
Stanford University — CS261: Optimization Handout 18
Luca Trevisan March 8, 2011

Lecture 18

In which we show how to use expert advice, and introduce the powerful “multiplicative
weight” algorithm.

We study the following online problem. We have n “experts” that, at each time step
t = 1, . . . , T , suggest a strategy about what to do at that time (for example, they
might be advising on what technology to use, on what investments to make, they
might make predictions on whether something is going to happen, thus requiring
certain actions, and so on). Based on the quality of the advice that the experts
offered in the past, we decide which advice to follow, or with what fraction of our
investment to follow which strategy. Subsequently, we find out which loss or gain
was associated to each strategy, and, in particular, what loss or gain we personally
incurred with the strategy or mix of strategies that we picked, and we move to step
t+ 1.

We want to come up with an algorithm to use the expert advice such that, at the
end, that is, at time T , we are about as well off as if we had known in advance
which expert was the one that gave the best advice, and we had always followed the
strategy suggested by that expert at each step. Note that we make no probabilistic
assumption, and our analysis will be a worst-case analysis over all possible sequences
of events.

The “multiplicative update” algorithm provides a very good solution to this problem,
and the analysis of this algorithm is a model for the several other applications of this
algorithm, in rather different contexts.

1 A Simplified Setting

We begin with the following simplified setting: at each time step, we have to make a
prediction about an event that has two possible outcomes, and we can use the advice
of n “experts,” which make predictions about the outcome at each step. Without
knowing anything about the reliability of the experts, and without making any prob-
abilistic assumption on the outcomes, we want to come up with a strategy that will
lead us to make not much more mistakes than the “offline optimal” strategy of picking

1

the expert which makes the fewest mistakes, and then always following the prediction
of that optimal expert.

The algorithm works as follows: at each step t, it assigns a weight wti to each expert i,
which measures the confidence that the algorithm has in the validity of the prediction
of the expert. Initially, w0

i = 1 for all experts i. Then the algorithm makes the
prediction that is backed by the set of experts with largest total weight. For example,
if the experts, and us, are trying to predict whether the following day it will rain or
not, we will look at the sum of the weights of the experts that say it will rain, and
the sum of the weights of the experts that say it will not, and then we agree with
whichever prediction has the largest sum of weights. After the outcome is revealed,
we divide by 2 the weight of the experts that were wrong, and leave the weight of the
experts that were correct unchanged.

We now formalize the above algorithm in pseudocode. We use {a, b} to denote the
two possible outcomes of the event that we are required to predict at each step.

• for each i ∈ {1, . . . , n} do w1
i := 1

• for each time t ∈ {1, . . . , T}

– let wt :=
∑

iw
t
i

– if the sum of wti over all the experts i that predict a is≥ wt/2,
then predict a

– else predict b

– wait until the outcome is revealed

– for each i ∈ {1, . . . , n}
∗ if i was wrong then wt+1

i := wti/2

To analyze the algorithm, let mt
i be the indicator variable that expert i was wrong at

time t, that is, mt
i = 1 if the expert i was wrong at time i and mt

i = 0 otherwise. (Here
m stands for “mistake.”) Let mi =

∑T
t=1m

t
i be the total number of mistakes made

by expert i. Let mt
A be the indicator variable that our algorithm makes a mistake at

time t, and mA :=
∑T

t=1m
t
A be the total number of mistakes made by our algorithm.

We make the following two observations:

1. If the algorithm makes a mistake at time t, then the total weight of the experts
that are mistaken at time t is ≥ wt/2, and, at the following step, the weight of
those experts is divided by two, and this means that, if we make a mistake at
time t then

wt+1 ≤ 3

4
wt

2

Because the initial total weight is w1 = n, we have that, at the end,

wT+1 ≤
(

3

4

)mA

· n

2. For each expert i, the final weight is wT+1
i = 2−mi , and, clearly,

1

2mi
= wT+1

i ≤ wT+1

Together, the two previous observations mean that, for every expert i,

1

2mi
≤
(

3

4

)mA

· n

which means that, for every expert i,

mA ≤ O(mi + log n)

That is, the number of mistakes made by the algorithm is at most a constant times
the number of mistakes of the best expert, plus an extra O(log n) mistakes.

We will now discuss an algorithm that improves the above result in two ways. We will
show that, for every ε, the improved algorithm we can make the number of mistakes
be at most (1 + ε)mi + O

(
1
ε

log n
)

for every ε, which can be seen to be optimal for
small n, and the improved algorithm will be able to handle a more general problem,
in which the experts are suggesting arbitrary strategies, and the outcome of each
strategy can be an arbitrary gain or loss.

2 The General Result

We now consider the following model. At each time step t, each expert i suggests a
certain strategy. We choose to follow the advice of expert i with probability pti, or,
equivalently, we allocate a pti fraction of our resources in the way expert i advised.
Then we observe the outcome of the strategies suggested by the experts, and of our
own strategy. We call mt

i the loss incurred by following the advice of expert i. The
loss can be negative, in which case it is a gain, and we normalize losses and gains so
that mt

i ∈ [−1, 1] for every i and every t. Our own loss for the time step t will then
be
∑

i p
t
im

t
i. At the end, we would like to say that our own sum of losses is not much

higher than the sum of losses of the best expert.

As before, our algorithm maintains a weight for each expert, corresponding to our
confidence in the expert. The weights are initialized to 1. When an expert causes a

3

loss, we reduce his weight, and when an expert causes a gain, we increase his weight.
To express the weight updated in a single instruction, we have wt+1

i := (1− εmt
i) ·wti ,

where 0 < ε < 1/2 is a parameter of our choice. Our probabilities pti are chosen
proportionally to weights wti .

• for each i ∈ {1, . . . , n} do w1
i := 1

• for each time t ∈ {1, . . . , T}

– let wt :=
∑

iw
t
i

– let pti := wti/w
t

– for each i, follow the strategy of expert i with probability pti

– wait until the outcome is revealed

– let mt
i be the loss of the strategy of expert i

– for each i ∈ {1, . . . , n}
∗ wt+1

i := (1− ε ·mt
i) · wti

To analyze the algorithm, we will need the following technical result.

Fact 1 For every ε ∈ [−1/2, 1/2],

eε−ε
2 ≤ 1 + ε ≤ eε

Proof: We will use the Taylor expansion

ex = 1 + x+
x2

2
+
x3

3!
+ · · ·

1. The upper bound. The Taylor expansion above can be seen as ex = 1 + x +∑∞
t=1 x

2t ·
(

1
(2t)!

+ x
(2t+1)!

)
, that is, ex equals 1 + x plus a sum of terms that are

all non-negative when x ≥ −1. Thus, in particular, we have 1 + ε ≤ eε for
ε ∈ [−1/2, 1/2].

2. The lower bound for positive ε. We can also see that, for x ∈ [0, 1], we have

ex ≤ 1 + x+ x2

and so, for ε ∈ [0, 1] we have

eε−ε
2 ≤ 1 + ε− ε2 + ε2 − 2ε3 + ε4 ≤ 1 + ε

4

3. The lower bound for negative ε. Finally, for x ∈ [−1, 0] we have

ex = 1 + x+
x2

2
+
∞∑
t=1

x2t+1

(
1

(2t+ 1)!
+

x

(2t+ 2)!

)
≤ 1 + x+

x2

2

and so, for ε ∈ [−1/2, 0] we have

eε−ε
2 ≤ 1 + ε− ε2 +

1

2
ε2 − ε3 +

1

4
ε4 ≤ 1 + ε

�

Now the analysis proceeds very similarly to the analysis in the previous section. We
let

mt
A :=

∑
i

ptim
t
i

be the loss of the algorithm at time t, and mA :=
∑T

t=1m
t
A the total loss at the end.

We denote by mi :=
∑T

t=1m
t
i the total loss of expert i.

If we look at the total weight at time t+ 1, it is

wt+1 =
∑
i

wt+1
i =

∑
i

(1− εmt
i) · wti

and we can rewrite it as

wt+1 = wt −
∑
i

εmt
iw

t
i = wt − wtε ·

∑
i

mt
ip
t
i = wt · (1− εmt

A)

Recalling that, initially, w1 = n, we have that the total weight at the end is

wT+1 = n ·
T∏
t=1

(1− εmt
A)

For each expert i, the weight of that expert at the end is

wT+1
i =

T∏
t=1

(1− εmt
i)

and, as before, we note that for every expert i we have

5

wT+1
i ≤ wT+1

Putting everything together, for every expert i we have

T∏
t=1

(1− εmt
i) ≤ n ·

T∏
t=1

(1− εmt
A)

Now it is just a matter of taking logarithms and of using the inequality that we proved
before.

ln
T∏
t=1

(1− εmt
A) =

T∑
i=1

ln 1− εmt
A ≤ −

T∑
i=1

εmt
A = −εmA

ln
T∏
t=1

(1− εmt
i) =

T∑
t=1

ln 1− εmT
i ≥

T∑
t=1

−εmt
i − ε2(mt

i)
2

and, overall,

mA ≤ +mi + ε
T∑
i=1

|mt
i|+

lnn

ε
(1)

In the model of the previous section, at every step the loss of each expert is either 0
or 1, and so the above expression simplifies to

mA ≤ (1 + ε)mi +
lnn

ε

which shows that we can get arbitrarily close to the best expert.

In every case, (1) simplifies to

mA ≤ mi + εT +
lnn

ε

and, if we choose ε =
√

lnn/T , we have

mA ≤ mi + 2
√
T lnn

which means that we come close to the optimum up to a small additive error.

To see that this is essentially the best that we can hope for, consider a playing a
fair roulette game as follows: for T times, we either bet $1 on red or $1 on black. If

6

we win we win $1, and if we lose we lose $1; we win and lose with probability 1/2
each at each step. Clearly, for every betting strategy, our expected win at the end
is 0. We can think of the problem as there being two experts: the red expert always
advises to bet red, and the black expert always advises to bet black. For each run of
the game, the strategy of always following the best expert has a non-negative gain
and, on average, following the best expert has a gain of Ω(

√
T), because there is Ω(1)

probability that the best expert has a gain of Ω(
√
T). This means that we cannot

hope to always achieve at least the gain of the best expert minus o(
√
T), even in a

setting with 2 experts.

3 Applications

The general expert setting is very similar to a model of investments in which the
experts correspond to stocks (or other investment vehicles) and the outcomes corre-
spond to the variation in value of the stocks. The difference is that in our model
we “invest” one unit of money at each step regardless of what happened in previous
steps, while in investment strategies we compound our gains (and losses). If we look
at the logarithm of the value of our investment, however, it is modeled correctly by
the experts setting.

The multiplicative update algorithm that we described in the previous section arises in
several other contexts, with a similar, or even identical, analysis. For example, it arises
in the context of boosting in machine learning, and it leads to efficient approximate
algorithms for certain special cases of linear programming.

7

	A Simplified Setting
	The General Result
	Applications

