{1}_G q_1 \xrightarrow{11}_G q_1$

Example GNFA G

Accepting run of G on 11110100 is $q_0 \xrightarrow{1}_G q_1 \xrightarrow{11}_G q_1 \xrightarrow{101}_G q_1$

Example GNFA G

Accepting run of G on 11110100 is $q_0 \xrightarrow{1}_G q_1 \xrightarrow{11}_G q_1 \xrightarrow{101}_G q_1 \xrightarrow{00}_G q_2$

Definition

A generalized nondeterministic finite automaton (GNFA) is

$$G = (Q, \Sigma, q_0, q_F, \rho)$$
, where

- Q is the finite set of states
- $ightharpoonup \Sigma$ is the finite alphabet
- ▶ $q_0 \in Q$ initial state

Definition

A generalized nondeterministic finite automaton (GNFA) is

$$G = (Q, \Sigma, q_0, q_F, \rho)$$
, where

- Q is the finite set of states
- $ightharpoonup \Sigma$ is the finite alphabet
- ▶ $q_0 \in Q$ initial state
- ▶ $q_F \in Q$, a single accepting state

Definition

A generalized nondeterministic finite automaton (GNFA) is

$$G = (Q, \Sigma, q_0, q_F, \rho)$$
, where

- Q is the finite set of states
- Σ is the finite alphabet
- ▶ $q_0 \in Q$ initial state
- ▶ $q_F \in Q$, a single accepting state
- ▶ $\rho: (Q \setminus \{q_F\}) \times (Q \setminus \{q_0\}) \to \mathcal{R}_{\Sigma}$, where \mathcal{R}_{Σ} is the set of all regular expressions over the alphabet Σ

Definition

For a GNFA $M=(Q,\Sigma,q_0,q_F,\rho)$ and string $w\in\Sigma^*$, we say M accepts w iff there exist $x_1,\ldots,x_t\in\Sigma^*$ and states r_0,\ldots,r_t such that

Definition

For a GNFA $M=(Q,\Sigma,q_0,q_F,\rho)$ and string $w\in\Sigma^*$, we say M accepts w iff there exist $x_1,\ldots,x_t\in\Sigma^*$ and states r_0,\ldots,r_t such that

 $\mathbf{w} = x_1 x_2 x_3 \cdots x_t$

Definition

For a GNFA $M=(Q,\Sigma,q_0,q_F,\rho)$ and string $w\in\Sigma^*$, we say M accepts w iff there exist $x_1,\ldots,x_t\in\Sigma^*$ and states r_0,\ldots,r_t such that

- $\mathbf{w} = x_1 x_2 x_3 \cdots x_t$
- $ightharpoonup r_0 = q_0$ and $r_t = q_F$

Definition

For a GNFA $M=(Q,\Sigma,q_0,q_F,\rho)$ and string $w\in\Sigma^*$, we say M accepts w iff there exist $x_1,\ldots,x_t\in\Sigma^*$ and states r_0,\ldots,r_t such that

- $\mathbf{w} = x_1 x_2 x_3 \cdots x_t$
- $ightharpoonup r_0 = q_0$ and $r_t = q_F$
- ▶ for each $i \in [1, t]$, $x_i \in L(\rho(r_{i-1}, r_i))$,

A DFA $M=(Q,\Sigma,\delta,q_0,F)$ can be easily converted to an equivalent GNFA $G=(Q',\Sigma,q'_0,q'_F,\rho)$:

A DFA $M=(Q,\Sigma,\delta,q_0,F)$ can be easily converted to an equivalent GNFA $G=(Q',\Sigma,q'_0,q'_F,\rho)$:

 $lacksquare Q'=Q\cup\{q_0',q_F'\}$ where $Q\cap\{q_0',q_F'\}=\emptyset$

A DFA $M=(Q,\Sigma,\delta,q_0,F)$ can be easily converted to an equivalent GNFA $G=(Q',\Sigma,q'_0,q'_F,\rho)$:

$$\begin{array}{l} \blacktriangleright \ \ Q' = Q \cup \{q_0', q_F'\} \ \text{where} \ \ Q \cap \{q_0', q_F'\} = \emptyset \\ \\ \blacktriangleright \ \ \rho(q_1, q_2) = \begin{cases} \epsilon, & \text{if} \ \ q_1 = q_0' \ \text{and} \ \ q_2 = q_0 \\ \epsilon, & \text{if} \ \ q_1 \in F \ \text{and} \ \ q_2 = q_F' \\ \bigcup_{\{a \mid \delta(q_1, a) = q_2\}} a & \text{otherwise} \end{cases}$$

A DFA $M=(Q,\Sigma,\delta,q_0,F)$ can be easily converted to an equivalent GNFA $G=(Q',\Sigma,q'_0,q'_F,\rho)$:

$$P(q_1,q_2) = \begin{cases} \epsilon, & \text{if } q_1 = q_0' \text{ and } q_2 = q_0 \\ \epsilon, & \text{if } q_1 = q_0' \text{ and } q_2 = q_0 \\ \epsilon, & \text{if } q_1 \in F \text{ and } q_2 = q_F' \\ \bigcup_{\{a \mid \delta(q_1,a)=q_2\}} a & \text{otherwise} \end{cases}$$

Prove: L(G) = L(M).

▶ Suppose G is a GNFA with only two states, q_0 and q_F .

- ▶ Suppose G is a GNFA with only two states, q_0 and q_F .
- ▶ Then L(R) = L(G) where $R = \rho(q_0, q_F)$.

- ▶ Suppose G is a GNFA with only two states, q_0 and q_F .
- ▶ Then L(R) = L(G) where $R = \rho(q_0, q_F)$.
- ▶ How about *G* with three states?

- ▶ Suppose G is a GNFA with only two states, q_0 and q_F .
- ▶ Then L(R) = L(G) where $R = \rho(q_0, q_F)$.
- ▶ How about *G* with three states?

GNFA to Regex

- ▶ Suppose G is a GNFA with only two states, q_0 and q_F .
- ▶ Then L(R) = L(G) where $R = \rho(q_0, q_F)$.
- ▶ How about *G* with three states?

GNFA to Regex

- ▶ Suppose G is a GNFA with only two states, q_0 and q_F .
- ▶ Then L(R) = L(G) where $R = \rho(q_0, q_F)$.
- ▶ How about *G* with three states?

▶ Plan: Reduce any GNFA G with k > 2 states to an equivalent GFA with k - 1 states.

Definition (Deleting a GNFA State)

Given GNFA $G=(Q,\Sigma,q_0,q_F,\rho)$ with |Q|>2, and any state $q^*\in Q\setminus\{q_0,q_F\}$, define GNFA $\operatorname{rip}(G,q^*)=(Q',\Sigma,q_0,q_F,\rho')$ as follows:

Definition (Deleting a GNFA State)

Given GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, and any state $q^* \in Q \setminus \{q_0, q_F\}$, define GNFA $\operatorname{rip}(G, q^*) = (Q', \Sigma, q_0, q_F, \rho')$ as follows:

 $\qquad \qquad P'=Q\setminus\{q^*\}.$

Definition (Deleting a GNFA State)

Given GNFA $G=(Q,\Sigma,q_0,q_F,\rho)$ with |Q|>2, and any state $q^*\in Q\setminus\{q_0,q_F\}$, define GNFA $\operatorname{rip}(G,q^*)=(Q',\Sigma,q_0,q_F,\rho')$ as follows:

- $Q' = Q \setminus \{q^*\}.$
- ▶ For any $(q_1,q_2) \in Q' \setminus \{q_F\} \times Q' \setminus \{q_0\}$ (possibly $q_1 = q_2$), let

$$\rho'(q_1,q_2)=(R_1R_2^*R_3)\cup R_4,$$

where $R_1 = \rho(q_1, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, q_2)$ and $R_4 = \rho(q_1, q_2)$.

Definition (Deleting a GNFA State)

Given GNFA $G=(Q,\Sigma,q_0,q_F,\rho)$ with |Q|>2, and any state $q^*\in Q\setminus\{q_0,q_F\}$, define GNFA $\operatorname{rip}(G,q^*)=(Q',\Sigma,q_0,q_F,\rho')$ as follows:

- $Q' = Q \setminus \{q^*\}.$
- ▶ For any $(q_1,q_2) \in Q' \setminus \{q_F\} \times Q' \setminus \{q_0\}$ (possibly $q_1 = q_2$), let

$$\rho'(q_1,q_2)=(R_1R_2^*R_3)\cup R_4,$$

where $R_1 = \rho(q_1, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, q_2)$ and $R_4 = \rho(q_1, q_2)$.

Claim. For any $q^* \in Q \setminus \{q_0, q_F\}$, G and $rip(G, q^*)$ are equivalent.

Proof.

▶ $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.

- ▶ $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, \dots, s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .

- ▶ $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, ..., s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ let $x_{[a,b]} = x_a \cdots x_b$.

- ▶ $w \in L(G) \implies w = x_1x_2x_3\cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, ..., s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ let $x_{[a,b]} = x_a \cdots x_b$.
- ▶ If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1},s_j))$

- ▶ $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, ..., s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ let $x_{[a,b]} = x_a \cdots x_b$.
- ▶ If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1}, s_j))$ ▶ Let $R_1 = \rho(s_{j-1}, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, s_j)$ and $R_4 = \rho(s_{j-1}, s_j)$. Then $\rho'(s_{j-1}, s_j) = R_4 \cup (R_1 R_2^* R_3)$.

- ▶ $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, ..., s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ let $x_{[a,b]} = x_a \cdots x_b$.
- ▶ If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1}, s_j))$
 - Let $R_1 = \rho(s_{j-1}, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, s_j)$ and $R_4 = \rho(s_{j-1}, s_j)$. Then $\rho'(s_{j-1}, s_j) = R_4 \cup (R_1 R_2^* R_3)$.
 - ► Case a = b. $(s_{j-1}, s_j) = (r_{b-1}, r_b)$ and $x_{[a,b]} = x_b \in L(R_4)$.

- ▶ $w \in L(G) \implies w = x_1x_2x_3\cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, ..., s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ let $x_{[a,b]} = x_a \cdots x_b$.
- ▶ If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1}, s_j))$
 - Let $R_1 = \rho(s_{j-1}, q^*)$, $R_2 = \rho(q^*, q^*)$, $R_3 = \rho(q^*, s_j)$ and $R_4 = \rho(s_{j-1}, s_j)$. Then $\rho'(s_{j-1}, s_j) = R_4 \cup (R_1 R_2^* R_3)$.
 - ▶ Case a = b. $(s_{j-1}, s_j) = (r_{b-1}, r_b)$ and $x_{[a,b]} = x_b \in L(R_4)$.
 - ► Case a = b + 1 + u. $x_a \in L(R_1)$, $x_{a+1}, \dots, x_{b-1} \in L(R_2)$ and $x_b \in L(R_3)$. So $x_{[a,b]} \in L(R_1R_2^uR_3)$.

- ▶ $w \in L(G) \implies w = x_1x_2x_3\cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, ..., s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \dots = r_{b-1} \neq r_b$ let $x_{[a,b]} = x_a \cdots x_b$.
- ▶ If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1},s_j))$
- ▶ Let $y_1, ..., y_d$ be the sequence of blocks of the form $x_{[a,b]}$.

- ▶ $w \in L(G) \implies w = x_1x_2x_3 \cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, ..., s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ let $x_{[a,b]} = x_a \cdots x_b$.
- ▶ If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1},s_j))$
- ▶ Let $y_1, ..., y_d$ be the sequence of blocks of the form $x_{[a,b]}$.
- ▶ Then $w = y_1 \cdots y_d$ and $y_j \in L(\rho'(s_{j-1}, s_j))$.

- ▶ $w \in L(G) \implies w = x_1x_2x_3\cdots x_t$, and a sequence of states $q_0 = r_0, r_1, \dots, r_t = q_F$ s.t. $x_i \in L(\rho(r_{i-1}, r_i))$.
- Let $(q_0 = s_0, ..., s_d = q_F)$ be the subsequence of states obtained by deleting all occurrences of q^* .
- For any run of q^* i.e., an interval [a, b] s.t. $r_{a-1} \neq q^* = r_a = \ldots = r_{b-1} \neq r_b$ let $x_{[a,b]} = x_a \cdots x_b$.
- ▶ If $s_{j-1} = r_{a-1}$ and $s_j = r_b$, then $x_{[a,b]} \in L(\rho'(s_{j-1},s_j))$
- ▶ Let $y_1, ..., y_d$ be the sequence of blocks of the form $x_{[a,b]}$.
- ▶ Then $w = y_1 \cdots y_d$ and $y_j \in L(\rho'(s_{j-1}, s_j))$.

i.e.,
$$w \in L(G) \implies w \in L(G')$$
.

Proof (contd).

▶ $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \dots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j))$

Proof (contd).

▶ $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \dots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) = L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j))$

Proof (contd).

▶ $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \dots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) = L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = L(R_1R_2^*R_3) \cup L(R_4).$

- ▶ $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) = L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = L(R_1R_2^*R_3) \cup L(R_4).$
- ▶ To build a sequence of blocks $x_1, ..., x_t$ and a sequence of states $q_0 = r_0, ..., r_t = q_F$ to show $w \in L(G)$:

- ▶ $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) = L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = L(R_1R_2^*R_3) \cup L(R_4).$
- ▶ To build a sequence of blocks $x_1, ..., x_t$ and a sequence of states $q_0 = r_0, ..., r_t = q_F$ to show $w \in L(G)$:
 - ▶ Case $y_j \in L(R_4)$. Retain the block y_j and retain s_{j-1} and s_j as adjacent states.

- ▶ $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \ldots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) = L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = L(R_1R_2^*R_3) \cup L(R_4).$
- ▶ To build a sequence of blocks $x_1, ..., x_t$ and a sequence of states $q_0 = r_0, ..., r_t = q_F$ to show $w \in L(G)$:
 - ▶ Case $y_j \in L(R_4)$. Retain the block y_j and retain s_{j-1} and s_j as adjacent states.
 - ▶ Case $y_j \in L(R_1R_2^*R_3)$. $y_j = z_0 \cdots z_{u+1}$ where $z_0 \in L(R_1)$, $z_1, \ldots, z_u \in L(R_2)$ and $z_{u+1} = L(R_3)$ (for some finite u). Insert u+1 copies of q^* between s_{j-1} and s_j . Divide y_j into u+2 blocks (z_0, \ldots, z_{u+1}) .

Proof (contd).

- ▶ $w \in L(G') \implies w = y_1 \cdots y_d$ and a sequence of states $q_0 = s_0, \dots, s_d = q_F$ s.t. $y_j \in L(\rho'(s_{j-1}, s_j)) = L((\rho(s_{j-1}, q^*)\rho(q^*, q^*)^*\rho(q^*, r_i)) \cup \rho(s_{j-1}, s_j)) = L(R_1R_2^*R_3) \cup L(R_4).$
- ▶ To build a sequence of blocks $x_1, ..., x_t$ and a sequence of states $q_0 = r_0, ..., r_t = q_F$ to show $w \in L(G)$:
 - ▶ Case $y_j \in L(R_4)$. Retain the block y_j and retain s_{j-1} and s_j as adjacent states.
 - ▶ Case $y_j \in L(R_1R_2^*R_3)$. $y_j = z_0 \cdots z_{u+1}$ where $z_0 \in L(R_1)$, $z_1, \ldots, z_u \in L(R_2)$ and $z_{u+1} = L(R_3)$ (for some finite u). Insert u+1 copies of q^* between s_{j-1} and s_j . Divide y_j into u+2 blocks (z_0, \ldots, z_{u+1}) .

(See notes for a formal argument.)

Lemma

Lemma

For every DFA M, there is a regular expression R such that L(M) = L(R).

▶ Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).

Lemma

- ▶ Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- ▶ For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and $\mathsf{rip}(G, q^*)$ are equivalent.

Lemma

- ▶ Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- ▶ For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and $\mathsf{rip}(G, q^*)$ are equivalent. $\mathsf{rip}(G, q^*)$ has one fewer state than G.

Lemma

- ▶ Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- ▶ For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and $rip(G, q^*)$ are equivalent. $rip(G, q^*)$ has one fewer state than G.
- ▶ So given G, by applying rip repeatedly (choosing q^* arbitrarily each time), we can get a GNFA G' with two states s.t. L(G) = L(G').

Lemma

- ▶ Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- ▶ For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and $rip(G, q^*)$ are equivalent. $rip(G, q^*)$ has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q^* arbitrarily each time), we can get a GNFA G' with two states s.t. L(G) = L(G'). Formally, by induction on the number of states in G.

Lemma

- ▶ Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).
- ▶ For any GNFA $G = (Q, \Sigma, q_0, q_F, \rho)$ with |Q| > 2, for any $q^* \in Q \setminus \{q_0, q_F\}$, G and $rip(G, q^*)$ are equivalent. $rip(G, q^*)$ has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q^* arbitrarily each time), we can get a GNFA G' with two states s.t. L(G) = L(G'). Formally, by induction on the number of states in G.
- ▶ For a 2-state GNFA G', L(G') = L(R), where $R = \rho(q_0, q_F)$.

