
Extensible NcML for AI/ML Ready Data on the THREDDS Data Server
Leo Matak1,2, Tara Drwenski1, Hailey Johnson1, Thomas Martin1;

1University Corporation for Atmospheric Research (UCAR), NSF Unidata Program Center, Boulder, USA;
2Department of Civil and Environmental Engineering, University of Houston, Houston, Texas, USA

Ø The THREDDS Data Server (TDS) hosts a vast array of data
Ø For certain Machine Learning applications, data preprocessing is desirable
Ø In this project I added a mechanism for custom, server-side data processing (in

Java) which allows an implementation of any preprocessing routines

Ø Implement the service provider by following the interface shown below
Ø Write the NcML to define the desired data transformation
Ø Results? Data integrity while enabling virtual preprocessing directly on the

server

Summary How to do it?

Introduction

Conclusion

• The THREDDS Data Server
(TDS) is a web server
developed by NSF Unidata, a
program under the University
Corporation for Atmospheric
Research (UCAR).

• The TDS provides access to
scientific datasets using
standard data access protocols.

public interface EnhancementProvider {

 boolean appliesTo(Enhance enhance, AttributeContainer
attributes, DataType dt);

 Enhancement create(VariableDS var);
}

• Data preprocessing can enhance AI performance
• This summer internship project aimed to develop extensible

NcML for data preprocessing using the service provider
mechanism of Java.

• Server administrators to set up any desired data
transformations.

• Admins can then virtually transform and preprocess their
data without altering the original datasets.

Generic server side data processing

GOAL How it works?

Data processing directly on TDS

• Users can now easily preprocess data using our extensible
NcML service.

• Developed solution offers generic server-side data processing.
• TDS Administrators can configure any necessary data

transformations.
• Users of TDS, latest snapshot, can benefit from pre-established

preprocessing routines set up by admins.
• AI/ML data preprocessing, for instance the transformation in

the scikit-learn package can be seamlessly integrated, offering
versatile data transformation capabilities.

• We use Java’s Service Provider pattern, where a concrete
implementation of a service interface can be loaded at runtime
without any hardcoding or modifying of the existing code.

• Admins can now make a custom implementation of the
following interface:

• The implemented data transformation is defined using the
NcML (which stands for NetCDF Markup Language) for any
dataset and variable

• Here shown is an example of using the Classifier class on
temperature raw data:

<variable name="Temperature_height_above_ground">
 <attribute name="classify" value="0 65 0; 65 85 1; 85 inf 2"/>
</variable>

• The above code will perform the following classification:

Temperature [F] [0,65) [65,85) [85,inf)
Assigned Class 0 (bearable) 1 (Comfort.) 2 (Not good)

Classified Data

Raw Data

• Data can be virtually modified directly on the server side
• Server-side computation preserves data integrity and

encourages reproducible workflows
• Here shown is another example from TDS[1] where relative

humidity variable is being classified as specified with the
NcML

<variable name="Relative_humidity_height_above_ground">
 <attribute name="classify" value="0 45 0; 45 75 1; 75 100 2"/>
</variable>

Raw Data Classified Data

[1] https://thredds-test.unidata.ucar.edu/thredds
References

This project was part of my NSF Unidata 2024
Summer Internship

