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An efficient algorithm is developed to construct disconnectivity graphs by a random walk over basins of

attraction. This algorithm can detect a large number of local minima, find energy barriers between them,

and estimate local thermal averages over each basin of attraction. It is applied to the Sherrington-

Kirkpatrick (SK) spin glass Hamiltonian where existing methods have difficulties even for a moderate

number of spins. Finite-size results are used to make predictions in the thermodynamic limit that match

theoretical approximations and recent findings on the free energy landscapes of SK spin glasses.
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Disconnectivity graphs (DGs) [1,2], widely used for
representing energy landscapes, summarize local minima
and energy barriers of an energy function into a tree. The
DG of a continuous energy surface can be constructed by
computational approaches that search for local minima and
saddles based on the gradient and the Hessian matrix [3].
However, such approaches cannot be applied to Ising
Hamiltonians defined on discrete spins. For example, the
Hamiltonian of the Sherrington-Kirkpatrick (SK) spin
glass [4] with a zero external magnetic field, which is the
focus of this Letter, is

HðsÞ ¼ �X

i<j

Jijsisj; (1)

where s ¼ ðs1; . . . ; sNÞ, si 2 f�1g, is a vector of N spins
and Jij is the interaction between si and sj. Many studies

have been conducted, such as in [5–9], to characterize the
free energy landscape of the SK spin glass by investigating
solution structures of the Thouless-Anderson-Palmer free
energy equations [10]. See [11] for a review and more
references. These studies rely heavily on specific assu-
mptions for the distribution of the disorder J ¼ fJijg.
On the other hand, computational approaches have been
developed to construct DGs for spin glass Hamiltonians
[12–18]. From DGs one may extract microscopic informa-
tion to characterize free energy landscapes. In principle,
these approaches can be applied given any possible
distribution of the disorder, but, unfortunately, they are
feasible only for small-scale systems with less than or
around 30 spins, due to the computationally expensive
nature of DG construction.

The purpose of this Letter is to develop an efficient
algorithm that is able to construct DGs containing hun-
dreds of local minima for spin systems with N on the order
of 100 and possibly larger. The algorithm is motivated by
the broad success of the Wang-Landau (WL) algorithm
[19,20] which produces a random walk in energy space. To
build a DG, we aim to generate a random walk over the
basins of attraction of local minima. Suppose that the
Hamiltonian HðsÞ has K local minima, v1; . . . ; vK.

The basin of attraction of vk, denoted by Dk, is the set of
configurations which will be sent to vk by steepest descent
that recursively flips the single spin giving the maximum
decrease in HðsÞ. If a random walk can be produced over
all basins of attraction,D1; . . . ; DK, not only do we have all
the local minima but we also may estimate local thermal
averages over every Dk. Such estimation on basins of
attraction is a key to the utility of the inherent structure
approach [21,22] and the superposition approach [23].
Furthermore, frequent transitions between basins must
occur during the walk. We say two configurations x and
y are neighbors, denoted by x $ y, if they differ by only
one spin. As each local move is a single-spin flip, cross-
basin moves can be used to find the barrier between two
basins defined as Bk‘ ¼ minp2P k‘

maxs2p HðsÞ, whereP k‘

is the collection of all paths between vk and v‘ (k � ‘) in
the configuration space. For a spin system,

Bk‘ ¼ minfHðxÞ _HðyÞ: x 2 Dk; y 2 D‘; x $ yg; (2)

where HðxÞ _HðyÞ � max½HðxÞ; HðyÞ�. Thus, keeping
track of cross-basin moves, we may obtain a rough esti-
mate of Bk‘ which can be refined by a ridge descent
algorithm to be introduced later. With local minima and
barriers detected constructing the DG of HðsÞ is trivial.
Since the number of minima increases exponentially

with N for SK spin glasses, we follow the practical con-
vention to construct DGs with K lowest local minima for a
big K. For the sake of understanding, we first describe the
algorithm in the context that K local minima of HðsÞ have
already been detected. These local minima are used to
partition the space into K basins, D1; . . . ; DK, and their
complement D0. As energy of SK spin glasses is continu-
ous, a ladder of energies, u0 < u1 < � � �< uL ¼ 1, where
u0 is a lower bound of HðsÞ, is employed to partition
the energy space into L intervals. Then, our goal is to
generate a random walk over all (nonempty) subregi-
ons, Dkj ¼ fs 2 Dk:HðsÞ 2 ½uj�1; ujÞg, k ¼ 0; . . . ; K and

j ¼ 1; . . . ; L, where two indices, the basin index k and the
energy index j, are used for space partition. The desired
random walk can be implemented by a generalized WL
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(GWL) algorithm [24,25], where energy on a subregion
Dkj is not a constant. Let �kj denote the (unnormalized)

statistical weight of Dkj in the Boltzmann distribution, i.e.,

�kj /
P

Dkj
e��HðsÞ, where � is the inverse temperature.

A flat histogram over all Dkj can be produced if the proba-

bility of visiting s 2 Dkj is proportional to e��HðsÞ=�kj.
Since �kj is unknown we set �

ð1Þ
kj ¼ 1 at the first iteration of

the walk. At iteration t, let �ðtÞkj be the estimate of �kj and xt
and y be the configurations before and after a randomly
chosen spin is flipped. A steepest descent operation is
applied on y to find its basin index, in which the energy
change of a single-spin flip can be computed efficiently by
utilizing the additive structure in (1). If y is not in the basin
of any of the K minima, then y 2 D0. In general, if
xt 2 Dkj and y 2 D‘i, the Metropolis ratio from xt to y is

rðxt ! yÞ ¼ minf1; e�½HðxtÞ�HðyÞ��ðtÞkj=�
ðtÞ
‘i g: (3)

Each time a subregionDkj is visited, the weight �
ðtÞ
kj will be

updated to �ðtþ1Þ
kj ¼ �ðtÞkjf with a modification factor f > 1.

Following the WL algorithm, f is reduced to
ffiffiffi
f

p
when the

flatness of the histogram becomes acceptable (maximal
fluctuation <25%) since the last reduction of f. If the
energy ladder is dense enough such that the energy in
½uj�1; ujÞ is approximately a constant, then the local den-

sity of states �kj / �kje
�uj�1 , where �kj is the number of

configurations in the basin Dk with energy uj�1. In this

scenario, local thermal averages over a basin of any tem-
perature can be obtained via estimated �kj, similar to the

calculations in [18–20].
Suppose the random walk has been simulated for n

iterations. Let (xt, xt0) be a pair of configurations simulated
at two consecutive iterations, i.e., jt� t0j ¼ 1. For any two
basins Dk and D‘ we keep track of the configuration pair

ða; bÞk‘ ¼ arg min
ðxt;xt0 Þ

fHðxtÞ _Hðxt0 Þ: xt 2 Dk; xt0 2 D‘g;

for 1 � t, t0 � n. At the last iteration, ða; bÞk‘ is the pair
that minimizes (2) among all cross-basin neighbors gen-
erated by moves between the two basins, which provides a
rough estimate of Bk‘. A ridge descent algorithm is devel-
oped to refine the estimate. Let ða0; b0Þ ¼ ða; bÞk‘ such that
a0 2 Dk and b0 2 D‘. For t ¼ 1; 2; . . . , find iteratively

at ¼ argmin
a
fHðaÞ: a 2 Ngbðbt�1Þ \Dkg;

bt ¼ argmin
b
fHðbÞ: b 2 NgbðatÞ \D‘g;

(4)

until bt�1 ¼ bt, whereNgbðsÞ is the set of all the neighbors
of s. This iterative algorithmmoves (a0, b0) downhill along
the ridge separating the two basins. For every pair of k and
‘, the barrier Bk‘ will be estimated byHðatÞ _HðbtÞ at the
final iteration of the ridge descent.

Next we discuss how to identify K local minima in the
burn-in period of the random walk. A collection of local

minima, V, is dynamically accumulated using the same
GWL update (3) in the burn-in period, but with a constant
modification factor f � e. Initially, V is empty. In every
iteration, a local minimum is located by steepest descent
starting from the proposed configuration y. Then, V is
updated to include the lowest K minima identified so far
or all of them if there are less than K minima identified.

With lnf � 1, ln�ðtÞkj simply records the number of visits to

Dkj. This makes it easy to update these weights when the

local minima in V are updated. As pointed out in many
previous studies, the WL update with a big f enables the
walk to reach all subregions very quickly, which is the key
to detecting sufficient low-energy minima.
The proposed algorithm may be tested on the SK spin

glass model (1), where the Jij are independent Gaussian

random variables with mean 0 and variance 1=N.
Hereafter, only rescaled energy (energy per spin) will be
used. We constructed DGs for small-scale systems with
N ¼ 25 for which exact results can be obtained via
enumeration as well as larger N where enumeration is
impossible. For each N the algorithm was applied to 100
independent samples of J ¼ fJijg with � ¼ 1=Tc ¼ 1.

A rough energy range of interest of this model is
[� 0:8, �0:3]. Accordingly, the energy space was parti-
tioned into L ¼ 10 intervals with uj ¼ �0:8þ j�u for

j ¼ 0; . . . ; 9, where �u ¼ 0:1 for N � 60 and �u ¼ 0:05
for N � 70.
For N ¼ 25, our algorithm was applied to each sample

with a total of 1� 107 Monte Carlo (MC) sweeps. We
choseK ¼ 500which turned out to be greater than the total
number of minima for all the samples, ranging from 56 to
310. Compared to results from enumeration, the con-
structed DGs were highly accurate. Our algorithm did
not miss a single minimum for any sample. Recall that
due to the use of steepest descent our algorithm will not
produce any false minima. The average absolute energy
difference between estimated and exact barriers was
1:4� 10�7, which was extremely small relative to the
energy range of the model. This demonstrates that the
algorithm indeed accurately recovered most energy bar-
riers. In fact, our algorithm recovered exactly all the bar-
riers for 99 out of the 100 samples. Finding barriers is a
difficult job especially for discrete Hamiltonians. The re-
sult here highlights the advantage of simulating a random
walk over basins of attraction in building DGs. The aver-
age acceptance rate for the MC moves was 	30%. Thus,
by exploring only 9% of all configurations our algorithm
was able to construct DGs almost identical to those by
enumeration.
We applied our algorithm to N ¼ 40; 50; . . . ; 100, aim-

ing at constructing DGs for the lowest K ¼ 500 minima.
Each run consisted of 5� 108 MC sweeps. The acceptance
rate for MC sweeps was>15% for each N, averaging over
the samples. At the final iteration, lnf decreased below
10�6 for most of the samples with N � 60 and was on the
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order of 10�5 to 10�3 for N � 70 (Table I). These results
suggest that our algorithm well explored identified basins
and made frequent transitions between them, which is
sufficient for constructing DGs although estimation of
the weights �kj may not be very accurate for large N.

Figure 1 shows the DG constructed for a sample with
N ¼ 100. One sees two almost identical subtrees, each
containing a ground state and a few groups of local min-
ima, joining at the highest detected barrier. The identical
structure between the two subtrees, due to the fact that
Hð�sÞ ¼ HðsÞ (1), gives a validation of the DG. However,
the algorithm did not recover the energy landscape for
those missing high-energy minima. This limitation is in-
evitable due to the exponential increase in the complexity
of SK spin glasses. To quantify the statistical error of a
constructed DG, we applied independently our algorithm
to this sample 10 times. Remarkably, all the identified local
minima and at least 95% of the estimated barriers were
exactly identical between any two runs. Furthermore, we
systematically compared the two subtrees of a DG to
measure the accuracy of our algorithm. For all N, the
two subtrees of every sample contained identical sets of
local minima, up to reversal of all the spins, and substan-
tially overlapping sets of barriers (Table I), which demon-
strates the reliability of the constructed DGs.

Define the barrier height h of a minimum as the energy
difference between the minimum and its nearest barrier (its
parent on the tree). We grouped minima according to their
energy u relative to the global minimum u
 and studied the
relation between hhi and N for each group, where hXi
denotes the average of X over samples of the disorder.
We analyzed five groups of minima with ðu� u
Þ 2
½0:01ðz� 1Þ; 0:01zÞ for z ¼ 1; . . . ; 5. In each of these en-
ergy intervals, our algorithm detected more than 1000
minima over the 100 samples for N ¼ 100. A power law,
hhi ¼ cN�, was fitted with extremely high R2ð>0:98Þ for
each group, where R is the correlation coefficient between
lnhhi and lnN. The high consistency across different N
serves as a confirmation for the accuracy of this result.
Figure 2(a) shows the fitted power laws for three groups
(z ¼ 1, 3, 5), from which we see the three lines are almost
parallel to each other and that hhi clearly decreases with the
increase of the energy of a minimum. The estimated � for
z ¼ 1; . . . ; 5 were �1:70� 0:06, �1:63� 0:07, �1:54�
0:09,�1:47� 0:08 and�1:53� 0:09, respectively. These
powers were not significantly different especially between
neighboring groups. This result implies that the barrier
height of a minimum vanishes as N ! 1 and the rate of
decay is comparable among minima with different energy.
Thus, all minima become marginally stable as N ! 1,
which is consistent with the recent finding that each mini-
mum and its nearby saddle on the free energy surface of the
SK spin glass coalesce in the thermodynamic limit [7,8].
A constructed DG may also provide qualitative under-

standing about pure states. When the temperature T is low,
it is reasonable to approximate a pure state � by a local

minimum and determine its statistical weight by w� /
e�Nu�=T , where u� is the energy of the local minimum.
Then, one may find the probability distribution, PðqÞ ¼P

�;�w�w��ðq�� � qÞ, for the overlap q�� between two

−
0.

76
−

0.
72

−
0.

68

E
ne

rg
y

FIG. 1. A constructed DG for the SK spin glass with N ¼ 100. A terminal node (leaf) on the tree represents a local minimum and an
internal node (branch point) represents an energy barrier, with energy levels given by the vertical axis. The statistical error between
independent runs is very small (see text for more discussion).

TABLE I. Convergence and accuracy for N � 40. Note:
� logðlnfÞ is the negative logarithm (base 10) of the median,
over 100 samples, of lnf at the end of simulation; � is the
percentage of barriers that are identical between the two subtrees
of a DG, averaging over 100 samples.

N 40 50 60 70 80 90 100

� logðlnfÞ >6 >6 >6 5.4 4.8 4.2 3.9

� (%) 100 99.7 99.1 99.3 97.6 91.2 85.0
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pure states, � and �, and its average, hPðqÞi, over samples
of the disorder. From the constructed DGs we approxi-
mated hPðqÞi for T ¼ 0:4. Since the distribution is sym-
metric around q ¼ 0, we plot hPðjqjÞi in Fig. 2(b). Our
approximation is compared against direct Monte Carlo
simulation for N ¼ 128 and Parisi’s prediction as
N ! 1 under the same temperature [26]. With the
increase of N, the overlap distribution from our
approximation becomes closer to the expected shape and
the location of the peak for N ¼ 100 is in good agreement
with Parisi’s prediction. This shows the utility of DGs in
characterizing the key features (e.g., the order parameter)
of spin glasses for low temperature. However, when the
temperature is high, say close to Tc, the statistical weight of
the missing high-energy minima will be larger and
this approximation is likely to underestimate PðjqjÞ for
small jqj.

Computational approaches that combine local optimiza-
tion and Monte Carlo sampling, such as this work, have
been developed for global optimization with applications
to protein and peptide models [27–29]. These existing
methods were not designed to construct DGs for Ising
spin models and are different in nature from this work. In
addition, the basin-sampling approach [30] employs the
WL algorithm to construct the total energy density of
states, which shares some common features with the
present work. Although we have focused on the SK spin
glass with Gaussian interactions, it should be noted that our
algorithm is applicable to other possible choices of the
disorder J and many other spin systems. For a continuous
system, our method can be employed to find local minima
with a suitable local optimization algorithm and provide
rough energy barriers which may be refined with alterna-
tive geometry optimization methods [3].
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FIG. 2. Results for N � 40. (a) Average barrier height hhi and
its fitted power laws for three groups of minima with energy
ranges given by the intervals in the legend. Log scale is used for
both axes. (b) hPðjqjÞi for T ¼ 0:4. Solid lines with symbols are
results for N ¼ 40, 70 and 100 from this study. Dashed and
dotted lines are, respectively, the result for N ¼ 128 obtained by
Monte Carlo simulation and the result of Parisi’s prediction as
N ! 1, both from [26].
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