
Stanford University — CS261: Optimization Handout 8
Luca Trevisan January 27, 2011

Lecture 8

In which we show how to round a linear programming relaxation in order to approxi-
mate the set cover problem, and we show how to reason about the dual of the relaxation
to derive a simple combinatorial approximation algorithm for the weighted case.

Recall that in Set Cover we are given a finite set U and a collection S1, . . . , Sn of
subsets of U . We want to find the fewest sets whose union is U , that is, the smallest
I ⊆ {1, . . . , n} such that

⋃
i∈I Si = U .

We described an algorithm whose approximation guarantee is ln |U | + O(1). The
lower bound technique that we used in our analysis was to realize that if we have a
subset D ⊆ U of elements, such that every set Si contains at most t elements of D,
then opt ≥ |D|/t.
Today we will describe a linear programming relaxation of set cover, and we will show
a way to round it, in order to achieve an O(log |U |) approximation.

We will also show that the lower bounds to the optimum that we used in the analysis
of the greedy algorithm can also be expressed as feasible solutions for the dual of our
linear programming relaxation.

1 A Linear Programming Relaxation of Set Cover

We begin by formulating the set cover problem as an Integer Linear Programming
problem. Given an input (U, S1, . . . , Sn) of the set cover problem, we introduce a
variable xi for every set Si, with the intended meaning that xi = 1 when Si is selected,
and xi = 0 otherwise. We can express the set cover problem as the following integer
linear program:

minimize
∑n

i=1 xi

subject to ∑
i:v∈Si

xi ≥ 1 ∀v ∈ U
xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ∈ N ∀i ∈ {1, . . . , n}

(1)

1

From which we derive the linear programming relaxation

minimize
∑n

i=1 xi

subject to ∑
i:v∈Si

xi ≥ 1 ∀v ∈ U
xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ≥ 0 ∀i ∈ {1, . . . , n}

(2)

Remark 1 In an earlier lecture, we noted that every instance G of the vertex cover
problem can be translated into an instance (U, S1, . . . , Sn) of the set cover problem in
which every element of U belongs precisely to two sets. The reader should verify that
the linear programming relaxation (3) of the resulting instance of set cover is identical
to the linear programming relaxation of the vertex cover problem on the graph G.

More generally, it is interesting to consider a weighted version of set cover, in which
we are given the set U , the collection of sets S1, . . . , Sn, and also a weight wi for every
set. We want to find a sub-collection of minimal total weight whose union is U , that
is, we want to find I such that

⋃
i∈I Si = U , and such that

∑
i∈I wi is minimized. The

unweighted problem corresponds to the case in which all weights wi equal 1.

The ILP and LP formulation of the unweighted problem can easily be generalized to
the weighted case: just change the objective function from

∑
i xi to

∑
i wixi.

minimize
∑n

i=1 wixi

subject to ∑
i:v∈Si

xi ≥ 1 ∀v ∈ U
xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ≥ 0 ∀i ∈ {1, . . . , n}

(3)

Suppose now that we solve the linear programming relaxation (3), and we find an
optimal fractional solution x∗ to the relaxation, that is, we are given a number x∗i
in the range [0, 1] for every set Si. Unlike the case of vertex cover, we cannot round
the x∗i to the nearest integer, because if an element u belongs to 100 sets, it could be
that x∗i = 1/100 for each of those sets, and we would be rounding all those numbers
to zero, leaving the element u not covered. If we knew that every element u belongs
to at most k sets, then we could round the numbers ≥ 1/k to 1, and the numbers
< 1/k to zero. This would give a feasible cover, and we could prove that we achieve a
k-approximation. Unfortunately, k could be very large, even n/2, while we are trying
to prove an approximation guarantee that is never worse than O(log n).

Maybe the next most natural approach after rounding the x∗i to the nearest integer is
to think of each x∗i as a probability, and we can think of the solution x∗ as describing
a probability distribution over ways of choosing some of the subsets S1, . . . , Sn, in
which we choose S1 with probability x∗1, S2 with probability x∗2, and so on.

2

Algorithm RandomPick

• Input: values (x1, . . . , xn) feasible for (3)

• I := ∅

• for i = 1 to n

– with probability xi, assign I := I∪{i}, otherwise do nothing

• return I

Using this probabilistic process, the expected cost of the sets that we pick is
∑

i wix
∗
i ,

which is the same as the cost of x∗ in the linear programming problem, and is at most
the optimum of the set cover problem. Unfortunately, the solution that we construct
could have a high probability of missing some of the elements.

Indeed, consider the probabilistic process “from the perspective” of an element u.
The element u belongs to some of the subsets, let’s say for simplicity the first k sets
S1, . . . , Sk. As long as we select at least one of S1, . . . , Sk, then we are going to cover
u. We select Si with probability x∗i and we know that x∗1 + · · ·x∗k ≥ 1; what is the
probability that u is covered? It is definitely not 1, as we can see by thinking of the
case that u belongs to only two sets, and that each set has an associated x∗i equal
to 1/2; in such a case u is covered with probability 3/4. This is not too bad, but
maybe there are n/10 elements like that, each having probability 1/4 of remaining
uncovered, so that we would expect n/40 uncovered elements on average. In some
examples, Ω(n) elements would remain uncovered with probability 1 − 2−Ω(n). How
do we deal with the uncovered elements?

First of all, let us see that every element has a reasonably good probability of being
covered.

Lemma 2 Consider a sequence of k independent experiments, in which the i-th ex-
periment has probability pi of being successful, and suppose that p1 + · · · + pk ≥ 1.
Then there is a probability ≥ 1− 1/e that at least one experiment is successful.

Proof: The probability that no experiment is successful is

(1− p1) · · · · (1− pk) (4)

This is the kind of expression for which the following trick is useful: 1− x is approx-
imately e−x for small values of x.

More precisely, using the Taylor expansion around 0 of ex, we can see that, for 0 ≤
x ≤ 1

3

e−x = 1− x +
x2

2
− x3

3!
+ · · ·

and so

1− x ≤ e−x (5)

because

e−x − (1− x) =

(
x2

2
− x3

3!

)
+

(
x4

4!
− x5

5!

)
· · · ≥ 0

where the last inequality follows from the fact that we have an infinite sum of non-
negative terms.

Combining (4) and (5) we have

(1− p1) · · · · (1− pk) ≤ e−p1−...−pk ≤ e−1

�

Our randomized rounding process will be as follows: we repeat the procedure Ran-
domPick until we have covered all the elements.

Algorithm RandomizedRound

1. Input: x1, . . . , xn feasible for (3)

2. I := ∅

3. while there are elements u such that u 6∈
⋃

i∈I Si

• for i := 1 to n

– with probability xi, assign I := I ∪ {i}, otherwise do
nothing

4. return I

How do we analyze such a procedure? We describe a very simple way to get a loose
estimate on the quality of the cost of the solution found by the algorithm.

Fact 3 There is a probability at most e−100 that the while loop is executed for more
than ln |U | + 100 times. In general, there is a probability at most e−k that the while
loop is executed form more than ln |U |+ k times.

4

Proof: The probability that we need to run the while loop for more than ln |U |+ k
times is the same as the probability that, if we run the body of the while loop (that
is, the RandomPick procedure) for exactly ln |U | + k steps, we end up with some
uncovered elements.

Consider an element v ∈ U . For each iteration of the while loop, there is a probability
at most 1/e that v is not covered by the sets added to I in that iteration. The
probability that v is not covered after ln |U |+ k iterations is then at most

(
1

e

)ln |U |+k

=
1

|U |
· e−k

The probability that, after ln |U |+k iterations, there is an element that is not covered,
is at most the sum over all v of the probability that v is not covered, which is at most
e−k. �

Fact 4 Fix any positive integer parameter t and any feasible solution (x1, . . . , xn) for
(3). Then the expected size of I in Algorithm RandomizedRound on input (x1, . . . , xn)
after t iterations (or at the end of the algorithm, if it ends in fewer than t iterations)
is at most

t ·
n∑

i=1

wixi

Proof: Let A1, . . . , At be the total cost of the elements assigned to I by the algorithm
during the first, second, . . ., t-th iteration, respectively. Let W denote the total weight∑

i∈I wi after t iterations (or at the end of the algorithm if it terminates in fewer than
t iterations). Note that these are random variables determined by the random choices
made by the algorithm. Clearly, we have, with probability 1,

W ≤ A1 + · · ·+ At

where we do not have equality because certain elements might be assigned to I in
more than one iteration.

If the algorithm stops before the j-th iteration, then Aj = 0, because there is no j-th
iteration and so no assignment happens during it. Conditioned on the j-th iteration
occurring, the expectation of Aj is

E[Aj|jth iteration happens] =
n∑

i=1

wixi

and so we have

5

E[Aj] ≤
n∑

i=1

wixi

�

Recall that Markov’s inequality says that if X is a non-negative random variable (for
example, the size of a set), then, for every c > E X

P[X ≥ c] ≤ E X

c

For example, P[X ≥ 2 E X] ≤ 1/2.

We can combine these observations to get a rather loose bound on the size of the set
output by RandomizedRound

Fact 5 Given an optimal solution (x∗1, . . . , x
∗
n) to (3), algorithm RandomizedRound

outputs, with probability ≥ .45, a feasible solution to the set cover problem that con-
tains at most (2 ln |U |+ 6) · opt sets.

Proof: Let t := ln |U | + 3. There is a probability at most e−3 < .05 that the
algorithm runs the while loop for more than t steps. After the first t steps, the
expected total weight of the solution I is at most t

∑
i wix

∗
i , which is at most t · opt.

Thus, the probability that the solution I, after the first t steps, contains sets of total
weight more than 2t · opt is at most 1/2. Taking the union of the two events, there
is a probability at most .55 that either the algorithm runs for more than t iterations,
or that it adds to its solution sets of total cost more than 2t · opt in the first t steps.

Equivalently, there is a probability at least .45 that the algorithm halts within t
iterations and that, within that time, it constructs a solution of total cost at most
2t · opt. �

2 The Dual of the Relaxation

In a past lecture, we analyzed a simple greedy algorithm for unweighted set cover, that
repeatedly picks a set that covers the largest number of uncovered elements, until all
elements are covered, and we proved that the algorithm uses at most (ln |U |+O(1))·opt
sets.

As in all analyses of approximation algorithms, we had to come up with ways to
prove lower bounds to the optimum. In the unweighted case, we noted that if we
have a subset D ⊆ U of elements (D for “difficult” to cover), and every Si contains

6

at most t elements of D, then opt ≥ |D|/t. In the weighted case, neither this lower
bound technique nor the approximation analysis works. It is possible to modify the
algorithm so that, at every step, it picks the set that is most “cost-effective” at
covering uncovered elements, and we can modify the analysis to take weights into
accounts. This modification will be easier to figure out if we first think about the
analysis of our previous algorithm in terms of the dual of the LP relaxation of set
cover.

To form the dual of (3), we first note that the constraints xi ≤ 1 do not change the
optimum, because a solution in which some xis are bigger than 1 can be converted
to a solution in which all variables are ≤ 1 while decreasing the objective function,
and so no variable is larger than 1 in an optimal solution, even if we do not have the
constraint xi ≤ 1.

If we work with this simplified version of the LP relaxation of set cover

minimize
∑n

i=1 wixi

subject to ∑
i:v∈Si

xi ≥ 1 ∀v ∈ U
xi ≥ 0 ∀i ∈ {1, . . . , n}

(6)

we see that its dual is an LP with one variable yv for every element v ∈ U , and it is
defined as follows:

maximize
∑

v∈U yv

subject to ∑
v:v∈Si

yv ≤ wi ∀i ∈ {1, . . . , n}
yv ≥ 0 ∀v ∈ U

(7)

That is, we assign a “charge” to every element, subject to the constraint that, for
every set, the sum of the charges of the elements of the set are at most 1. The cost
of the dual solution (and a lower bound to the optimum of the set cover problem) is
the sum of the charges.

In the unweighted case, wi = 1 for every i. Suppose that we are in the unweighted
case, and that we notice a set D ⊆ U of elements such that every Si contains at most
t elements of D. Then we can form the feasible dual solution

yv :=

{
1
t

if v ∈ D
0 otherwise

This is a feasible dual solution of cost |D|/t, and so it is a way to formulate our old
lower bound argument in the language of dual solutions. The simplest extension of
this example to the weighted setting is that: if we have a set D of elements such that
for every set Si of weight wi we have that Si contains at most t · wi elements of D;

7

then the assignment yv := 1/t for v ∈ D and yv := 0 for v 6∈ D is a feasible dual
solution of cost |D|/t, and so the optimum is at most |D|/t.
These observations are already enough to derive a version of the greedy algorithm for
weighted instances.

Algorithm: SetCoverGreedy

• Input: set U , subsets S1, . . . , Sn, weights w1, . . . , wn

• I := ∅

• while there are uncovered elements v ∈ U such that v 6∈ Si for every i ∈ I

– let D be the set of uncovered elements

– for every set Si, let ei := |D ∩ Si|/wi be the cost effectiveness of Si

– let Si∗ be a set with the best cost-effectiveness

– I := I ∪ {i∗}

• return I

We adapt the analysis of the unweighted case.

Let v1, . . . , vm be an enumeration of the elements of U in the order in which they are
covered by the algorithm. Let cj be the cost-effectiveness of the set that was picked
at the iteration in which vj was covered for the first time. Then, in that iteration,
there is a set D of at least m− j + 1 elements, and every set Si of weight wi contains
at most wicj elements of D. This means that setting yv1 = · · · = yvj−1

= 0 and
yvj

= · · · = yvm = 1/cj is a feasible dual solution of cost (m− j + 1)/cj, and so

opt ≥ (m− j + 1)
1

cj

If we denote by apx the cost of the solution found by our algorithm, we see that

apx =
m∑

j=1

1

cj

because, at each iteration, if we pick a set Si∗ of weight wi∗ that covers t new elements,
then each of those t elements has a parameter cj equal to t/wi∗ , and so when we sum
1/cj over all elements vj that are covered for the first time at that iteration, we get
exactly the weight wi∗ .

Rearranging the equations, we get again

8

apx ≤
m∑

j=1

1

m− j + 1
· opt ≤ (ln m + O(1)) · opt

9

	A Linear Programming Relaxation of Set Cover
	The Dual of the Relaxation

