
Stanford University — CS261: Optimization Handout 5
Luca Trevisan January 18, 2011

Lecture 5

In which we introduce linear programming.

1 Linear Programming

A linear program is an optimization problem in which we have a collection of variables,
which can take real values, and we want to find an assignment of values to the variables
that satisfies a given collection of linear inequalities and that maximizes or minimizes
a given linear function.

(The term programming in linear programming, is not used as in computer program-
ming, but as in, e.g., tv programming, to mean planning.)

For example, the following is a linear program.

maximize x1 + x2

subject to
x1 + 2x2 ≤ 1
2x1 + x2 ≤ 1
x1 ≥ 0
x2 ≥ 0

(1)

The linear function that we want to optimize (x1 + x2 in the above example) is
called the objective function. A feasible solution is an assignment of values to the
variables that satisfies the inequalities. The value that the objective function gives
to an assignment is called the cost of the assignment. For example, x1 := 1

3
and

x2 := 1
3

is a feasible solution, of cost 2
3
. Note that if x1, x2 are values that satisfy the

inequalities, then, by summing the first two inequalities, we see that

3x1 + 3x2 ≤ 2

that is,

1



x1 + x2 ≤
2

3

and so no feasible solution has cost higher than 2
3
, so the solution x1 := 1

3
, x2 := 1

3

is optimal. As we will see in the next lecture, this trick of summing inequalities to
verify the optimality of a solution is part of the very general theory of duality of linear
programming.

Linear programming is a rather different optimization problem from the ones we have
studied so far. Optimization problems such as Vertex Cover, Set Cover, Steiner Tree
and TSP are such that, for a given input, there is only a finite number of possible
solutions, so it is always trivial to solve the problem in finite time. The number
of solutions, however, is typically exponentially big in the size of the input and so,
in order to be able to solve the problem on reasonably large inputs, we look for
polynomial-time algorithms. In linear programming, however, each variable can take
an infinite number of possible values, so it is not even clear that the problem is
solvable in finite time.

As we will see, it is indeed possible to solve linear programming problems in finite
time, and there are in fact, polynomial time algorithms and efficient algorithms that
solve linear programs optimally.

There are at least two reasons why we are going to study linear programming in a
course devoted to combinatorial optimization:

• Efficient linear programming solvers are often used as part of the toolkit to
design exact or approximate algorithms for combinatorial problems.

• The powerful theory of duality of linear programming, that we will describe in
the next lecture, is a very useful mathematical theory to reason about algo-
rithms, including purely combinatorial algorithms for combinatorial problems
that seemingly have no connection with continuous optimization.

2 A Geometric Interpretation

2.1 A 2-Dimensional Example

Consider again the linear program (1). Since it has two variables, we can think of any
possible assignment of values to the variables as a point (x1, x2) in the plane. With
this interpretation, every inequality, for example x1 + 2x2 ≤ 1, divides the plane into
two regions: the set of points (x1, x2) such that x1 + 2x2 > 1, which are definitely not
feasible solutions, and the points such that x+1+2x2 ≤ 1, which satisfy the inequality

2



and which could be feasible provided that they also satisfy the other inequalities. The
line with equation x1 + 2x2 = 1 is the boundary between the two regions.

The set of feasible solutions to (1) is the set of points which satisfy all four inequalities,
shown in blue below:

The feasible region is a polygon with four edges, one for each inequality. This is not
entirely a coincidence: for each inequality, for example x1 + 2x2 ≤ 1, we can look at
the line which is the boundary between the region of points that satisfy the inequality
and the region of points that do not, that is, the line x1+2x1 = 1 in this example. The
points on the line that satisfy the other constraints form a segment (in the example,
the segment of the line x1 + 2x2 = 1 such that 0 ≤ x1 ≤ 1/3), and that segment is
one of the edges of the polygon of feasible solutions. Although it does not happen
in our example, it could also be that if we take one of the inequalities, consider the
line which is the boundary of the set of points that satisfy the inequality, and look
at which points on the line are feasible for the linear program, we end up with the
empty set (for example, suppose that in the above example we also had the inequality
x1 + x2 ≥ −1); in this case the inequality does not give rise to an edge of the polygon
of feasible solutions. Another possibility is that the line intersects the feasible region
only at one point (for example suppose we also had the inequality x1 + x2 ≥ 0). Yet
another possibility is that our polygon is unbounded, in which case one of its edges
is not a segment but a half-line (for example, suppose we did not have the inequality
x1 ≥ 0, then the half-line of points such that x2 = 0 and x1 ≤ 1 would have been an
edge).

To look for the best feasible solution, we can start from an arbitrary point, for example
the vertex (0, 0). We can then divide the plane into two regions: the set of points
whose cost is greater than or equal to the cost of (0, 0), that is the set of points such
that x1 + x2 ≥ 0, and the set of points of cost lower than the cost of (0, 0), that is,

3



the set of points such that x1 + x2 < 0. Clearly we only need to continue our search
in the first region, although we see that actually the entire set of feasible points is in
the first region, so the point (0, 0) is actually the worst solution.

So we continue our search by trying another vertex, for example (1/2, 0). Again we
can divide the plane into the set of points of cost greater than or equal to the cost of
(1/2, 0), that is the points such that x1 +x2 ≥ 1/2, and the set of points of cost lower
than the cost of (1, 0). We again want to restrict ourselves to the first region, and we
see that we have now narrowed down our search quite a bit: the feasible points in the
first region are shown in red:

So we try another vertex in the red region, for example
(

1
3
, 1

3

)
, which has cost 2

3
. If

we consider the region of points of cost greater than or equal to the cost of the point
(1/3, 1/3), that is, the region x1 + x2 ≥ 2/3, we see that the point (1/3, 1/3) is the
only feasible point in the region, and so there is no other feasible point of higher cost,
and we have found our optimal solution.

2.2 A 3-Dimensional Example

Consider now a linear program with three variables, for example

maximize x1 + 2x2 − x3

subject to
x1 + x2 ≤ 1
x2 + x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

(2)

4



In this case we can think of every assignment to the variables as a point (x1, x2, x3)
in three-dimensional space. Each constraint divides the space into two regions as
before; for example the constraint x1 + x2 ≤ 1 divides the space into the region of
points (x1, x2, x3) such that x1 + x2 ≤ 1, which satisfy the equation, and points such
that x1 + x2 > 1, which do not. The boundary between the regions is the plane of
points such that x1 + x2 = 1. The region of points that satisfy an inequality is called
a half-space.

The set of feasible points is a polyhedron (plural: polyhedra). A polyhedron is
bounded by faces, which are themselves polygons. For example, a cube has six faces,
and each face is a square. In general, if we take an inequality, for example x3 ≥ 0,
and consider the plane x3 = 0 which is the boundary of the half-space of points that
satisfy the inequality, and we consider the set of feasible points in that plane, the
resulting polygon (if it’s not the empty set) is one of the faces of our polyhedron.
For example, the set of feasible points in the place x3 = 0 is the triangle given by
the inequalities x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1, with vertices (0, 0, 0), (0, 1, 0) and
(1, 0, 0). So we see that a 2-dimensional face is obtained by taking our inequalities
and changing one of them to equality, provided that the resulting feasible region is
two-dimensional; a 1-dimensional edge is obtained by changing two inequalities to
equality, again provided that the resulting constraints define a 1-dimensional region;
and a vertex is obtained by changing three inequalities to equality, provided that the
resulting point is feasible for the other inequalities.

As before, we can start from a feasible point, for example the vertex (0, 0, 0), of cost
zero, obtained by changing the last three inequalities to equality. We need to check
if there are feasible points, other than (0, 0, 0), such that x1 + 2x2 − x3 ≥ 0. That is,
we are interested in the set of points such that

x1 + x2 ≤ 1
x2 + x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0
x1 + 2x2 − x3 ≥ 0

which is again a polyhedron, of which (0, 0, 0) is a vertex. To find another vertex, if
any, we try to start from the three inequalities that we changed to equality to find
(0, 0, 0), and remove one to see if we get an edge of non-zero length or just the point
(0, 0, 0) again.

For example, if we keep x1 = 0, x2 = 0, we see that only feasible value of x3 is zero,
so there is no edge; if we keep x1 = 0, x3 = 0, we have that the region 0 ≤ x2 ≤ 1 is
feasible, and so it is an edge of the above polyhedron. The other vertex of that edge
is (0, 1, 0), which is the next solution that we shall consider. It is a solution of cost

5



2, so, in order to look for a better solution, we want to consider the polyhedron

x1 + x2 ≤ 1
x2 + x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0
x1 + 2x2 − x3 ≥ 2

In order to see if this polyhedron has any edge of non-zero length, we again keep only
two of the three equations that defined our vertex (0, 1, 0), that is only two of the
equations x1 = 0, x3 = 0, x1 + x2 = 1. If we keep the first two, (0, 1, 0) is the only
feasible point. If we keep x3 = 0 and x1 + x2 = 1, then (0, 1, 0) is again the only
feasible point. If we keep x1 = 0 and x + 1 + x2 = 1, that is x1 = 0 and x2 = 1, we
see again that the only feasible point is (0, 1, 0). These are the only three edges that
could have had (0, 1, 0) as an endpoint, and since (0, 1, 0) is a vertex of the above
polytope, we have to conclude that the polytope has no edge, and so it is made of
the single point (0, 1, 0).

This means that (0, 1, 0) is the optimal solution of (2)

2.3 The General Case

In general, if we have linear program with n variables x1, . . . , xn, we can think of
every assignment to the variables as an n-dimensional point (x1, . . . , xn) in Rn.

Every inequality a1x1 + . . . anxn ≤ b divides the space Rn into the region that satisfies
the inequality and the region that does not satisfy the inequality, with the hyperplane
a1x1 + · · · anxn being the boundary between the two regions. The two regions are
called half-spaces.

The set of feasible points is an intersection of half-spaces and is called a polytope.

Generalizing the approach that we have used in the previous two examples, the follow-
ing is the outline of an algorithm to find an optimal solution to a given maximization
linear program:

1. Start from a vertex (a1, . . . , an) in the feasible region, by changing n of the
inequalities to equality in such a way that: (i) the resulting n equations are
linearly independent, and (ii) the unique solution is feasible for the remaining
inequalities;

• If there is no such vertex, output “linear program is infeasible.”

6



2. Consider the n possible edges of the polytope of feasible solutions that have
(a1, . . . , an) as an endpoint. That is, for each of the n equations that identified
(a1, . . . , an), set back that equation to an inequality, and consider the set of
solutions that are feasible for the other n − 1 equations and for the inequali-
ties (this set of points can be a line, a half-line, a segment, or just the point
(a1, . . . , an)).

• If there is an edge that contains points of arbitrarily large cost, then output
“optimum is unbounded”

• Else, if there are edges that contain points of cost larger than (a1, . . . , an),
then let (b1, . . . , bn) be the second endpoint of one of such edges

– (a1, . . . , an) := (b1, . . . , bn);

– go to 2

• Else, output “(a1, . . . , an) is an optimal solution”

This is the outline of an algorithm called the Simplex algorithm. It is not a complete
description because:

• We haven’t discussed how to find the initial vertex. This is done by constructing
a new polytope such that finding an optimal solution in the new polytope either
gives us a feasible vertex for the original linear program, or a “certificate” that
the original problem is infeasible. We then apply the Simplex algorithm to the
new polytope. Now, this looks like the beginning of an infinite loop, but the new
polytope is constructed in such a way that it is easy to find an initial feasible
vertex.

• We haven’t discussed certain special cases; for example it is possible for a poly-
tope to not have any vertex, for example if the number of inequalities is less
than the number of variables. (In such a case we can either add inequalities or
eliminate variables in a way that do not change the optimum but that creates
vertices.) Also there can be cases in which a vertex of a polytope in Rn is
the endpoint of more than n edges (consider a pyramid with a square base in
R3: the top vertex has is an endpoint of four edges), while the algorithm, as
described above, considers at most n edges for every vertex.

The simplex algorithm shows that a linear program can always be solved in finite
time, and in fact in time that is at most exponential in the number of variables. This
is because each iteration takes polynomial time and moves to a new vertex, and if
there are m inequalities and n variables there can be at most

(
m
n

)
≤ mn vertices.

Unfortunately, for all the known variants of the simplex method (which differ in the
way they choose the vertex to move to, when there is more than possible choice) there

7



are examples of linear programs on which the algorithm takes exponential time. In
practice, however, the simplex algorithm is usually very fast, even on linear programs
with tens or hundreds of thousands of variables and constraints.

2.4 Polynomial Time Algorithms for LInear Programming

Two (families of) polynomial time algorithms for linear programming are known.

One, called the ellipsoid algorithm, starts by finding an ellipsoid (the high-dimensional
analog of an ellipse, a “squashed disk”) that contains the optimal solution, and then,
at every step, it constructs another ellipsoid whose volume is a smaller than the
previous one, while still being guaranteed to contain the optimal solution. After
several iterations, the algorithm identifies a tiny region that contains the optimal
solution. It is known that if a linear program has a finite optimum, the values of the
xi in the optimal solution are rational numbers in which both the denominator and
numerator have a polynomial number of digits in the size of the input (assuming all
coefficients in the objective function and in the inequalities are also rational numbers
and that we count the number of digits in their fractional representation when we
compute the size of the input), and so if the final ellipsoid is small enough there is
only one point with such rational coordinates in the ellipsoid.

The other algorithm, which is actually a family of algorithms, uses the interior point
method, in which the algorithm computes a sequence of points in the interior of the
polytope (in contrast to the simplex algorithm, which finds a sequence of vertices
on the exterior of the polytope), where each point is obtained from the previous
one by optimizing a properly chosen function that favors points of higher cost for
the objective function, and disfavors points that are too close to the boundary of the
polytope. Eventually, the algorithm finds a point that is arbitrary close to the optimal
vertex, and the actual optimal vertex can be found, like in the ellipsoid method, once
it is the unique point with bounded rational coordinates that is close to the current
point.

2.5 Summary

Here are the important points to remember about what we discussed so far:

• In a linear program we are given a set of variables x1, . . . , xn and we want to find
an assignment to the variables that satisfies a given set of linear equalities, and
that maximizes or minimizes a given linear objective function of the variables.
An assignment that satisfies the inequalities is called a feasible solution;

• If we think of every possible assignment to the variables as a point in Rn, then
the set of feasible solutions forms a polytope;

8



• It is possible that there is no feasible solution to the given inequalities, in which
case we call the linear program infeasible.

• If the linear program is feasible, it is possible that it is of maximization type
and there are solutions of arbitrarily large cost, or that it is of minimization
type and there are solutions of arbitrarily small cost. In this case we say that
the linear program is unbounded. Sometimes we will say that the optimum of an
unbounded maximization linear program is +∞, and that the optimum of an
unbounded minimization linear program is −∞, even though this is not entirely
correct because there is no feasible solution of cost +∞ or −∞, but rather a
sequence of solutions such the limit of their cost is +∞ or −∞.

• If the linear program is feasible and not unbounded then it has a finite optimum,
and we are interested in finding a feasible solution of optimum cost.

• The simplex algorithm, the ellipsoid algorithm, and the interior point algorithms
are able, given a linear program, to determine if it is feasible or not, if feasible
they can determine if it is bounded or unbounded, and if feasible and bounded
they can find a solution of optimum cost. All three run in finite time; in the
worst case, the simplex algorithm runs in exponential time, while the other
algorithms run in time polynomial in the size of the input.

• When we refer to the “size of the input” we assume that all coefficients are
rational numbers, and the size of the input is the total number of bits necessary
to represent the coefficients of the objective function and of the inequalities as
ratios of integers. For example, the rational number a/b requires log2 a+log2 b+
O(1) bits to be represented, if a and b have no common factor.

3 Standard Form for Linear Programs

We say that a maximization linear program with n variables is in standard form if
for every variable xi we have the inequality xi ≥ 0 and all other m inequalities are of
≤ type. A linear program in standard form can be written as

maximize cTx
subject to

Ax ≤ b
x ≥ 0

(3)

Let us unpack the above notation.

9



The vector c =

 c1
...
cn

 ∈ Rn is the column vector of coefficients of the objective

function, x =

 x1
...
xn

 is the column vector of variables, cT = (c1, . . . , cn) is the

transpose of c, a row vector, and cTx is the matrix product of the 1× n “matrix” cT

times the n× 1 “matrix” x, which is the value

c1x1 + · · · cnxn

that is, the objective function.

The matrix A is the n×m matrix of coefficients of the left-hand sides of the inequal-
ities, and b is the m-dimensional vector of right-hand sides of the inequalities. When

we write a ≤ b, for two vectors a =

 a1
...
am

 and b =

 b1
...
bm

 we mean the m

inequalities a1 ≤ b1, . . . , am ≤ bm, so the inequality Ax ≤ b means the collection of
inequalities

a1,1x1 + · · ·+ a1,nxn ≤ b1

· · ·

am,1x1 + · · ·+ am,nxn ≤ bm

Putting a linear program in standard form is a useful first step for linear programming
algorithms, and it is also useful to develop the theory of duality as we will do in the
next lecture.

It is easy to see that given an arbitrary linear program we can find an equivalent
linear program in standard form.

• If we have a linear program in which a variable x is not required to be ≥ 0, we
can introduce two new variables x′ and x′′, apply the substitution x← x′ − x′′

in every inequality in which x appears, and add the inequalities x′ ≥ 0, x′′ ≥ 0.
Any feasible solution for the new linear program is feasible for the original one,
after assigning x := x′ − x′′, with the same cost; also, any solution that was
feasible for the original program can be converted into a solution for the new
linear program, with the same cost, by assigning x′ := x, x′′ := 0 if x > 0 and
x′ := 0, x′′ = −x if x ≤ 0.

10



• If we have an inequality of ≥ type, other than the inequalities xi ≥ 0, we
can change sign to the left-hand side and the right-hand side, and change the
direction of the inequality.

• Some definitions of linear programming allow equations as constraints. If we
have an equation aTx = b, we rewrite it as the two inequalities aTx ≤ b and
−aTx ≤ −b.

The standard form for a minimization problem is

minimize cTx
subject to

Ax ≥ b
x ≥ 0

(4)

As we did for maximization problems, every minimization problem can be put into
normal form by changing the sign of inequalities and doing the substitution x→ x′−x′′

for every variable x that does not have a non-negativity constraint x ≥ 0.

11


	Linear Programming
	A Geometric Interpretation
	A 2-Dimensional Example
	A 3-Dimensional Example
	The General Case
	Polynomial Time Algorithms for LInear Programming
	Summary

	Standard Form for Linear Programs

