SHard: a Scheme to Hardware Compiler

Xavier Saint-Mleux Marc Feeley Jean-Pierre David
Université de Montréal Université de Montréal Ecole Polytechnique de Montréal
saintmIx@iro.umontreal.ca feeley@iro.umontreal.ca jpdavid@polymtl.ca
Abstract better power usage than their equivalent software versioning

on a general purpose CPU or in synchronous logic [9][21][3].

The field of hardware/software co-design [11] has produced
several tools and methodologies to assist the developagrdasd
partition systems into hardware and software. Many tooésemt
two languages to the developer, one for describing the ranelw
and the other for programming the software. This widespegad
proach has several problems. It requires that the develepen
two languages and processing models. The hardware/sefiwar
terfaces may be complex, artificial and time consuming tehbgy
Any change to the partitioning involves re-writing subsialrparts
of the system. It is difficult to automate the partitioning@ess in
this methodology.

Our position, which is shared by other projects such as SRARK
C [12], SpecC [8] and Handel-C [6], is that it is advantagetmus
employ a single language for designing the whole systemefexc
perhaps the very lowest-level tasks). We believe that thiipa-
ing of a system into hardware and software should be doneddy th
compiler with the least amount of auxiliary partitionindarma-

1. Introduction tion provided by the developer (e.g. command line optionagp

. mas, etc). This partitioning information allows the deyslp to
Embedded systems combine software and hardware componentsysimize for speed, for space, for power usage, or otheerait
Hardware is used for interfacing with the real world and foeel- Moreover this information should be decoupled from the psse
erating the lower-level processing tasks. Software hafitimaally ing logic so that components can be reused in other conteits w
been used for implementing the higher-level and more cample ifrarent design constraints.
processing logic of the system and when future changes ic+ fun As a first step towards this long-term goal, we have imple-
tionality are expected. The partitioning of a system insohard-

d soft is a deli K which mks mented a compiler for a simple but complete parallel fumatio
ware and software components is a delicate task which mkist ta ,4:amming language which is fully synthesizable intaare.
into account conflicting goals including development cegstem

; .) Although our prototype compiler does not address the isfae-o
cost, time-to-market, production volume, processing 8ppewer omaic partitioning, it shows that it is possible to coreglgeneral
consumption, rellaplllty and level of field upg.radablllty. purpose programming language, and in particular functidis and

Recent trends in technology are changing the trade-offs and higher-order functions, into parallel hardware.
making hardware components cheaper to create. Reconfigurab "\ chose a subset of Scheme [17] as the source language
hardware is relatively recent and evolves rapidly, and diowa

J = : AR) for several reasons. Scheme’s small core language allowed u
the use of custom circuits when field upgradability is dekioe guag

- 8 focus the development efforts on essential programmingul
when production volume is expected to be low. Modern ASICSJS P P19 ng.age

Implementing computations in hardware can offer bettefoper
mance and power consumption than a software implementation
typically at a higher development cost. Current hardwafeigre
co-design methodologies usually start from a pure softwaodel
that is incrementally transformed into hardware until tegquired
performance is achieved. This is often a manual processhwiic
tedious and which makes component transformation and difise
ficult. We describe a prototype compiler that compiles a fional
subset of the Scheme language into synthesizable desospuif
dataflow parallel hardware. The compiler supports tail aod-n
tail function calls and higher-order functions. Our apptoaakes

it possible for software developers to use a single progriagm
language to implement algorithms as hardware componeirtg us
standardized interfaces that reduce the need for expeértdigital
circuits. Performance results of our system on a few tegjraras
are given for FPGA hardware.

. eatures. This facilitated experimentation with variowmdware
and FPGAs now contain enough gates to host complex embeddedspecific extensions and allowed us to reuse some of the progra
systems on asingle chip, which may include tens of process® 5nsformations that were developed in the context of cBiokeme
dedicated hardware circuits. Power consumption becomes@ m .ompilers, in particular CPS conversion and 0-CFA analysis
concern for portable devices. Specialized circuits, anghiticular

h d mixed h / h : Our compiler, SHard, translates the source program intaghgr
asynchronous and mixed synchronous/asynchronous siraffier of asynchronously connected instantiations of generiacfobox”

devices. Although the model could be fully synthesized \aithin-
chronous components (provided a library with adequate fapde
we have validated our approach with an FPGA-based synchsono
implementation where each asynchronous element is raplagce
a synchronous Finite State Machine (FSM). Preliminarysthave
been successfully performed using clockless implemeamtatfor
some of the generic components, combined with synchronous
FSMs for the others. Off-the-shelf synthesis tools are tieguo-
Proceedings of the 2006 Sch A Functional P Workeh duce the circuit from the VHDL file generated by the compiler.
roceedings of the cheme and Functional Programming Workshop Throughout this project, emphasis has been put on the compi-
University of Chicago Technical Report TR-2006-06 lation pro%ess. To tr?at Jef‘fect, mFi)nimaI effort has Fb?een puopti- P

39

. (letrec

mization and on creating efficient implementations of theeye ((cin (input—chan cin))

1
_hardware components that th_e b_ack-end instantiates. Dﬂr_abn § (cout (output-chan cout))
ing the feasibility of our compilation approach was the meom- 4. (nil (lambda (_) 0))
cern. While SHard is a good proof of concept its absoluteguerf 5. (cons (lambda (h t) (lambda (£) (£ h t))))
mance remains a future goal. 6 (revapp (1anbda eél:,l nlﬁ)m)
In Section 2 we give a general overview of our approach. In g)
9

L2
Section 3 the source language is described. The hardwddenigui (L1 (lambda (h t)

blocks of the dataflow architecture are described in Seaiand 10.) (revapp t (cons h 12)))))))
) . s . 11. (split (lambda (L L1 L2)
Section 5 explains the compilation process. Section 6 explo ;. (if (eq? nil L)
the current memory management system and possible altesat 13 (cons L1 L2)
Section 7 illustrates how behavioral simulations are perém and 1. (L (15(“;1“;; (ltl 'Eions h 12) 119)))))
Section 8 outlines the current RTL implementation. Expenital 1o (merge (lambda (L1 3 L
results are given in Section 9. We conclude with related ataé 17. (if (eq? nil L1)
work in Section 10. 18. (revapp L L2)
;3 (if Eeq? nilLLEi)
. revaj
2. Overview 21. (%i zz a1 o)
The implementation of functions is one of the main difficesti 33 E(Hlilz 2 ¢
when compiling a general programming language to hardware. 24 (lambda (h2 t2)
typical software compilers a stack is used to implement tionc 25. (1f E;elrllehﬂ
call linkage, but in hardware the stack memory can hindealpar 5. & (cons h2 t2)
lel execution if it is centralized. The work on Actors [14]cathe 28. (cons hi1 L))
Rabbit Scheme compiler [13] have shown that a tail functalhis ig ("(lizg: b1 t1)
equivalent to message passing. Tail function calls havérlg th- 31 + "
rect translation into hardware. Non-tail function calls ¢ee trans- 32. (cons h2 L))))IIINI)
lated to tail function calls which pass an additional comsition 33. (sort (1<"“¥1bd<"(* @ ,
parameter in the message. For this reason our compiler bees t gg: (if (ear nil L
Continuation Passing Style (CPS) conversion [2] to elif@man- 36. ((split L nil nil)
tail function calls. Each message packages the essenttalgfea 37. (lambda ([;1 L2)
computational process and can be viewed as a process token mo ;g (if Ei‘q‘ nil L2)
ing through a dataflow architecture. This model is inheyepairal- 40. (par ((s1 (sort L1))
lel because more than one token can be flowing in the cirgug. | 41. (s2 (sort L2)))
also energy efficient because a component consumes powyeif onl g (et-list (lambda (n) (merge s1 s2 nil))))))))
it is processing a token. The main issues remaining are flrete & (if (= 0 n)
sentation of function closures in hardware and the impleatzm 45. nil
of message passing and tail calls in hardware. 46. (cons (cin)
Many early systems based on dataflow machines suffer from ;. ~ (get-list (- n 1))))))
y y Sy ¢ 48. (put-list (lambda (L)
a memory bottleneck [10]. To reduce this problem our appgroac 49. (if (eq? nil L)
is to distribute throughout the circuit the memories whitbre 50. (cout nil)
the function closures. A small memory is associated withheac j; @ u?’ggii 1(1})1 2
function allocation site (ambda-expression) with free variables. 53, (put-list t))))))
The allocation of a cell in a closure memory is performed veven 54. (doio (lambda ()
the correspondingambda-expression is evaluated. To avoid the 5% (et ((@ (cin)))
56. (let ((L (get-list n)))
need for a full garbage collector we deallocate a closurenwhe 5 (put-1list (sort L))
it is called. Improvements on this simple but effective memo ss. (doio))))))
management model are proposed in Section 6. 59. (doio))

By using a data flow analysis the compiler can tell which func-
tion call sites may refer to the closures contained in a $ipeziod-
sure memory. This is useful to minimize the number of busads a
control signals between call sites and closure memories.

To give a feel for our approach we will briefly explain a small
program. Figure 1 gives a program which sorts integers using
the mergesort algorithm. The program declares an inputrean 40 and 41, “callers” 1, 2 and 3 respectively) and “merge” comp
(cin) on which groups of integers are received sequentially (as nents are used to route all function call requests to thetifuris
(n,x1,x2,...,2n)), and an output channetdqut) on which the body (A). The body starts with a fifo buffer (B) followed by the

Figure1. Mergesort program

sorted integers are output. The program also declaresidmscto implementation of the test at line 34 (“stage” and “split’hggo-
create pairs and lists as closuresX andcons), the mergesort al- nents, C). If the list is not empty, functiamplit is called (line 36)
gorithm itself (functionssort, split, merge, andrevapp), func- after allocating a continuation closure for returning tesuit (D).
tions to read and write lists on the I/O channedet(-1ist and This continuation, when called, allocates another coation (the

put-list) and a “main” function doio) which reads a group, function at line 37) and callsplit’s result (which is a function
sorts it, outputs the result and starts over again. Note thiab closure representing a pair) with it (E). Next, the testa¢ 188 is
the predefined procedueg? can test if two closures are the same implemented like the previous one (F). If needed, two preeses

(i.e. have the same address). are forked with recursive calls gnrt and their results are merged

Figure 2 sketches the hardware components which are gener-after both complete (G) (this is achieved with e construct at
ated by the compiler to implement thert function at line 33. The line 40, which is syntactically like aet but evaluates all its bind-
sort function can be called from three different places (at IlBigs ing expressions in parallel).

40 Scheme and Functional Programming, 2006

3. SourcelLanguage

@) The source language is a lexically-scoped mostly functitara
guage similar to Scheme [17]. It supports the following gates
of expressions:

merge * Integer literal

w >A * Variable reference
\ * Function creation(lambda (params) body)

* Function call
* Conditional:(if cond true-ezp false-ezp)
* Binding: 1let, letrec andpar

Merge nodes
from callers

-TTT oo T '< * Sequencingbegin
Function body * /0O channel creation{input-chan name) and
>B (output-chan name)

* Global vectorsmake-vector, vector-set! andvector-ref.

Primitive functions are also provided for integer arithineip-
erations, comparisons on integers, bitwise operationsfanger-
formance evaluation, timing. For example, the recursiwtofdal
function can be defined and called as follows:

1
1
o3
[72] [%2]
° D e |||l @
=3 (Q-|a
(0] [0)
1
1
1
1
J\

>C (letrec ((fact (lambda (n)
(if (< n 2)
1

(* n (fact (- n 1)))))))

7 (fact 8))

Call
continuation
w/nil

In our prototype, the only types of data supported are fixed
width integers, global vectors and function closures. Bant are
D represented as integers, with zero meaning false and el ettues

meaning true. Closures can be used in a limited fashion atere
data structures, as in the following example:

READ ALLOC.

Y, (let ((cons (lambda (h t)
1 N (lambda (£) (£ h t))))
(car (lambda (p)
(p (lambda (h t) h)))))
(let ((pair (cons 3 4)))
>E (car pair)))

ALLOC. READ |

While this is a simple and effective way of supporting data
structures, the programmer has to adapt to this model. Tratifun
call (cons 3 4) allocates memory for the closure containing the
two integers, but this memory is reclaimed as soopeds is called
inside thecar function;pair cannot be called again and the value
4 is lost. The only way to fetch the content of a closure is tbital
and then recreate a similar copy using the data retrieveskilble
>F improvements are discussed in Section 6.

The par binding construct is syntactically and semantically
split similar to thelet construct but it indicates that the binding expres-
sions can be evaluated in parallel and that their evaluatiost be

J finished before the body is evaluated. They can be seen asua cal
N\ lation with a continuation that takes several return vallibégy can
be used for manual parallelization when automatic para#igbn
(Section 5.1) is turned off or when expressions with sideet$
may run concurrently.

The 1/0O channel creation forms create a functional reptasen
>G tion of named input and output channels. Input channelsiare- f
tions with no arguments that return the value read. Outpamicéls
take the value to be written as an argument and always ret(rme
name given as an argumentitioput -chan andoutput-chan will
y be used as a signal name in the top-level VHDL circuit detiornp

For example, the following specification creates a circuat adds
the values read from two different input channels, writes gbm
Figure 2. mergesort'sort function on an output channel and starts over again:

Call
function merge
w/ sort's
continuation

Call
continuation
w/ L0

JOIN FORK

Recursive call
to sort (Caller 2

Recursive call
to sort (Caller 3)

Scheme and Functional Programming, 2006 41

: Start\ l params l fv l
1
! ‘ stage ‘)
: merge split
! .
] ¢'
: lparams fv / \ fv
chan_inl WM ginf (a) stage (b) fifo () split
1
fv, fv, data, fv,
: 1 params\ / params fvl td ta addr td ta
chan_in2 |~ cin2
merge ALLOC. READ WRITE READ
1 fv, 1 fv, 1 fv,
params addr addr v addr
(d) merge (e) closure (f) vector
fv fv
chan_out fv 1 Z,'Q l .

d
dat data
FORK JON sl
split

1
1

1

1

1

I v,
1 pid
1

1

1

(never reached)

R e b

(9) par (h) input (i) output

Figure 3. 1/0 example

(let ((cinl (input-chan chan_inl))
(cin2 (input-chan chan_in2))
(cout (output-chan chan_out)))
(letrec ((doio (lambda ()
(cout (+ (cinil) (cin2)))
(doion))))

(doion)))

This example is illustrated in Figure 3 using the components
described in Section 4.

Like any other function with no free variables, channel proc
dures can be called any number of times since no closureasiboc
or deallocation is performed.

Mutable vectors are created with theke-vector primitive,
which is syntactically similar to its Scheme equivalentr@uatly,
only statically allocated vectors are supported (i.e.mecinust be
created at the top-level of the program). Our memory managém
model would have to be extended to support true Scheme gector

To simplify our explanations, we define two classes of expres
sions.Trivial expressions are literals, lambda expressions and refer-
ences to variableSimpleexpressions are eithgéivial expressions
or calls of primitive functions whose arguments #ieial expres-
sions.

4. Generic Hardware Components

The dataflow circuit generated by the compiler is a directegly
made of instantiations of the 9 generic components showrigin F
ure 4. The components are linked using unidirectional dassds
which are the small arrows entering and leaving the compsnen
in the figure. Channels carry up to one messagdpken from
the source component to the target component. Each chaomel ¢
tains a data bus and two wires for the synchronization pobtdte
requestwire, which carries a signal from the source to target, indi-
cates the presence of a token on the bus. dieowledgenire,
which carries a signal from the target to the source, ind#at
the token has been received at the target. The two signalg-imp
ment a four-phase handshake protocol (j.eq,T Ack, | Req,]
Ack).

The following generic components are used in the system:

42

Figure4. Generic Hardware Components

Stage (Fig. 4(a)): Stages are used to bind new variables from
simpleexpressions. Everyet expression in which all bindings
are fromsimpleexpressions are translated into stages in hard-
ware; this is the case for alkt expressions at the end of com-
pilation. The stage component has an input channel thaesarr
a token with all live variables in the expression that enetathe
let. It has one output channel that sends a token with the same
information, which then goes through a combinatorial dgircu
that implements all theimple expressions; the stage compo-
nent is responsible for all synchronization so it must taikte i
account the delay of the combinatorial part. The final tolen i
sent to the component that implements 1ke’s body with all

live variables at that point.

Fifo (Fig. 4(b)): Fifos are used as buffers to accumulate tokens
at the beginning of functions that might be called concuttyen
by several processes. Fifos are necessary in some sitsiation
avoid deadlocks. They are conceptually like a series bback-
to-back stages but are implemented using RAM blocks in order
to reduce the latency from input to output and the size of the
circuit.

Split (Fig. 4(c)): Split components are used to implement con-
ditional (if) expressions. They have an input channel that re-
ceives a token with all live variables in the expression #rat
closes the conditional. The test expression itself is aeefe

to a boolean variable at the end of compilation so it is resiv
directly as a wire carrying & or al. Every token received is
routed to the appropriate component through either one of tw
output channels, representing thenandelsebranches of the
conditional expression. The appropriate branch will getkamn
carrying all live variables in the corresponding expressio

Merge (Fig. 4(d)): Merge components are used to route tokens
from a call site to the called function whenever there is more
than one possible call site for a given function. Tokensiveck

at the two input channels contain all the parameters of the-fu
tion. In the case of a closure call, a pointer to the corregjpon
closure environment is also contained in the token. An arbit
ensures that every token received is sent to the componrant th
implements the function’s body, one at a time. Merge compo-

Scheme and Functional Programming, 2006

nents are connected together in a tree whenever there is more * Output (Fig. 4(i)): Output components implement output chan-

than two call sites for a function. nels. They act like a simplifietbrk part of a par component:

« Closure (Fig. 4(e)): Closure components are used to allocate whenever a token is received as input, two output tokens are
and read the environments associated with function clssure sent simultaneously as output: one to the corresponding top
They have two pairs of input and output channels, one for al- level signal of the circuit and one to the component that enpl

locating and the other for reading. When a closure needs to be ~ ments the continuation to the call to the output function.

allocated, a token containing all live variables in the espr . .
sion that encloses the closure declaration is receivedréd! The system has been designed so that all components can be im-

variables in the function are saved at an unused addresein a| Plemented either as synchronous (clocked) or asynchrormms
cal RAM and a token containing that address, a tag identfyin ponents. For easy integration with the other synthesis and-s

the function and all variables that are live in the declarss lation tools available to us, our prototype currently usteled
continuation is sent to the component that implements that ¢~ COMponents reacting to the rising edge of the clock.
tinuation. On a closure call, a token containing both theeskl Input and output components can be implemented to support

of the closure’s environment and the actual parameters-is re different.kinds of synchronization. AIIexperiments s.orﬁalve b.een
ceived, the free variables are fetched from the local RAMand ~ done using a four-phase handshake with passive inputs divd ac
token containing the free variables and the actual parasiste ~ OUtPULS: input components wait until they receive a reqiiest the
sent to the component that implements the function’s bolg. T~ Outside world and have to acknowledge it while output conepts
closure component's read channel is connected to the ootput S€nd @ request to the outside world and expect an acknoweatigm
the merge node(s) and the channel for the value read goes tOThls_aIIows_Ilnklng of separately compiled circuits by sippon-
the component that implements the function body. Since each Necting their IO channels together.

closure has its dedicated block of RAM, the data width is ex-

actly what is needed to save all free variables and no mersory i 5 Compilation Process

wasted. Closure environments can be written or read in desing
operation.

Vector (Fig. 4(f)): Vector components are used to implement
global vectors introduced through theke-vector primitive.
They have two pairs of input and output channels, one forwrit
ing and another for reading. When thector-set! primi- P

tive is called, a token is received with all live variables, a- 51 Paralldization

dress and data to be written at that address. The data is writ- The compiler can be configured to automatically parallettze

ten and a token with the live variables is sent as output. When computation. When this option is used, the compiler lookséds
thevector-ref primitive is called, a token containing all live ~ of expressions which can be safely evaluated concurresitie{
variables and an address is received. Data is read fromdhat a €ffect free) and binds them to variables usinga construct. This
dress and sent in an output token along with the live variable is done only when at least two of the expressions aresiople

A block of RAM is associated with each vector and is sized sincesimpleexpressions are evaluated concurrently anyways (they
accordingly. are implemented as combinatorial circuits in a single l$ta@d

Par (Fig. 4(g)): Par components are used to implement thepar construct pro_duces a_hardware component that |mplt_e_ments
binding expressions. Like the closure component, the par co the fork-join mechanism, which would be useless overhedtiin
ponent has an allocation and a reading part, respectivéigdca ~ ©@5€- . . .
fork andjoin. When a token is received féork, it contains all This stage is implemented as four different sub-stagest Eir
the live variables of thear expression. All variables that are ~ control flow analysis is performed on the program (see Se&i6)
free in thepar’s body are saved in a local RAM, much like fora N Order to determine which expressions may actually hate-si
closure environment; the corresponding address is anifigent ~ €ects and which functions are recursive. Then, for allscaith

for thepar binding expressions’ continuation. Then, tokens are arguments that are naimple those arguments are replaced with
sent simultaneously (forked) to the components that imptem ~ Tesh variable references and the modified calls form they tuid

the binding expressions. Each of these parallel tokensairent a let that binds those variables to the original arguments. For

the binding expression’s continuation pointer and freéazes. example,
When a token is received fgoin, the binding expression's re- (¢ (fact x) (- (fib y) 5) 3)
turn value is saved in the local RAM along with the continua-
tion’s free variables. When the last token for a given idesnti becomes
is recel\{ed forjoin the return v’alue is sent to ther's boo_ly (let ((v.0 (fact x))
along with the other branches’ return values and the frele var .
.] o (v_1 (- (£fib y) 5)))
ables saved in the local RAM for that identifier, and the mgmor (f v.0 v.1 3))
for that identifier is deallocated. Currently only two bindiex- -
pressions are supported. Next, all lets are analyzed and those for which all binding

Input (Fig. 4(h)): Input components implement all declared €Xpressions have no side-effects and aresiorpleare replaced by
input channels in the circuit. It can be viewed like a simptifi ~ pars. Finally, the transformed program is analyzed to fingatls
join part of a par component: it waits until it has received tokens that may introduce an arbitrary number of tokens into theespant
from both inputs before sending one as output. One of thetinpu ©f the pipeline. These are thipars for which at least two binding
tokens represents the control flow and contains all liveatdeis expressions loop back to ther itself (e.g. a recursive function
in the call to the input function. The other input token cimsa that calls itself twice). Any recursive function that can ¢zdled
the data present on the corresponding top-level signalef th from the binding expressions is then tagged as “dangerdiie.

circuit. The output token contains data from both input teke reason for this last step is that recursive functions aréempnted
as pipelines that feed themselves and each of these canaldig h

given number of tokens at a given time before a deadlock sccur

The core of the compilation process is a pipeline of the phase
described in this section. The 0-CFA is performed multipiees,

as sub-phases of parallelization and inlining, and as a plzse

by itself.

Scheme and Functional Programming, 2006 43

This tagging is used later in the compilation process tortrfie (let ((x 25))
buffers to reduce the possibility of deadlock. (let ((f (lambda (y) (+ x y))))

5.2 CPS-Conversion (£ 12)))

The compiler uses the CPS-Conversion to make the functithn ca becomes

linkage of the program explicit by transforming all functicalls (let ((x 25))

into tail function calls. Functions no longer return a résthey (let ((f (lambda (x2 y) (+ x2 y))))
simply pass the result along to another function using actll (f x 12)))

Functions receive an extra parameter, the continuationhnis

a function that represents the computation to be performigad w which is equivalent to

the result. Where the original function would normally retua (let ((f (lambda (x2 y) (+ x2 y))))
result to the caller, it now calls its continuation with thésult as a (let ((x 25))
parameter. (f x 12)))

Since all functions now have an extra parameter, all callstmu
also be updated so that they pass a continuation as an argumen
This continuation is made of the “context” of the call sitelsd-
ded in a new lambda abstraction with a single parameter. dtlg b
of the continuation is the enclosing expression of the chitng the
call itself is replaced by a reference to the continuatigraisam-
eter. Syntactically the call now encloses in its new arguntiea
expression that used to enclose it. For example,

Since a combinator has no free-variables, it doesn't nedx to
aware of the environment in which it is called: all the valtiest it
uses are explicitly passed as parameters. Combinator$ostees
that hold no data and therefore, in our system, we do notmassig
closure memory to them. For example, if functibis not lambda
lifted in the above example, it needs to remember the value of
between the function declaration and the function calk thould
normally translate to a memory allocation at the declanatind

(letrec ((fact (lambda (x) a read at the call (see Section 5.6). After lambda liftingloes
(if (= 0 x) not need to be known whehis declared since it will be explicitly
1 passed as paramete on each call tg. The use of lambda lifting
(x x (fact (- x 1))))))) in our compiler helps to reduce the amount of memory useden th
(+ (fact 3) 25)) output circuit and to reduce latency.
becomes Lambda lifting is not possible in all situations. For exampl
(letrec ((fact (lambda (k x) (letrec ((fact (lambda (k x)
Gif (= 0 %) (if (= 0 x)
(fact (lambda (r) (k (* x 1))) (fact (lambda (r) (k (* x r)))
G- x 1IN -2 1)ONN
(fact (lambda (r) (+ r 25)) 3)) (fact (lambda (r) 1) 5))

This is a CPS-converted version of the classic factoriattion.
In this case, functiofact needs to pass its result to continuation
k, which can be the original continuatiddambda (r) r) or the

There are two special cases. The program itself is an express
that returns a value so it should instead call a continuatiitimthis
result, but the normal conversion cannot be used in this siase

there is no enclosing expression. The solution is to useraitpre continuation 1o a recursive calllambda (r) (k (* r x))).
calledhalt that represents program termination. The continuation to a recursive call needs to remember about

Because of the parallel fork-join mechanism, we also need to the parameters to the previous callfiact (x andx). We could
supply the parallel expressions with continuations. Thiddne in add those free variables as parameters, [ikembda (r k x)
a similar way using join primitive which includes information (¢ (* T %)), but thenfact would need to know about the pa-
about thepar form that forked this process. This represents the fact F@Meters to its previous call in order to be able to call itstire

that parallel sub-processes forked from a process must tshesh ~ Uation, thus adding parametersfact as well. Sincefact is a
with each other once they complete. For example, recursive function and each recursive call needs to remethbe

parameters of the previous call, we would end up with a famncti

(par ((x (f 3)) that needs a different number of arguments depending oroifte ¢
(y (£ 5))) text in which it is called, and this number could be arbitydarge.
- Such cases are handled by closure conversion (Section &iéhw
becomes identifies which closures actually contain data that needsetal-
located. In thefact example, the allocation of the free variables
(par pid_123 of the continuation to a recursive call &ndx) corresponds to the
((x (f (lambda (r) (pjoin pid_123 r 0)) 3)) allocation of a stack frame in a software program.
(y (f (lambda (r) (pjoin pid_123 r 1)) 5)))
L) 5.4 Inlining

pid_123 is bound by thepar at fork time and corresponds to the Inlining is a transformation which puts a copy of a funct®n’
newly allocated address in the local RAbljoin’s last parameter body at the function’s call site. In the circuit this corresds
(0 or 1) distinguishes the two sub-processes. to a duplication of hardware components. Although the tewpl
. circuit is larger than could be, the circuit’s parallelissrincreased,
53 Lambdalifting which can yield faster computation. For this reason the dlatign

Lambda lifting [16] is a transformation that makes the fregiv process includes an optional inlining phase.

ables of a function become explicit parameters of this fionct The only information given to this phase by the developehés t
Using this transformation, local functions can be liftedhe top- maximum factor by which the code size should grow. Code size
level of the program. Such functions have no free-variabiebare and circuit size is roughly approximated by the number ofasod
called combinators. For example, in the corresponding AST. Since parallelism can only occitinivw

44 Scheme and Functional Programming, 2006

par expressions, inlining is done only par binding expressions (letrec ((fact (lambda (k x)

that have been tagged as “dangerous” by the parallelizatiase (if (= 0 x)

(see Section 5.1). No inlining will occur in a program thaedmot (k 1)

exploit parallelism. (fact (lambda (r) (k (* x r)))
The inlining process is iterative and starts by inliningdtions G-x1ONN

smaller than a given “inlining” size in all the identified ergsions. (fact (lambda (r) r) 5))

If no function can be inlined and the desired growth factos ha becomes

not been reached, this inlining size is increased and theepso

is iterated. Since inlining a function introduces new catapar’s (letrec ((fact (lambda (k x)

binding expressions, this can offer new candidate funstifor Gf (=0 x)

inlining which may be much smaller than the current inlingige. ((hclo-ref k 0) k 1)

The inlining size is therefore reset to its initial valueeafevery (fact

iteration in which inlining actually occurred. (%closure
At each iteration, the number of callers for each inlinalblect (lambda (self r)

tion is calculated, functions are sorted from the most daitethe ((hclo-ref

least called and then treated in that order. The goal is ttotfiyst (hclo-ref self 2)

duplicate components that have more chances of being arg&jue 0)

bottleneck. 0-CFA is also done at each iteration in ordeetaware (%clo-ref self 2)

of new call sites and the call sites that have vanished. (* r (hclo-ref self 1))))
This method does not consider the fact that the size of the X

resulting circuit is not directly related to the size of th&R k)

In particular, the networking needed to connect calls tcctiom G x 1NN

bodies may grow quadratically as functions are duplicaldds (fact (%closure (lambda (self r) r)) 5))

is due to the fact that calls must be connected to every fomcti

possibly called, and the number of call sites also grows vdoele 5.7 Finalization

grows. An example of this is given in Section 9. The finalization stage consists of three sub-stages: altryti-
mization, a “cosmetic” transformation to ease the job oftibek-
55 O-CFA end, and information gathering.

The first sub-stage merges sequences of embetgedxpres-
sions into a singlé.et, when possible. It checks forat in the
body of another one and extracts the bindings in the embetsed
that do not depend on variables declared by the embedding
Those extracted bindings are moved up from the embetidedo
the embedding one. If the embeddest ends up with an empty
binding list, it is replaced by its own body as the body of the-e
d beddinglet. For example,

The 0-CFA (Control Flow Analysis [18]) performs a combined
control flow and data flow analysis. Using the result of theFRAC
the compiler builds the control flow graph of the program slikia
graph that indicates which functions may be called at eacttion
call site. This graph indicates how the circuit's composeate
interconnected, with each edge corresponding to a comaimic
channel from the caller to the callee. When several edget fmi
the same node, we know that this function needs to be predsde

a tree of merge components (e.g. part A of Figure 2). (let ((a (+ x 7))
This analysis is also used for automatic parallelizatiod A (et ((b (x y 6)))
lining as explained in Sections 5.1 and 5.4, and to assigalljoc (let ((c (- a 3)))

unique identifiers to functions (see Section 5.7). o))

Abstract interpretation is used to gather the control floferin
mation and that information is returned as an abstract faheach
node in the AST. An abstract value is an upper bound of thefseto (let ((a (+ x 7))

becomes

all possible values that a given expression can evaluate twur (b (x y 6)))
case, all values other than functions are ignored and theaabs (let ((c (- a 3)))
value is just a list of functions which represents the setaiaing RSD))

those functions along with all non-function values. This is done because eatht translates directly to a pipeline

stage in hardware; instead of operations being done in seque
in several stages, they are done concurrently in a singie stauis
Closure conversion is used to make explicit the fact thatesom reducing latency and circuit size.

5.6 Closure Conversion

functions are actually closures that contain data (fre&btes); The next sub-stage is used to make explicit the fact thatickss
those are the functions that could not be made combinators by must be allocated before they are used. At this point in thepiler,

lambda lifting (Section 5.3). This conversion introduce® thew arguments to calls are all values (literals or closuresgfarences
primitives to the internal representatidftlosure andjclo-ref. to variables, so that a function call would be a simple cotioec

Theclosure primitive is used to indicate that a function actually between the caller and the callee. The only exception tdstirsat
is a closure for which some data allocation must be mader#tis fi some closures contain data that must be allocated and these a
parameter is the function itself and the rest are values tsakied represented by both a lambda identifier and an address feas re
in the closure memory. Thigclo-ref is used within closures to to the closure memory. To make everything uniform, clostinas
indicate references to variables saved in the closure mgnitor contain data are lifted in a newly createelt that embeds the call.
has two parameters: the first is a “self” parameter that atdi This way, we now have a special caselet that means “closure
the address at which the data is saved and the second one is aallocation” and the function call becomes a single stagerevaé
offset within the data saved at that address (field numbéinvi arguments can be passed the same way. For example,
record), witho representing the function itself (not actually saved (foo 123 x (%closure (lambda (y) ...) a b))
in memory). For example,

becomes

Scheme and Functional Programming, 2006 45

(let ((clo_25 (%closure (lambda (y)
(foo 123 x clo_25))

so that it is clear thad andb are allocated in the closure memory
in a stage prior to the function call.

The last sub-stage of finalization is used to assign localigue
identifiers to lambda abstractions to be used in the cirosieiad
of globally unique identifiers. The reason for this is that Ifake
[log, n] bits to encode, where can be the number of lambdas
in the whole program (global IDs), or the number of lambdaa in
specific subset (local IDs); our aim is to reduce the widthusdes
carrying those IDs. Since we have previously performed &8;C
it is possible to know which lambdas may be called from a given
call site. We first make the set of all those sets of functionsthen
merge the sets of functions that have elements in commohalinti
are disjoint. This ensures that each lambda has an ID thidg ndt
being necessarily unique in the program, gives enoughrimdton
to distinguish this lambda from others in all call sites vehigmight
be used.

5.8 Back-End

The back-end of the compiler translates the finalized Abs8gn-
tax Tree (AST) into a description of the circuit. The destoip
is first output in an intermediate representation that dessrthe
instantiation of several simple generic components andddta
busses used as connections between them. This intermeeiate
resentation can be used for simulation and it is translat&HDL
through a secondary, almost trivial back-end (see Sec)ion 8
Data busses are of two different typeas andjoin:

...) a b))

* (bus width wal): describes a buwidth bits wide with an
initial value ofval.

* (join subbus; ... subbus,): describes a bus which is
made of the concatenation of one or more other busses.

Integer literals and variable references are translateddses;
literals are constant busses while references are busaegéh
their value from the component that binds the variable @age).
All components that implement expressions through whigheso
variable is live will have distinct input and output bussesarry
its value, like if a new variable was bound at every pipelitzgs.

As explained in Section 4, eadlet expression is translated to
a stage component followed by a combinatorial circuit thgtle-
ments the binding expressions and the component that inepliesm
thelet’s body. The binding of a variable that represents a closure
is translated to thalloc part of a closure component. Parallel bind-
ings are translated to par components withftrk outputs and the
join inputs connected to the binding expressions anddimeout-
put connected to the component that implementspthes body.

At this point in compilationletrec bindings contain nothing else
than function definitions so they are translated to the impleta-
tion of their body and all functions defined.

initions are translated to the component that implemergduhc-
tion’s body, possibly preceded by a tree of merge nodes attto
readpart of a closure component. The result of the 0-CFA is used to
build the tree of merge nodes. Input and output channelsane-t
lated just like functions with an input or output componentaa
body.

Primitives may be translated in different ways: arithmetion-
itives are translated to the equivalent combinatorialuiiscwhile
calls to thetimer primitive — which returns the number of clock
cycles since the last circuit reset — are similar to functiafis to
a global timer component. Other primitives are used intgrrmgy
the compiler and each is translated in its own way. For exantipé
halt primitive terminates a process and the simggpin primi-
tive indicates that a sub-process forked lpaa has completed.

The compiler also adds an input and an output channel to the
top-level circuit. The input channel carries tokens canitay all
free variables in the program and is used to start a new ppces
in most cases, this channel carries no data and is used ooéy on
since concurrent processes can be created gsingxpressions.
The output channel carries tokens that contain the returrewaf
the process; a token is output whenever the control readtees t
halt primitive and indicates that a process has completed. Thus,
the whole circuit can be seen as a function itself.

6. Memory Management

Memory management has been made as simple as possible since
this is not our main research interest. As mentionned betbee
memory associated to a closure is freed as soon as the cligsure
called. While this is enough to make our language Turing{ulets,
it imposes a very particular programming style, is erromgrand
makes inefficient tricks become indispensable in sometging

The most desirable solution would, of course, be a full ggeba
collector as it normally exists in Scheme. Since closures lma
stored in other closures (and this is always the case folraont
tions), a garbage collecting hardware component would tebd
connected to all closure memories in a given system. Theagarb
collector would also need to be aware of all closures coathin
tokens flowing in the system. Such a centralized componentdvo
hinder parallel execution and is in no way trivial to implerhe

A reasonable alternative to a full garbage collector is gnaent
our memory management mechanism with a manual memory deal-
location mechanism. This could be done as in many languages b
using a “free” primitive. Closure memory components woude:d
a new pair of input/output channels to support this, whiclildde
connected to “free” call sites much like functions are cateé to
their call sites. It would also be possible to let the progranindi-
cate which closures are to be manually reclaimed and letthier®
be reclaimed automatically as is currently the case, thdsciag
the size and latency of the resulting circuit.

Another issue is the amount of memory that is reserved for

Function calls are translated to stage components where theclosures. Since each closure has its own block of RAM, tloslbl

combinatorial circuit is used to test the tag that identiffessfunc-
tion called and route the token accordingly. The result e HCFA

is used to determine which expressions call which functitis
stage is present if only one function can be called from argive
point. Since all actual parameters ar&vial expressions at this
point in compilation, a connection from caller to calleelidlzat is
needed.

Conditionals are translated to split components with eathud
connected to the component that implements the correspgpndi
expression {rue-ezp Or false-exp). As explained in Section 4,
the condition is drivial expression and its value is used directly to
control a multiplexer.

Lambda abstraction declarations are translated to thehaus t
carries the function’s or closure’s identifying tag and iidd. Def-

46

has to be large enough to hold the largest number of closhags t
can exist concurrently, lest a deadlock might occur. Outgtype
currently sets all closure memories to the same depth, whilits
in far more RAM being generated than necessary. One solution
would be to use smaller closure memories and allow them lidspi
a global memory; they would thus become local, distributezhes.
Finding the optimal size for each local cache would be thenmai
goal in order to minimize concurrent requests to the main orgm
A non-trivial, multi-ported implementation of the globalemory
might be necessary in order to achieve good levels of péisaiie
Finally, the current implementation of vectors creates @dso
neck in parallel circuits since each vector is a single camepd
and it cannot be duplicated like a function. A solution wohéto
split each vector into several independently accessitidevsators

Scheme and Functional Programming, 2006

controlled by a multiplexer which would route the requesthe
appropriate sub-vector.

7. Behavioral Smulation

The intermediate representation generated by the prinzai-bnd

is itself a Scheme program: it can be printed out in S-exprass
syntax and then executed to perform a simulation. This i®dgn
using a simulator and behavioral descriptions of the coraptm
both written in Scheme and included as external moduleséo th
intermediate representation.

The simulator provides functions to manipulate wires and
busses and to supply call-backs for some events: a sigmalitra
tion, an absolute time from the beginning of simulation oretay
relative to the actual simulation time. In the behaviorahdator,
it is therefore possible to write “when the input signal bees 1,
wait for 10ns and set the value of the output signal to 0” as:

(on input (lambda ()
(if (= 1 (wire-value input))

(lambda ()
(in 10 ;;time is in ns.
(lambda ()
(wire-update! output 1))))
void)))

450000 . . . ;
seq-quicksort +
seq-quicksort-avg -------
L seg-mergesort x|
400000 seq-mergesort-avg
par-quicksort ¥
par-quicksort-avg -------
350000 par-mergesort O
par-mergesort-avg - - -
300000 [¥ »
=
t . x
$ 250000 - L p
9 X
5 1
€ 200000 |- T 1
e *
X *
L + E:
150000 ,'; "
¥ + * P ;
100000 e 1 * e]
T * - T *
| [¥ x
50000 i o R *]
Pt s R *
i{}; S
0 - 1 1 1 1
0 50 100 150 200 250
list length

Figure5. Sequential and parallel mergesort vs. quicksort, number
of cycles as a function of list length

is fed to Altera’s Quartus-Il development environment. Timy

The program generated by the back-end also includes a testhuman intervention necessary at this point is the assighimien

function which can be modified by hand to specify simulation
parameters (input values, duration, etc). When the progsamm,

it produces output in VCD format (Value Change Dump, desttib
in [1]). This output indicates the initial values of all saa in the
circuit and all transitions that occurred during the sintiola and
can be sent to a standard waveform viewer (e.g. GTKWave).

8. Implementation

Hardware implementations are described using the VHDL lan-
guage. All components listed in Section 4 are implemented as
VHDL entities and architectures using generic parametardiis
widths, memory and fifo depths, etc. Most components hawet inp
signals for the global clock and reset signals.

For example, the stage VHDL component has an input channel
and an output channel, andbas_width generic parameter to
specify the width of those channels. An internal registaresa
the input data at the rising edge of the clock on a successful
handshake, and is cleared when the reset signal is asséeeld.
channel is associated with a pair of wires that carry theestgand
acknowledge signals for synchronization; request signals the
same direction as the data and acknowledge signals go tlositpp
way.

The top-level of the circuit is also translated from the Sube
program described above into a VHDL entity and architecture
which instantiates all the necessary components. In addit
components described in Section 4, trivial combinator@hpo-
nents like adders and equality testers are also used infiHexel.

The most difficult aspect of generating a VHDL circuit deperi
tion is to handlejoin busses properly. There is no standard VHDL
construct to express that some bus is in fact just an alighéaron-
catenation of other busses; these have to be translatedioan
assignments, either assigning the concatenation of énesses to
a join bus or assigning a slice of gin to another bus. The rest
is a straightforward translation of busses and componeois the
intermediate representation to VHDL, including bus rerami

9. Results

We have tested our prototype on a number of programs to peoduc
dataflow machines on an FPGA. The compiler's VHDL output

Scheme and Functional Programming, 2006

the circuit's external signals to FPGA pins; other constsaican
also be given to the synthesis tool, for example to force ftydo
produce a circuit that runs at a specific clock speed.

As an example, the quicksort and mergesort algorithms have
been implemented in an Altera Stratix EP1S80 FPGA with agpee
grade of -6. This FPGA contains 80,000 configurable cell® Th
list of elements is represented as a vector for quicksortaand
chain of closures for mergesort. The resulting circuits aiseut
11% and 14% of the reconfigurable logic and about 5% and 8% of
the memory available in the FPGA, respectively, for listaipfto
256 16-bit integers and can run at clock rates above 80MHsD,Al
mergesort is an algorithm for which the automatic paraéion
stage of the compiler is useful.

Figure 5 shows the number of clock cycles required to sd# lis
of different lengths using mergesort and quicksort, forusedjal
and parallel versions of the algorithms. The parallel meogevas
automatically obtained by the compiler from a program witho
par expressions. Because of the vector mutations in the quickso
algorithm, the compiler could not obtain a parallel versiotomat-
ically; it was necessary to manually insempar expression for the
recursive calls.

Figure 6 shows average clock cycles per element and compares
sequential and parallel versions of both programs. It shtbasa
simple, sequential algorithm can gain a lot in terms of penfince
by using the parallelization stage of the compiler, or tigfosimple
modifications (changingiets topars); performance is then limited
by the amount of hardware used (e.g. components can be algalic
to gain more parallelism).

The fact that the quicksort algorithm is slower than the raerg
sort algorithm in our tests comes mainly from an inefficienple-
mentation of vectors. Quicksort implemented using a chaaim
sures is, on average, faster than mergesort for sequexdialiion
and about as fast for parallel execution.

Table 1 illustrates the effect of inlining (Section 5.4) oarp
formance and circuit size. The program used for this tesheés t
mergesort algorithm shown in Figure 1. In this program, thect
tion which is inlined most often igsons, which has the effect of
distributing the memory used to store the list in severakpeh-
dent memory blocks; with an inlining factor of 1.10, it is tbely
function that gets inlined and it is inlined five times out ofogal

47

T
sequential quicksort
sequential mergesort
parallel quicksort -
parallel mer

1400

1200

1000

800

600

nb. cycles per element

400

200

0 1 1 1 1
100 150 200

250
list length

Figure 6. Parallel vs. Sequential mergesort and quicksort, average
number of cycles per element as a function of list length

Inlining | % of merge cyclesto| % of baseline’s
factor | logic | components| sort 250 elts. (2.00) cycles
1.00 14 57 126,226 100.0
1.10 21 107 110,922 87.9
1.25 22 110 95,486 75.6
1.50 32 204 91,684 72.6
2.50 74 709 96,006 76.1

Table 1. Effect of inlining on mergesort

of seven call sites withipars. The proportion of logic is given for
the Stratix EP1S80.

As mentioned in Section 5.4, the circuit size is not prooori
to the AST size. To illustrate this, the number of merge compo
nents is given for each inlining factor. This outlines thetfthat,
by duplicating code, each function is potentially callednfr sev-
eral more places. Area usage quickly becomes prohibitivia@s
inlining factor is increased. Also, more inlining does nbways
translate to a better performance: as the tree of merge amnpo
at each function entry gets bigger, the pipeline gets demmpethe
latency increases; there is no need to have a lot more comfzone
than the maximum number of simultaneous tokens in the tircui

To test the implementation of vectors we wrote a program whic
interprets a machine language for a custom 16-bit proce¥sor
tors are used to implement the RAM and the program memory.
The instruction set contains 21 simple 16-bit instructj@wmne of
which use a single immediate integer value. With the RAM and
program memory both at 4096 elements deep, the circuit uggs o
10% of the logic and 3% of the memory in a Stratix EP1S80. Unfor
tunately the execution speed is poor, in part because oguaye’s
lack of acase construct forced us to use nestefk to decode the
instructions. It is exciting to consider that with some esiens to
our system it might be possible to generate a “Scheme mdchine
processor by compiling aeval suitably modified for our system.
Moreover, a multithreaded processor could be obtainedydagi
adding to the instruction set operations to fork new threads

Tests have also been performed on the SHA-1 hashing algo-

rithm. Since this algorithm always uses a fixed amount of nrgmo
it has been written so that it does not use memory allocatéal da
structures. Instead, each function receives all the vatureeds as
separate parameters. Input data is received in a streamainam
put channel and new values are read only when the circuitidyre

48

to process them. This has the effect of reducing latencedmeer
closures have to be allocated, but it also means that tolees,
therefore data busses, can be very large. Closure memoriesri-
tinuations also need to store more variables and the cieodis up
taking 39% of the logic and 23% of the memory in a Stratix EFILS8
device. This program highlights several situations in \whsanple
optimizations could be added to the compiler to reduce the Gi
the circuit.

10. Conclusions

We have presented a compiler that automatically transfartrigh
level functional program into a parallel dataflow hardwaesatip-
tion. The compilation process, from a Scheme-like language
VHDL, requires no user intervention and the approach has bee
validated on non-trivial algorithms. Our system handlakaad
non-tail function calls, recursive functions and higheder func-
tions. This is done using closure memories which are digteith
throughout the circuit, eliminating bottlenecks that ebhinder
parallel execution. The dataflow architecture generateddh that
it could be implemented with power-efficient asynchronoirs c
cuits.

10.1 Related Work

Other research projects have studied the possibility afraatic
synthesis of hardware architectures using software pnogriag
languages. Lava [4] allows the structural description @f-level
combinatorial circuits in Haskell by the use of higher-arélenc-
tions. It does not translate functional programs into hanew
Handel-C [6] is a subset of the C language which can be com-
piled directly to hardware, but it lacks support for featurehich
are common in C, like pointers. Moreover it only supportsnied
functions (“macros” which cannot be recursive). Schemedtss
been applied to hardware synthesis in the context of therBehe
Machine project at Indiana University [20][15][5]. That vkoalso
does not support non-tail function calls and higher-ordecfions.

10.2 FutureWork

In this work, our focus was to show that it is feasible to cdmpi
functional description of a computation into a paralletait. We
think it would be good to implement our generic hardware com-
ponents in asynchronous logic to target very low power discu
Asynchronous FPGAs [19] are being designed and these chips
would be the perfect targets for our approach. As mentiomed p
viously, an exciting prospect is the application of our cdatjpn
technique to hardware/software co-design for reconfidarelips
containing embedded processors and to Globally Asynchuiono
Locally Synchronous (GALS) architectures [7] which alloery
high speed and massively parallel execution by eliminathmy
need for a global clock.

Several optimizations normally applied to software progga
can be added to our compiler to produce more efficient cscuit
For example, constant propagation can be used to reducadtte w
of busses and the size of memories, and even eliminate some su
perfluous closures. The simple inlining technique desdribeSec-
tion 5.4 could be replaced by a more clever one or one thatadan t
into account the amount of logic available to implement tineudt
or the desired level of parallelism. Common subexpression-e
ination, which compacts the circuit and reduces parattelimay
also be interesting to explore for space constrained agtjwits.

As explained in Section 6, several improvements could beemad
to the memory management.

Our language lacks some useful constructs, sucteas ex-
pressions, dynamically allocatable vectors, and datastywhich
would greatly enhance its expressiveness. A type systenidwou

Scheme and Functional Programming, 2006

also be useful to determine the width of busses and memariks a
to perform static type checking.

References

[1] IEEE Std 1364-2001 Verilog® Hardware Description Language
IEEE, 2001.

[2] A. W. Appel and T. Jim. Continuation-passing, closuesging style.

In POPL ’'89: Proceedings of the 16th ACM SIGPLAN-SIGACT

symposium on Principles of programming languageges 293-302.

ACM Press, 1989.

G. M. Birtwistle and A. Davis, editorsAsynchronous Digital Circuit

Design Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1995.

P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lavewhaee

design in Haskell. INCFP '98: Proceedings of the third ACM

SIGPLAN international conference on Functional programgni

pages 174-184, New York, NY, USA, 1998. ACM Press.

[5] R. G. Burger. The Scheme Machine. Technical Report Tieahn
Report 413, Indiana University, Computer Science Departme
August 1994.

[6] Celoxica. Handel-C Language Reference Manual RM-1003-4.0.
http://www.celoxica.com, 2003.

[7] A. Chattopadhyay and Z. Zilic. GALDS: a complete framelvéor
designing multiclock ASICs and SoCH#EE Transactions on Very
Large Scale Integration (VLSI) Syster8(6):641-654, June 2005.

[8] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhadtoesl
SpecC: Specification Language and Methodoldggringer, 2000.

[9] D. Geer. Is it time for clockless chip@omputer pages 18-21, March
2005.

[10] C. Giraud-Carrier. A reconfigurable dataflow machineifigplement-
ing functional programming languageSIGPLAN Not.29(9):22-28,
1994.

[11] R. Gupta and G. D. Micheli. Hardware/Software Co-Dasilm IEEE
Proceedingsvolume 85, pages 349365, March 1997.

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicola. SPARK : A High-
Level Synthesis Framework For Applying Parallelizing Calep
Transformations. Innternational Conference on VLSI Desjgdew
Delhi, India, January 2003.

[13] J. Guy L. Steele. Rabbit: A Compiler for Scheme. Techhieport,
Cambridge, MA, USA, 1978.

[14] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modu&CTOR
Formalism for Atrtificial Intelligence. IfProc. of the 3rd International
Joint Conference on Artificial Intelligencpages 235-245, 1973.

[15] S. D. Johnson. Formal derivation of a scheme computechfical
Report Technical Report 544, Indiana University Compuigeixke
Department, September 2000.

[16] T. Johnsson. Lambda lifting: transforming programseoursive
equations. InFunctional programming languages and computer
architecture. Proc. of a conference (Nancy, France, Se385) New
York, NY, USA, 1985. Springer-Verlag Inc.

[17] R. Kelsey, W. Clinger, and J. Rees (eds.). RevisBeport on the
Algorithmic Language Scheme. IHigher-Order and Symbolic
Computationvolume 11, August 1998.

[18] O. G. Shivers.Control-flow analysis of higher-order languages of
taming lambda PhD thesis, Carnegie Mellon University, 1991.

[19] J. Teifel and R. Manohar. An Asynchronous Dataflow FPGA
Architecture. IEEE Transactions on Computers (special issue)
November 2004.

[20] M. E. Tuna, S. D. Johnson, and R. G. Burger. Continuation
in Hardware-Software Codesign. IEEE Proceedings of the
International Conference on Computer Desigrages 264—269,
October 1994.

[21] C. Van Berkel, M. Josephs, and S. Nowick. Applicatiorfs o
asynchronous circuits. IRroceedings of the IEEE/olume 87,
pages 223-233, Feb. 1999.

13

—

[4

fla.aer

Scheme and Functional Programming, 2006

49

