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What Is...Simple? 

What makes a mechanism “simple” or “complex”? 

 



What Is...Simple? 

What makes a mechanism “simple” or “complex”? 

 

Simple vs. Optimal Theorem [Hartline/Roughgarden 09] 
(extending [Chawla/Hartline/Kleinberg 07]): in single-
parameter settings, independent but not identical private 
valuations: 
 

 

             ≥ 

3 

expected revenue of  VCG 
with monopoly reserves 
 

½ �(OPT expected revenue) 



What Is...Simple? 

[Babaioff/Immorlica/Lucier/Weinberg 14] for a single 
buyer, k items, additive and independent valuations: 
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•  [Yao 15] extends to multiple buyers 

•  [Rubinstein/Weinberg 15] extends to subadditive valuations. 

4 

better of  selling the 
grand bundle or 
selling items separately 

constant �(OPT expected revenue) 



Quantifying Simplicity 

Goal: quantitative definition of  “mechanism simplicity.” 

Some example research directions: 

•  upper and lower bounds on best-possible performance 
guarantees of  simple mechanisms 
•  e.g., identify settings where only complex mechanisms can be 

approximately optimal 

•  automatic consequences of  simplicity  
•  formal justification for pursuit of  simple mechanisms 
•  e.g., to learning near-optimal auctions from data 
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Simplicity Has Many Forms 

•  will consider only direct-revelation DSIC mechanisms 
•  randomized mechanisms OK 

•  not discussed: distinctions between DSIC, “obviously” 
DSIC [Li 15], deferred acceptance [Milgrom/Segal 15]  

•  not discussed: indirect mechanisms, e.g. with message 
space << type space 
•  useful simplicity measure = number of  actions/dimension of  

message space [Roughgarden 14] 

•  not discussed: polynomial communication/computation 
•  not very relevant in our motivating examples 

6 



Related Work 

•  menu complexity [Hart/Nisan 13] 
•  measures complexity of  a single deterministic mechanism 
•  maximum number of  distinct options (allocations/prices) 

available to a player (ranging over others’ bids) 
•  selling items separately = maximum-possible menu complexity 

(exponential in the number of  items) 
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Related Work 

•  menu complexity [Hart/Nisan 13] 
•  measures complexity of  a single deterministic mechanism 
•  maximum number of  distinct options (allocations/prices) 

available to a player (ranging over others’ bids) 
•  selling items separately = maximum-possible menu complexity 

(exponential in the number of  items) 

•  mechanism design via machine learning [Balcan/Blum/
Hartline/Mansour 08] 
•  covering number measures complexity of  a family of  auctions 
•  prior-free setting (benchmarks instead of  unknown distributions) 
•  near-optimal mechanisms for unlimited-supply settings 
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Pseudodimension: Examples 

Proposed simplicity measure of  a class C of  mechanisms: 
pseudodimension of  the real valued functions (from  
valuation profiles to revenue) induced by C.  
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Pseudodimension: Examples 

Proposed simplicity measure of  a class C of  mechanisms: 
pseudodimension of  the real valued functions (from  
valuation profiles to revenue) induced by C.  

Examples:  

•  Vickrey auction, anonymous reserve      O(1) 

•  Vickrey auction, bidder-specific reserves          O(n log n) 

•  grand bundling/selling items separately           O(k log k) 

•  virtual welfare maximizers            unbounded 
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Pseudodimension: Implications 

Theorem: [Haussler 92], [Anthony/Bartlett 99] if  C has low 
pseudodimension, then it is easy to learn from data the   
best mechanism in C. 



Pseudodimension: Implications 

Theorem: [Haussler 92], [Anthony/Bartlett 99] if  C has low 
pseudodimension, then it is easy to learn from data the   
best mechanism in C. 

•  “data” = samples from unknown valuation distribution F 
•  Yahoo! example: [Ostrovsky/Schwarz 09] 
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s samples 
v1,...,vs 

from F  

mechanism 
M(v1,...,vs) 

valuation profile vs+1 
drawn from F 

revenue of  
M on vs+1 



Pseudodimension: Implications 

Theorem: [Haussler 92], [Anthony/Bartlett 99] if  C has low 
pseudodimension, then it is easy to learn from data the 
best mechanism in C. 
•  “data” = samples from unknown valuation 

distribution F 
•  Yahoo! example: [Ostrovsky/Schwarz 09] 

•  theoretical work: [Elkind 07], [Dhangwatnotai/Roughgarden/
Yan 10], [Cole/Roughgarden 14], [Chawla/Hartline/Nekipelov 
14], [Medina/Mohri 14], [Cesa-Bianchi/Gentile/Mansour 15], 
[Dughmi/Han/Nisan 15], [Huang/Mansour/Roughgarden 15], 
[Devanur/Huang/Psomas 15], ... 



Pseudodimension: Implications 

Theorem: [Haussler 92], [Anthony/Bartlett 99] if  C has low 
pseudodimension, then it is easy to learn from data the 
best mechanism in C. 
•  obtain     samples v1,...,vs from F,     

where d = pseudodimension of  C, valuations in [0,H] 
•  let M* = mechanism of  C with maximum total 

revenue on the samples 

Guarantee: with high probability, expected revenue of  
M* (w.r.t. F) withinε of  optimal mechanism in C. 
  

 s =
!Ω(H 2ε −2d)



Pseudodimension: Definition 

[Pollard 84] 

Let F = set of  real-valued functions on domain X. 
 (for us, X = valuation profiles, F = mechanisms, range = revenue) 

F shatters a finite subset S={v1,...,vs} of  X if: 

•  there exist real-valued thresholds t1,...,ts such that: 

•  for every subset T of  S 

•  there exists a function f  in F such that: 
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f(vi) ≥ ti  ó  vi in T  



Pseudodimension: Example 

Let C = second-price single-item auctions with bidder-
specific reserves. 

Claim: C can only shatter a subset S={v1,...,vs} if  s = 
O(n log n).   (hence pseudodimension O(n log n)) 
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Pseudodimension: Example 

Let C = second-price single-item auctions with bidder-
specific reserves. 

Claim: C can only shatter a subset S={v1,...,vs} if  s = 
O(n log n).   (hence pseudodimension O(n log n)) 

Proof  sketch: Fix S.   
•  Bucket auctions of  C according to relative ordering of  the n 

reserve prices with the ns numbers in S. (#buckets ≈ (ns)n) 

•  Within a bucket, allocation is constant, revenue varies in simple 
way => at most sn distinct “labellings” of  S. 

•  Since need 2s labellings to shatter S, s = O(n log n).  
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Consequences 

Meta-theorem: simple vs. optimal results automatically 
extend from known distributions to unknown distributions 
with a polynomial number of  samples. 

Examples:  
•  Vickrey auction, anonymous reserve      O(1) 
•  Vickrey auction, bidder-specific reserves          O(n log n) 
•  grand bundling/selling items separately           O(k log k) 

Guarantee: with              , with high probability, 
expected revenue of  M* (w.r.t. F) withinε of  optimal 
mechanism in C. 

18 

 s =
!Ω(H 2ε −2d)



Simplicity-Optimality Trade-Offs 

Simple vs. Optimal Theorem: in single-parameter settings, 
independent but not identical private valuations: 
 

             ≥ 
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expected revenue of  VCG 
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Simplicity-Optimality Trade-Offs 

Simple vs. Optimal Theorem: in single-parameter settings, 
independent but not identical private valuations: 
 

             ≥ 

 

t-Level Auctions: can use t reserves per bidder. 
•  winner = bidder clearing max # of  reserves, tiebreak by value  
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Simplicity-Optimality Trade-Offs 

Simple vs. Optimal Theorem: in single-parameter settings, 
independent but not identical private valuations: 
 

             ≥ 

 
t-Level Auctions: can use t reserves per bidder. 
•  winner = bidder clearing max # of  reserves, tiebreak by value  

Theorem: (i) pseudodimension = O(nt log nt); 
(ii) to get a (1-ε)-approximation, enough to take                 
t ≈ H/ε[for matroids] and t ≈ Hn2/ε[in general] 
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expected revenue of  VCG 
with monopoly reserves 
 

½ �(OPT expected revenue) 



Summary 

•  pseudodimension = classical definition from 
statistical learning theory, appealing way to quantify 
the “simplicity” of  a family of  mechanisms 

•  analytically tractable to upper bound in many cases 
•  simple vs. optimal results extend from known 

distributions to unknown distributions with a 
polynomial number of  samples 

Wide open: incorporate computational complexity 
issues (cf., computational learning theory). 
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