
PLANAR GRAPHS AND WAGNER’S AND KURATOWSKI’S

THEOREMS

SQUID TAMAR-MATTIS

Abstract. This is an expository paper in which we rigorously prove Wagner’s

Theorem and Kuratowski’s Theorem, both of which establish necessary and
sufficient conditions for a graph to be planar.
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1. Introduction and Basic Definitions

The planarity of a graph—its ability to be embedded in a plane—is a deceptively
meaningful property which, through various theorems, can tell us many other things
about a graph. Among other properties, planar graphs were famously found to be
4-colorable. Of course, to use such theorems to determine whether a graph has
these properties, we must first determine whether that graph is planar. Wagner’s
and Kuratowki’s theorems show that there are simple and easily testable charac-
terizations of planarity, but proving that they work is much less simple. Before we
can do that, we must establish some definitions.

Definition 1.1. An undirected graph is an ordered pair G = (V,E), where V
is a set of vertices, and E is a set of edges, where each edge is a set of two vertices.
We will mostly refer to these simply as graphs, as this paper does not deal with
directed graphs.

Definition 1.2. A graph H is a subgraph of G if H = (W,F ) for some W ⊆ V
and F ⊆ E.

Definition 1.3. Two vertices u, v ∈ V are adjacent in G if {u, v} ∈ E. This is
often written as u ∼ v.

Definition 1.4. A vertex v is incident to an edge e if v ∈ e.

Definition 1.5. The degree of v, deg(v), is the number of edges that v is incident
to.
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Figure 1. Three planar embeddings of the same graph. The first
two embeddings are isomorphic, with the outer face of the first
graph corresponding to the inner face of the second and vice versa.
The third embedding is not isomorphic to either of the first two,
even though the graph is the same.

Definition 1.6. A graph G is a subdivision of H if we can obtain H by taking G,
removing vertices with degree 2, and drawing new edges between the two vertices
that were adjacent to each vertex removed this way. The vertices that remain
are called the principal vertices of G, and the ones that were removed are the
subdivision vertices.

Definition 1.7. Let G = (V,E) be a graph, let u, v ∈ V , and let e = {u, v} ∈ E.
The edge contraction of e is the graph G/e, in which u and v are combined into
a single vertex, which is adjacent to every vertex that was adjacent to u or v in G.

Definition 1.8. A graph minor of G is a graph that is formed by deleting vertices,
deleting edges, and/or contracting edges of G.

Definition 1.9. A graph is planar if it can be drawn on a plane, with each vertex
represented as a distinct point and each edge represented as a simple curve of finite
length with its endpoints at its two incident vertices, in such a way that no two
edges intersect, except where their endpoints touch at a shared incident vertex.

Definition 1.10. A face of a planar embedding is a connected component of the
complement of the graph. An outer face is a face with infinite area. Any other
face is an inner face. A planar embedding of a finite planar graph can only have
one outer face. Having more would require either an infinite edge or an infinite
number of edges to form the boundary between them.

Definition 1.11. The degree of a face is the number of vertices incident to edges
that bound that face.

Definition 1.12. A subgraph H completely bounds a face if H contains exactly
the edges that are adjacent to the face and their incident vertices.

Definition 1.13. Two planar embeddings of a graph are isomorphic if there
exists a bijection between them such that each face of one embedding is incident
to the same vertices as the corresponding face of the other embedding.

Definition 1.14. A complete graph on n vertices, written as Kn, is a graph
containing n vertices, and an edge that connects every pair of vertices.

Definition 1.15. A complete bipartite graph, written as Km,n, is graph of
the form G = (V1 ∪ V2, E), where V1 and V2 are disjoint sets of m and n vertices
respectively, and E = {{v1, v2} | v1 ∈ V1, v2 ∈ V2}.
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Figure 2. K5 (left) and K3,3 (right).

Definition 1.16. A path of length n is a graph Pn on n + 1 vertices such that
Pn = (V,E) where V = {v1, . . . , vn+1} and E = {{vi, vi+1} | i ∈ [n]}. We call this
a path from v1 to vn+1.

Definition 1.17. A graph G is connected if for any two vertices u, v in G, there
exists a path from u to v that is a subgraph of G.

Definition 1.18. G is k-connected if either G = Kk+1 or G is connected and the
smallest set of vertices that can be removed from G (removing associated edges as
well) to leave a disconnected graph has cardinality k.

2. Kuratowski’s Theorem

In 1930, Kazimierz Kuratowski proved a theorem that provides a way to tell
whether a graph is planar simply by checking whether it contains a particular type
of subgraph.

Definition 2.1. A Kuratowski subgraph is a subgraph that is a subdivision of
K5 or K3,3.

Lemma 2.2. If G is planar, every subgraph of G is planar.

Proof. Let H be a subgraph of G. Take a plane drawing of G and remove all edges
and vertices not in H. This process can’t create edge crossovers, so we now have a
plane drawing of H. �

Lemma 2.3. If H is a subdivision of G and H is planar, then G is planar.

Proof. Let H be a subdivision of G. Take a plane drawing of H and remove all
vertices that are not in G. These vertices must have degree 2, so we attach the two
edges that were adjacent to each one at the site of the vertex removal, where they
have a shared endpoint, to form a plane drawing of G. �

Note that we can draw an edge between two vertices if and only if they share an
incident face. If we draw the edge between u and v through a face that is bounded
by a cycle with vertices, ordered clockwise, u . . . v . . . u (not all faces are bounded
by cycles, but the ones we deal with now will be), the face is divided into two faces,
bounded by cycles u . . . vu and v . . . uv.

Lemma 2.4. In a planar embedding of a graph that is at least 2-connected, every
face is completely bounded by a cycle.
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Figure 3. Left: Case 1, Right: Case 2

Proof. Let G be a graph that is at least 2-connected, and let F be a face in a planar
embedding of G. Suppose for contradiction that F is not completely bounded by a
cycle. There are 2 ways this can happen:

(1) F has multiple boundaries not connected by edges along F . Let A be the
set of vertices in one boundary of F , and let B be the set of vertices in
the other boundary. (See Figure 3. The individual vertices are not shown
because only the general structure is important). Then there is no path
between A and B, as such a path would have to go through F . Thus A and
B are part of separate components, so G is disconnected. Contradiction.

(2) F is completely bounded by a closed walk that passes through some vertex
v more than once. Then the set of vertices that the walk passes through
between the first and second times it passes through v form a “bubble,”
which cannot connect to the rest of the graph without dividing F . Thus v
is a cut vertex, which separates G into components A and B (see Figure
3), so G is at most 1-connected. Contradiction.

Thus F must be completely bounded by a cycle. �

Lemma 2.5. K5 is not planar.

Proof. Let a, b, c, d, and e be the vertices of K5. K5 contains the cycle abcdea.
Any embedding of this cycle must be isomorphic to a pentagon. We can then add
2 edges through the inner face, which splits it into three faces bounded by 3-cycles,
to which we can’t add any more edges because all their incident vertices are already
adjacent. We can similarly add at most 2 edges through the outer face. This gives
us a total of 9 edges, but we need 10 for K5. Thus we cannot embed K5 in a
plane. �

Lemma 2.6. K3,3 is not planar.
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Figure 4. An attempt at a planar embedding of K5. Note that
there is no way to draw an edge between c and e without intersect-
ing another edge.
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Figure 5. An attempt at a planar embedding of K3,3.

Proof. Let a-f be the vertices of K3,3 such that each vertex in {a, b, c} is adjacent
to each vertex in {d, e, f}. The graph contains the cycle adbecfa, which must have
an embedding isomorphic to a hexagon. This leaves us with three more edges to
draw, ae, bf , and cd. We can draw one of these through the center of the hexagon,
but that divides the face so that neither of the other edges can be drawn there (see
Figure 5). We can draw another through the outer face, but that face becomes
divided in the same way. Thus we cannot draw all 9 edges, and we therefore cannot
embed K3,3 in a plane. �

Thus containing a Kuratowski subgraph is a sufficient condition for a graph to
be nonplanar, but we still need to prove it is a necessary one.
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Figure 6. Plane drawings of H and H ′, under the assumption
that G is only 1-connected. The number of edges connecting the
components to v is not specified or important.

Lemma 2.7. Let e be an edge of a planar graph G. There exists a plane drawing
of G such that e bounds the outer face.

Proof. Take any plane drawing of G and project it onto a sphere. Then rotate the
sphere and project back onto the plane, starting from a point directly opposite a
point in a face bounded by e. That face then becomes the outer face.

Note that for any vertex v that is incident to e, in every plane drawing where e
bounds the outer face, v will be incident to the outer face. �

Now we will assume for contradiction that there exists at least one nonplanar
graph that doesn’t contain a Kuratowski subgraph. Let G be such a graph on
the smallest possible number of vertices. Then removing a vertex from G leaves a
planar graph.

Lemma 2.8. G is at least 3-connected and has at least 5 vertices.

Proof. We don’t need to worry about K1, K2, K3, and K4 for this proof because
they’re all planar, so we don’t have to deal with those special cases for k-connected
graphs.

Suppose G is disconnected. Then G is made up of at least 2 separate components,
which are all smaller than G, and therefore planar. Then we can make plane
drawings of the components next to each other and we have a plane drawing of G,
but that means G is planar, so this is a contradiction.

Suppose G is only 1-connected. Then there exists a cut-vertex v that, when
removed, separates G into at least 2 components, labeled G1, . . . , Gk. Let H be
the subgraph of G consisting of G1 and v, and let H ′ be the subgraph containing
G2, . . . , Gk and v. Both H and H ′ are smaller than G, and therefore planar, so we
can draw planar embeddings of both with v incident to the outer face. Then we
can arrange them so they share a single v, and thus we have a plane drawing of G
(this may require squeezing the edges somewhat so the components don’t overlap,
but this is always possible). Contradiction.

Suppose G is only 2-connected. Then there there exist subgraphs G1, . . . , Gk

that are separated by the removal of two vertices, v and u. Every such subgraph
must contain at least one point adjacent to u and one point adjacent to v, or else
removing the vertex not adjacent to one of the subgraphs would disconnect G.
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Figure 7. The resulting planar embedding of a 1-connected G.

Let H be the subgraph consisting of u, v, and G1 and let H ′ be the subgraph
consisting of u, v, and all the separable components except G1. Since H and H ′

are both smaller than G, they are planar. Now we need to consider two cases:

(1) u ∼ v.
Then we can make planar embeddings of H and H ′ with the edge {u, v}

bounding the outer face. These can be arranged together so they share the
edge without other parts of the graphs overlapping, which creates a planar
embedding of G.

(2) u 6∼ v.
Suppose for contradiction that adding the edge {u, v} creates a Kura-

towski subgraph in H. Then we can consider a subgraph of G that consists
of the rest of this Kuratowski subgraph and a path from u to v through
some Gi for i 6= 1. By removing the vertices between u and v on this path
and attaching their incident edges, it becomes apparent that this graph is
just a subdivision of the Kuratowski subgraph we created, and so it is itself
a Kuratowski subgraph. But G doesn’t contain a Kuratowski subgraph, so
this is a contradiction. We can similarly show that adding this edge does
not create a Kuratowski subgraph in H ′.

Thus H and H ′ with the edge {u, v} added are smaller than G and do
not contain Kuratowski subgraphs, which means they are planar. We can
attach them as in case 1, and then remove the edge {u, v} to create a planar
embedding of G.

Therefore G is planar. Contradiction.
Thus G must be at least 3-connected. The only 3-connected graph with less than

5 vertices is K4, which is planar, so G must have at least 5 vertices. �
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Figure 8. Plane drawings of H and H ′, for a 2-connected G. The
edge {u, v} may or may not exist.
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Figure 9. The resulting plane drawing of a 2-connected G.

Lemma 2.9. G contains an edge e such that G/e is at least 3-connected.

Proof. Suppose not. Then for all e ∈ E, G/e contains a pair of vertices that can be
removed to disconnect the graph. One of these must be the one created by fusing
the vertices incident to e, or else removing the two would disconnect G, which is
not allowed because G is 3-connected. Let e = {a, b} be an edge in G, and let ab
be the combination of a and b in G/e. Then there exists some vertex c such that
ab and c constitute a separating set of G/e. Let a, b, and c be such that removing
all three from G (or equivalently, removing ab and c from G/e) creates the largest
possible component, which we will call A. We will call the rest of the separated
graph B.
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Clearly a, b, and c must each have at least one adjacent vertex in A and one
in B, else we would be able to find a smaller separating set, contradicting the 3-
connectedness of G. Therefore there exists some d ∈ B that is adjacent to c. Then
we can find some x such that {c, d, x} separates G.

Suppose x ∈ A ∪ {a, b}. Then A \ x must be connected. Otherwise, the compo-
nents of A \ x would need to be connected by a path through the rest of the graph
(since G is 3-connected). Since a ∼ b, a and b are in the same component, so the
path between the components must go through a or b, and through c, since that is
the only other connection between A and B. But removing {x, c} disconnects G,
which is not allowed because G is 3-connected.

Suppose x ∈ B. Then, since none of the cut vertices are in A ∪ {a, b}, that
set is still connected, and is therefore a component. But A ∪ {a, b} is larger than
A, which contradicts the part where we said {a, b, c} is the cut that produces the
largest component.

Thus G must contain an edge that can be contracted without reducing the
graph’s connectedness. �

Lemma 2.10. For any edge e in G, G/e does not contain a Kuratowski subgraph.

Proof. Let e = {x, y} and suppose G/e does contain a Kuratowski subgraph, which
we will call K. Clearly the vertex xy formed by the edge contraction must be part
of K, else K would be the same in G. For any v ∈ G/e, we define degK(v) to be
the number of vertices in K adjacent to v. For any v ∈ K, degK(v) can only be 4
(principal vertices of K5), 3 (principal vertices of K3,3), or 2 (subdivision vertices).
Now we need to consider some cases:

(1) All vertices in K that are adjacent to xy in G/e are adjacent to x in G
(an analogous argument applies if they are all adjacent to y). Then we can
find an isomorphic Kuratowski subgraph in G using all the same vertices,
except substituting x for xy.

(2) All vertices in K that are adjacent to xy in G/e are adjacent to x (this can
also be applied analogously with x and y switched) in G except one, which
we will call a. Then a must be adjacent to y in G, so we can draw our
Kuratowski subgraph on G as we did in the previous case, except since x
and a are not adjacent, we instead draw a path from x through y to a. This
creates a graph that is like K, but with y as an extra subdivision vertex.
This is still a Kuratowski subgraph.

Since every vertex adjacent to xy in G/e must be adjacent to either x
or y in G, these cases cover every possibility except one very specific but
interesting one:

(3) degK(xy) = 4, and the edges are such that exactly two of the vertices in K
that are adjacent to xy in G/e are adjacent to x in G, and only the other
two are adjacent to y. This can only happen if K is a subdivision of K5,
and if we try to reconstruct our Kuratowski subgraph on G, in a manner
similar to what we did in the last case, we get something that looks like the
following: There may be subdivision vertices not shown in the diagram, but
regardless, we can observe that this graph contain K3,3 (or a subdivision
thereof) (see Figure 10). Thus G contains a Kuratowski subgraph.

Thus G/e cannot contain a Kuratowski subgraph. In fact, since the only property
of G used in this proof is that G contains no Kuratowski subgraph, this result shows
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Figure 10. A graph that can be contracted (along the red edge)
to K5, as in case 3. The orange edges, along with the red edge,
form a subgraph isomorphic to K3,3.

that applying an edge contraction to any graph that doesn’t contain a Kuratowski
subgraph leaves a graph that also has no Kuratowski subgraph. �

Now we can finally prove Kuratowski’s Theorem.

Theorem 2.11. A graph G is planar if and only if G does not contain a Kuratowski
subgraph.

Proof. The forward direction is simple. If G is planar, then G clearly cannot contain
a Kuratowski subgraph, as Kuratowski graphs are not planar.

For the converse, suppose for contradiction that G, as we have defined it, ex-
ists. Let e = {x, y} be an edge that can be contracted while leaving the graph
3-connected. By Lemma 2.10, since G does not contain a Kuratowski subgraph,
G/e doesn’t, either. Since G is defined to be the smallest nonplanar graph without
a Kuratowski subgraph, and G/e is smaller than G, this means G/e is planar.

Consider a plane drawing of G/e, and then remove the vertex xy and its asso-
ciated edges. This combines all faces incident to xy into one face, which, because
(G/e) \ xy is 2-connected, must be bounded by a cycle, which we will call C. If we
put xy back, all vertices adjacent to xy are in C, which means in G, all vertices
adjacent to x or y (besides x and y themselves) are in C. Let X and Y be the sets
of vertices in C adjacent to x and y respectively. Then we need to look at a few
cases of those adjacent vertices.

(1) X ∩ Y = ∅ and the sets do not interlace (i.e. there do not exist vertices
x1, x2 ∈ X and y1, y2 ∈ Y such that their order, counting clockwise on C
from x1, is x1y1x2y2). Then we can place x on the side of the face with all
the xi, and y on the side with all the yi, then draw lines from x to every
xi ∈ X, and from y to every yi ∈ Y . These lines don’t need to cross, so G
is planar.

(2) |X ∩ Y | = 1, 2 and X and Y do not interlace. Then we can arrange x and
y as in case 1, but with one or two vertices in C adjacent to x and y. This
still does not force edges to overlap, so G is planar.

(3) |X ∩ Y | ≥ 3. Let a, b, c ∈ X ∩ Y . Then x and y are adjacent to each other
and to a, b, and c. We can also divide C into three disjoint paths, one
between a and b, one between b and c, and one between c and a. We then
observe that this is a subdivision of K5. Thus G contains a Kuratowski
subgraph.
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Figure 11. A plane drawing of the relevant part of G in case 1.
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Figure 12. A plane drawing of the relevant part of G in the case
where |X ∩ Y | = 1. Note that y1 is also xn. For |X ∩ Y | = 2, the
drawing is similar, but with x1 = yn at the bottom like y1 is at the
top.

(4) X and Y interlace. Then there exist x1, x2 ∈ X and y1, y2 ∈ Y in the
clockwise order x1y1x2y2. Then we can divide C into 4 internally disjoint
paths connecting x1 and x2 to y1 and y2. Then x, y, x1, x2, y1, and
y2 are the principal vertices of a subdivision of K3,3. Thus G contains a
Kuratowski subgraph.

Thus any case of G leads to a contradiction, so every nonplanar graph contains a
Kuratowski subgraph. �
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Figure 13. The relevant part of G in case 3. A subdivision of K5.
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Figure 14. The relevant part of G in case 4. A subdivision of K3,3.

3. Wagner’s Theorem

In 1937, Klaus Wagner came up with another characterization of planar graphs
that is, in fact, equivalent to Kuratowski’s Theorem.

Theorem 3.1. A graph G is planar if and only if G does not contain K5 or K3,3

as a graph minor.

Proof. Suppose G contains K5 or K3,3 as a graph minor. Then, as shown in Lemma
2.10, G contains a Kuratowski subgraph, and is therefore nonplanar.

Suppose G is nonplanar. Then G contains a Kuratowski subgraph, K. If we
take an edge in K incident to a subdivision vertex and contract it, we are left with
a Kuratowski graph with one less subdivision vertex. We can repeat this process
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until all subdivision vertices are annihilated, leaving us with either K5 or K3,3, and
whichever of those remains is a graph minor of G. �

This ends our proofs of necessary and sufficient conditions for graph planarity.
This problem, however, is just a specific case of the larger problem concerning graph
embedding in arbitrary topological spaces, where the embeddable graphs may be
different. We can embed K5 and K3,3 on a torus, for example. Graphs themselves
can also be thought of as a specific case of ordered pairs of the form (V,E), where
V is a set and E is a set of subsets of V , where in a graph we have the restriction
that for each e ∈ E, e contains exactly two elements.
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