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Abstract

Braess’s Paradox is the counterintuitive fact that removing edges from a network with “selfish
routing” can decrease the latency incurred by traffic in an equilibrium flow. We prove that
Braess’s Paradox is likely to occur in a natural random network model: with high probability,
there is a traffic rate and a set of edges whose removal improves the latency of traffic in an
equilibrium flow by a constant factor.

Keywords: Braess’s Paradox; random graphs; selfish routing; traffic equilibria

*A preliminary version of this paper appeared in the Proceedings of the 7th ACM Conference on Electronic
Commerce, June 2006.

tComputer Science Division, University of California, Berkeley. Part of this work was done while visiting Stanford
University and supported in part by DARPA grant W911NF-05-1-0224. Email: gvaliant@eecs.berkeley.edu.

fDepartment of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford, CA 94305.
This research was supported in part by ONR grant N00014-04-1-0725, DARPA grant W911NF-05-1-0224, an NSF CA-
REER Award, an ONR Young Investigator Award, and an Alfred P. Sloan Fellowship. Email: tim@cs.stanford.edu.



1 Introduction

Braess’s Paradox is a counterintuitive phenomenon about routing traffic in a congested network;
it was first discovered by Braess [5] in the first network shown in Figure 1. Assume that many
small network users travel from the vertex s to the vertex t, with each user choosing an s-t path
independently and selfishly, to minimize the delay experienced. Each edge of the network is labeled
with its latency function, which describes the delay incurred by traffic on the link as a function of
the amount of traffic that uses the link. We assume that the traffic rate — the total amount of
traffic in the network — is 1. We also assume that traffic in the network reaches an “equilibrium
flow”, the natural outcome of “selfish routing” in which all traffic simultaneously travels along
minimum-latency paths. In the (unique) equilibrium flow, all traffic uses the route s - v — w — ¢
and experiences two units of latency. On the other hand, if we remove the edge (v, w) to obtain
the second network in Figure 1, then in the ensuing equilibrium flow half of the traffic uses each
of the routes s - v — t and s - w — t. In this equilibrium, all network users experience latency
3/2 and are thus better off than before. Thus, removing links can improve the performance of the
equilibrium flow of a selfish routing network.
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Figure 1: Braess’s Paradox

Since its discovery in 1968 [5], Braess’s Paradox has generated an enormous amount of research
in the transportation, networking, and theoretical computer science communities (see [27] and
Section 1.2 below). However, remarkably little is known about whether Braess’s Paradox is a
common real-world phenomenon, or a mere theoretical curiosity. Differentiating between these
two possibilities is clearly an important issue. For example, it is well known that equilibrium
flows arise not only in networks with “source routing”—networks where each end user is assumed
to possess knowledge of the entire network and the ability to choose an end-to-end path for its
traffic—but also in networks that use a distributed delay-based routing protocol to route traffic,
such as the OSPF protocol with delay as the edge metric (see e.g. [3, 14]). Motivated by this fact,
a recent sequence of papers in the networking literature [1, 9, 18, 19, 20] studied strategies that
allocate additional capacity to a network without causing Braess’s Paradox to arise—intuitively,
without overprovisioning a counterproductive “cross-edge” like the edge (v,w) in Figure 1. If
Braess’s Paradox is a rare event in selfish routing networks, then such strategies might be largely
superfluous for real-world networks. If Braess’s Paradox is a widespread phenomenon, then the
problem of adding capacity (or new edges) to a selfish routing network must be treated with care.

In summary, the following basic but poorly understood question motivates our work:

Is Braess’s Paradox a “pathological” example or a pervasive phenomenon?



1.1 Owur Results

Qualitatively, our main result is the following: in a natural random network model, Braess’s Paradoz
occurs with high probability. To state our results formally, define the Braess ratio of a network as
the largest factor by which the removal of one or more edges can improve the latency of traffic in
an equilibrium flow. For example, the Braess ratio of the network in Figure 1 is 4/3. For our model
of random networks, we prove the following.

(R1) With high probability as n — oo, a random n-vertex network admits a choice of traffic rate
such that the resulting Braess ratio is strictly greater than 1.

Here and throughout this paper, “with high probability” means with probability tending to 1 as
n — oo. Thus Braess’s Paradox is a common occurrence in large selfish routing networks, rather
than an isolated anomaly.

We prove a significantly stronger result, as follows.

(R2) There is a constant p > 1 such that, with high probability as n — oo, a random n-vertex
network admits a choice of traffic rate such that the resulting Braess ratio is at least p.

For each fixed number n of network vertices, the probabilities in (R1) and (R2) are with respect
to the random choice of the graph and of the edge latency functions. Our random graph model is
the standard Erdos-Renyi G(n,p) model [10], and we work with a fairly general model of random
affine latency functions (see Section 2.2 for details). The traffic rate is not random and is chosen
(as a function of n) so that it scales appropriately with the “volume” of the network. Some such
scaling of the traffic rate appears to be necessary for our results (see Section 5).

The first result (R1) already answers our motivating question and indicates that Braess’s Para-
dox is widespread, but the second result (R2) is stronger in several respects. Most obviously, it
shows that removing a set of edges can improve the latency of traffic in an equilibrium flow by a
constant factor bounded away from 1 (with high probability as n — oo0). We can also quantify this
constant in some cases. In one model, we show that a random network typically has a Braess ratio
arbitrarily close to 4/3, the largest possible in networks with affine latency functions [29].

Also, the second result (R2) requires understanding the “global” structure of a random net-
work. Our proof of (R2) shows that, in a precise sense, a random network behaves like a modest
generalization of the network in Figure 1. The first result (R1), by contrast, might plausibly be
proved using only “local” arguments. For example, one could try to prove (R1) as follows: net-
works similar to that in Figure 1 occur sufficiently frequently as subnetworks in a random network,
and perhaps under some additional (frequently met) conditions, removing the “cross-edge” of one
or more such subnetworks improves the equilibrium flow. (It is not clear, however, that such a
proof approach can be made to work; we do not know how to prove (R1) along such lines.) The
second result (R2), which shows that a coordinated removal of a large fraction of a network’s edges
improves the equilibrium flow latency by a constant factor, seems unprovable by any type of local
argument.

1.2 Related Work

Several previous works have shed some understanding on the prevalence of Braess’s Paradox. On
the empirical side, there has been a small amount of anecdotal evidence suggesting that Braess’s
Paradox has occurred in certain road networks [11, 17, 24].



On the theoretical side, a number of papers have explored the ranges of parameters under
which Braess’s Paradox can occur; most of these, however, confined their attention to the four-
node network of Figure 1 [12, 16, 25, 26] or limited generalizations [13]. Indeed, it was only recently
discovered that Braess’s Paradox can be more severe in large, complex networks than in Braess’s
original four-node example [22, 28].

Most relevant to the present work are several papers in the transportation science literature
that give analytical conditions that partially characterize whether or not a given path of edges is
improving, in the sense that its removal will improve the equilibrium flow in the network. Steinberg
and Zangwill [30] and Taguchi [31] gave the earliest (independent and incomparable) results along
these lines; the former paper was subsequently generalized by Dafermos and Nagurney [7]. Such
analytical characterizations reduce the problem of bounding the frequency of Braess’s Paradox
in a random network model to the (possibly easier) problem of bounding the likelihood that a
certain inequality holds. This potential application was explicitly pointed out by Steinberg and
Zangwill [30], who also noted that the form of their analytical characterization of improving routes
suggested that Braess’s Paradox should be common rather than rare.

The approach of [7, 30, 31] suffers from some drawbacks, however. First, the ambitious goal
of analytically characterizing improving edges led to a strong extra requirement in [7, 30, 31]: the
analyses in these papers explicitly assume that removing the edge(s) in question does not cause new
s-t paths to carry traffic. This assumption fails e.g. in the network of Figure 1, and it is not clear
that it typically holds in large random networks. It is singled out by Steinberg and Zangwill [30,
§7] as the key open issue in their analysis.

Second, even when this additional assumption holds, it is not clear that analyzing the probability
that the (somewhat complex) conditions of [7, 30, 31] hold is more tractable than directly analyzing
the probability that Braess’s Paradox occurs. While the condition of Steinberg and Zangwill [30]
suggests that this probability could be large, rigorously analyzing it in random graphs appears
challenging.

Third, all of the above characterizations consider only the effects of locally modifying a network.
This local approach seems incapable of proving an analogue of our second result (R2), which
shows that the coordinated deletion of a large set of edges yields a constant-factor improvement in
equilibrium flow latency.

In summary, we believe the present paper to be the first to explicitly define a natural probability
distribution over selfish routing networks and analyze the probability that Braess’s Paradox occurs,
to consider non-local network modifications, and to quantify the Braess ratio in large random
networks.

2 The Model

2.1 Selfish Routing Networks

We study a single-commodity flow network, described by a graph G = (V, E) with a source vertex s
and a sink vertex t. We assume for convenience that all graphs are undirected, although allowing
directed graphs would not affect our results in any significant way. We denote the set of simple s-t
paths by P, and we assume that this set is nonempty. A flow f is a nonnegative vector, indexed
by P. For a fixed flow f we define fo = Y pcp..cp fp as the amount of traffic using edge e en
route from s to t. With respect to a finite and positive traffic rate r, a flow f is said to be feasible
if Y pep fp=1. An edge e is f-flow-carrying if f, > 0; a vertex other than the source or sink is
f-flow-carrying if it has an f-flow-carrying incident edge.



We model congestion in the network by assigning each edge e a nonnegative, continuous, non-
decreasing latency function £, that describes the delay incurred by traffic on e as a function of
the edge congestion f.. The latency of a path P in G with respect to a flow f is then given by
Lp(f) = Y ecple(fe). We call a triple (G, r,£) an instance.

Section 1 informally discussed equilibrium flows; we now make this notion precise.

Definition 2.1 ([32]) A flow f feasible for (G, r,£) is at Nash equilibrium or is a Nash flow if for
all P, P, € P with fp, >0, £p,(f) < ¢p,(f)-

Thus all paths in use by a flow at Nash equilibrium have equal latency. Every selfish routing
network admits at least one Nash flow [2]. Moreover, Nash flows are “essentially unique” in the
sense that the latency incurred by traffic is the same in every Nash flow of a network [2]. We use
L(G,r,£) to denote the common latency of all traffic in a flow at Nash equilibrium for the instance
(G,r,0).

The following well-known characterization of Nash flows will be instrumental in our proofs. It
follows easily from the fact that a flow at Nash equilibrium routes traffic only on minimum-latency
paths.

Proposition 2.2 ([28]) Let f be a flow feasible for (G, r, £). For a vertez v, let d(v) denote the
length, with respect to edge lengths Le(f.), of a shortest s-v path in G. Then

d(w) - d(v) < Ee(fe)
for all edges e = (v,w), and f is at Nash equilibrium if and only if equality holds whenever fo > 0.

We also use the intuitive but non-obvious fact that the latency L(G,r,¥¢) of traffic in a Nash
flow is continuous and increasing in the traffic rate r.

Proposition 2.3 ([15, 21]) For every fized network G and strictly increasing latency functions £,
the value L(G,r,£) is continuous and strictly increasing in r.

2.2 Models of Random Networks

To rigorously claim that Braess’s Paradox is or is not likely to occur, we need to fix a model of
random selfish routing networks. Such a model contains (at least) two ingredients: a probability
distribution over graphs and a probability distribution over edge latency functions. While the field
of random graph theory (e.g. [4]) provides many possible definitions of and analytical tools for
random graphs, choices for the definition of a “random latency function” are less obvious. In this
paper, we make the following two basic modeling assumptions.

(1) The underlying graph G is distributed according to the standard Erdés-Renyi G(n, p) model [10].
Precisely, for a fixed number n > 2 of vertices, two of which are designated as a source s and
a sink ¢, we assume that each possible (undirected) edge is present independently with prob-
ability p. We also assume that p = Q(n~1/2+¢) for some ¢ > 0.

(2) Latency functions are affine—of the form £(z) = az + b with a,b > 0.

We make the first assumption simply because the Erdos-Renyi model is the most popular and
widely studied definition of a random graph. Our proof techniques do not crucially use detailed
properties of this model, however, and we suspect that they are general enough to apply to every



random graph model where a typical graph is “sufficiently dense and uniform”. Whether or not
our results carry over to models of sparse or non-uniform random graphs is an interesting open
question.

Our motivation for assumption (2) is that affine latency functions are, informally, the simplest
functions that allow Braess’s Paradox to occur. More precisely, in networks with only constant
latency functions or with only affine latency functions with zero constant terms, deleting edges can
only increase the latency of a flow at Nash equilibrium [8]. On the other hand, allowing nonlinear
latency functions only increases the worst-case severity of Braess’s Paradox. For example, the
network of Figure 1 has the largest-possible Braess ratio among all networks with affine latency
functions [29], but larger Braess ratios are possible in networks with nonlinear latency functions [28].

Since our goal is to lower bound both the frequency and severity of Braess’s Paradox in random
networks, our restriction to the relatively benign class of affine latency functions is well motivated.
Also, our analysis approach will be evidently robust enough to extend, with some work, to simple
models of random nonlinear latency functions.

Even for affine latency functions, many models are possible. We focus most of our attention on
the independent coefficients model (Section 3). Here, we assume that there are two fixed distribu-
tions A and B, and each edge is independently given a latency function #(x) = ax + b, where a and
b are drawn independently from A and B, respectively. We prove our main result for this model
— for almost every random network, for some traffic rate, removing some set of edges improves
the latency of a Nash flow by a constant factor — under mild assumptions on the distributions A
and B.

We also consider the 1/z model, where each edge is assigned independently the latency function
£(z) = z with probability ¢ and the latency function £(z) = 1 with probability 1 — g. This model
is not a special case of the independent coefficients model, as there is now (complete) dependence
between the a- and b-coefficients of the latency function of an edge. While stylized, this model serves
several purposes: it shows that independence of coefficients is not essential for our earlier results; it
provides a clean example of how our high-level proof approach can be adapted to different random
network models; and we can obtain a precise bound on the Braess ratio of a random network in
this model (as a function of the parameters p and ¢). For sufficiently small values of pg, we prove
that a random network in this model is essentially a worst-possible example of Braess’s Paradox.

3 The Independent Coefficients Model

3.1 Reasonable Distributions

As discussed in Section 2.2, we assume that the underlying graph G is drawn from G(n,p) with
p = Q(n*(l/ 2H'C) for some ¢ > 0. We also assume that each edge latency function has the form
£(z) = ax + b where a and b are drawn independently from distributions A and B that satisfy some
mild technical conditions. Precisely, we call A, B reasonable if:

(R1) A has bounded support [Amin, Amax] With Amin > 0;

(R2) a-coefficients are at least somewhat dense in some closed interval 14 of positive length, in the
sense that for every subinterval JCI4 of positive length, Pra € J] > 0;

(R3) b-coefficients are at least somewhat dense around zero in some closed interval Ip = [0,7] with
n > 0, in the sense that for every subinterval JCIg of positive length, Pr[b € J] > 0.



The assumption that a-coefficients are bounded away from 0 is necessary, in that otherwise a random

network almost surely contains an s-t path with essentially zero latency. Braess’s Paradox will not

occur in this case. The other assumptions are satisfied by most natural continuous distributions.
Our main result for the independent coefficients model is the following.

Theorem 3.1 Letp = Q(n*(l/Q)H:) be an edge sampling probability with { > 0 and A, B reasonable
distributions. There is a constant p = p((, A, B) > 1 such that, with high probability, a random
network (G, £) admits a choice of traffic rate r such that the Braess ratio of the instance (G,7,£) is
at least p.

3.2 Proof Approach

At the highest level, our plan is to show that a random network has a “global” structure similar
to that of the four-node network of Figure 1. For a sufficiently large random network (G, £), we
choose a suitable traffic rate r (scaling appropriately with the size of G) and consider a Nash flow f
for (G,r,£). Let d(v) denote the length of a shortest s-v path with respect to the edge latencies
induced by f. For example, in the first network of Figure 1, d(s) = 0, d(v) = d(w) = 1, and d(t) = 2;
in the second network, d(s) = 0, d(v) = 1/2, d(w) = 1, and d(¢t) = 3/2. Label the f-flow-carrying
vertices s = v1,...,v; = t so that d(vy) < --- < d(vg). A key step in our analysis, which we call the
“Delta Lemma”, is to show that d(vs) & d(vg_1), in the sense that d(vg_1) — d(v2) < d(vs), with
high probability. In other words, all “internal vertices” that are used by the Nash flow, va, ..., v5_1,
have relatively equal distance from the source (and the sink). Intuitively, the Delta Lemma holds
because there are far more “internal” edges (edges with endpoints v;,v;, 2 < 4,5, < k — 1) than
edges incident to the source and sink. We can thus regard G as essentially two sets of parallel links
with a small latency of § = d(vg_1) — d(v2) associated to the center node (with respect to the flow
at Nash equilibrium). We also prove an intuitive but technically non-trivial “Balance Lemma”,
which states that the latency of Nash flow paths is “balanced” between the two “halves” of the
network, in the sense that d(v2), d(vk—1) = d(t)/2, with high probability. See Figure 2.
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Figure 2: Delta and Balance Lemmas: A good approximation of the Nash flow latencies in a typical
random network at a suitably chosen traffic rate.

Next, we partition each of the two sets of parallel links into three groups. First are the edges
with a latency function with a b-coefficient that is roughly a parameter By > d(vz) + 0 and an
a-coefficient that is roughly a small parameter A;; by Proposition 2.2 and the definition of §, these
edges carry no traffic in the Nash flow of G. Second are the edges with a latency function with
a b-coefficient that is roughly a constant B; that is significantly smaller than d(vy), and also an
a-coefficient that is roughly a parameter Ay > A;. Edges in these two groups play roles analogous
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Figure 3: Partitioning the edges of a random network G, and the network G’ obtained from G by
deleting all “cross edges”. A thick line denotes several “essentially parallel” edges.

to the edges with the latency functions £(z) = 1 and £(z) = z in Figure 1, respectively. Third are
the remaining edges. Figure 3(a) shows the network G following this partitioning.

We obtain a subnetwork G’ by deleting edges from G in order to pair up the (unused) edges
with latency function roughly A;x + By with those with latency function roughly Asz + Bi. These
edge deletions are analogous to the removal of the edge (v, w) in Figure 1; see Figure 3(b). Proving
that this yields an improved flow at Nash equilibrium requires a careful comparison between the
benefit of employing a larger number of flow paths in G’ and the cost of using edges with relatively
large b-coefficients.

3.3 Good Networks

This section isolates a number of combinatorial properties possessed by almost all large random
networks; the next three sections prove that these properties are sufficient for a Braess ratio bounded
away from 1.

Fix an edge density p = Q(n~(/2%¢) with ¢ > 0 and reasonable distributions A, 8. In the
notation of the defining conditions of such distributions, let A; < Ay denote two points from the
interior of the interval 74 — the two points that equally trisect 14, say — and let B denote the
midpoint of interval Iz. Set the parameter ¢ = €((, A1, A2) to be a sufficiently small positive
constant; it will satisfy (1 —€)As > A; (and hence € < 1) and its exact value will be chosen in the
proof of Theorem 3.1.

Consider a random network G with source s and sink ¢. An edge is of 1-type if its a-coefficient
is at most A; and its b-coefficient lies in the interval (B, (1 + €)B). An edge is of X -type if its a-
coefficient lies in the interval ((1 —€) A9, A2) and its b-coefficient is less than eB. An edge is useless
if its b-coefficient is at least (1+¢€)B. We next classify the vertices v other than s and ¢ into groups.
It will be convenient to equalize the expected sizes of some of the groups. Toward this end, let ¢;
and gx denote the probabilities that a given edge is 1- or X-type, respectively. Requirements (R2)
and (R3) of reasonable distributions and our choices of the parameters A, A2, B, € ensure that both
of these probabilities are lower bounded by some positive constant. If pg1 (1 —pq1) < pgx (1 —pgx),



then the groups are:
e if (s,v) € G and is 1-type, while (v,t) is either absent or not 1-type, assign v to Si;

e if (s,v) € G and is X-type, while (v,t) is either absent or not X-type, assign v to T} with
probability pg1(1 — pg1)/pgx (1 — pgx) and to U with the remaining probability;

e if (v,t) € G and is 1-type, while (s,v) is either absent or not 1-type, assign v to So;

e if (v,t) € G and is X-type, while (s,v) is either absent or not X-type, assign v to T with
probability pg1(1 — pg1)/pgx (1 — pgx) and to U with the remaining probability;

e if each of (s,v) and (v,t) is either absent or useless, assign v uniformly at random to one of
the sets Q17 Q?a Q3;

e otherwise unclassified vertices are assigned to U.

If pg1(1—pg1) > pgx(1—pgx), then the assignments in the second and fourth cases are deterministic
(to T1 and T, respectively), while the assignments in the first and third cases are to S; and So,
respectively, with probability pgx (1 — pgx)/pgi(1 — pg1), and to U with the remaining probability.

This (random) grouping depends on G and ¢, on A and B (which determine A;, Ay, B), and
also on the choice of €. Observe that every vertex other than s and ¢ is assigned to at least one set,
and we allow a vertex to be assigned to both S; and Ts, or to both Sy and T.

Informally, a fixed network will be called good if there exists an outcome of the randomized
grouping experiment such that a number of random variables take on values close to their expec-
tations, where the expectation is over both the choice of the random n-vertex network, and of the
random grouping of the nodes of such a network. Precisely, for constants -y, 7 > 0, a network (G, £)
with n vertices is (v, 7)-good if, with positive probability, randomly grouping its vertices as above
causes the following random variables to take on values within a (1 4 (pn)~1/3) factor of their
expected values for a random grouping of a random n-vertex network:

(P1) the sizes of all of the above eight vertex groups;

(P2) for every pair 4, j of nonnegative integers with ¢ < Amax/7 and j < B/7 and each vertex v =
s,t, the number of edges (v,w) with w € V\{s,t} and with a- and b-coefficients in the
intervals [i7, (i + 1)7] and [j7, (j + 1)7], respectively;

(P3) for every pair i,j of nonnegative integers with i < Amax/7 and j < B/7 and each ver-
tex v = s,t, the number of edges (v,w) with w € U and with a- and b-coefficients in the
intervals [i7, (i + 1)7] and [j7, (5 + 1)7], respectively;

and also the following random variables take on values within a factor 2 of their expected values
for a random grouping of a random network:

(P4) for every pair u,v of vertices and every value 7 = 1,2,3, the number of vertices w in @; such
that edges (u,w) and (v, w) exist in G and have b-coefficient at most +.

Intuitively, property (P4) is useful for showing that vertices other than s and ¢ are highly connected
via short paths (as measured by the length parameter <), which is central to our “Delta Lemma”
(Sections 3.2 and 3.5). Properties (P2) and (P3) assert that the distributions of edge latency
functions incident to the source and the sink are nearly identical (as measured by the discretization
parameter 7). We leverage this fact in our proof of the “Balance Lemma” (Sections 3.2 and 3.6).

For arbitrarily small constants y and 7, a sufficiently large random network is (v, 7)-good with
high probability.



Lemma 3.2 Let p = Q(n_(1/2)+<) be an edge sampling probability with { > 0, A, B reasonable
distributions with parameters A1, Ao, B, and € = €((, A1, A2) a sufficiently small constant. For
every pair v, > 0 of constants, a random n-vertex network G is (vy,T)-good with probability
approaching 1 as n — 0.

Proof: We show that a random grouping of a sufficiently large random network satisfies proper-
ties (P1)—(P4) with high probability. This fact is a relatively straightforward consequence of the
following Chernoff bounds (e.g. [23]): if X is the sum of independent Bernoulli trials, then

Pr(X < (1 - B)E[X]) < e FIX18*/2

and ,
Pr[X > (1+ B)E[X]] < e "I/

for g € [0, 1].

In more detail, for property (P1), vertices v are assigned to the various vertex groups indepen-
dently, as a function only of the presence (or absence) of the edges (s,v) and (v,t), the latency
functions of these edges, and additional coin flips specific to v. A vertex has probability Q(p) of
being assigned to each group, where the hidden constant depends on the distributions A, B and
the choice of e. This constant is bounded away from zero because of requirements (R2) and (R3)
of reasonable distributions and the definitions of the parameters Ay, Ao, B, e. The expected size of
each group is therefore Q(pn) = Q(n'/21¢), and the Chernoff bounds (with 8 = (pn)~'/3) imme-
diately imply that the size of each group is within a (1 & (pn)~!/3) factor of its expectation with
probability inverse exponential in n.

The proof that property (P2) holds with high probability for a sufficiently large random network
is similar: since 7 is constant, there are only a constant number of choices of 72 and j, and the relevant
random variable for each choice is either deterministically zero or has expected value Q(pn), with
the hidden constant depending on A, B, and .

For property (P3), fix choices of 4, j and a choice of v = s,¢. Independently for each vertex w €
V\{s, t}, imagine simultaneously flipping the random coins for the potential edges (s, w) and (w, ?).
Depending on the choices of i and j, the probability that w lies in U and also the edge (v,w) is
present with latency function coefficients in the desired intervals is either zero or (p). The above
Chernoff arguments now apply.

For property (P4), fix u,v and a choice of i € {1,2,3}. Independently for each vertex w €
V\{s,t,u,v}, imagine simultaneously flipping the following independent random coins: those for
the potential edges (u,w) and (v, w); those for the potential edges (s, w) and (w,t) (to determine
whether or not w € Q1 U Q2 U @3); and a random choice of j € {1,2,3} (to determine which,
if any, of the Q;’s w lies in). The probability that w € Q; is at least 3(Pr[b > (1 + €)B])?,
which is ©Q(1) by requirement (R3) and our choices of B and e¢; the probability that this holds
and also both (u,w) and (v,w) are present in G with b-coefficients at most v is 2(p?), with the
hidden constant depending on B and 7. Thus, the expected number of vertices w that satisfy the
desired properties is Q(p?n) = Q(n%). The Chernoff Bounds (with 8 = 1/2) imply the desired
concentration result with probability inverse exponential in n.

Since we are concerned with only polynomially many different events, each of which fails to
occur with a probability that is inverse exponential in n, a Union Bound completes the proof. B

3.4 Key Ingredients and Main Argument

Let (G,£) be a sufficiently large (v, 7)-good network with v < B. Property (P4) implies that
there is at least one (indeed, many) two-hop s-t path such that both edges have b-coefficient at
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most 7. Thus, L(G,0,¢) < 2y < 2B. By Proposition 2.3 there is a unique traffic rate R > 0 such
that L(G, R,¢) = 2B. We call this the associated traffic rate. We will prove that (G, R,£) has a
Braess ratio bounded away from 1. To accomplish this, obtain the associated subnetwork G' of G
by retaining only the edges whose endpoints satisfy at least one of the following conditions (using
the notation of Section 3.3):

e one is the source or sink, the other lies in one of S1,T1, S, T5,U, {s,t};
e cach is in S; UT, U Q1;

e each is in Sy UT) U Q9;

e each is in U U Q3.

The associated network should be compared to the caricature depicted in Figure 3(b); the three
“center” nodes of that figure correspond, from top to bottom, to the vertex sets S U To U Q1,
So UT; UQ2, and U U Q3, respectively. Edges inside these sets are included in G’ to keep them
internally highly connected.

Our proof of Theorem 3.1 hinges on two lemmas, proved in the next two sections. First, the
“Delta Lemma” states that all of the “internal nodes” of a good network G enjoy close proximity
with respect to the Nash flow at the associated traffic rate R, and similarly for each of the three
“vertex groups” of the associated subnetwork G’ for all traffic rates close to R.

Lemma 3.3 (Delta Lemma) Fiz a constant § > 0. Let (G,£) be a sufficiently large (v, T)-good
network for sufficiently small constants v = v(6,¢(, A, B) and 7 = 7(4,(, A, B). Let R denote the
associated traffic rate and f a Nash flow in (G, R, ¥).

Group wvertices of G so that (P1)-(P4) hold. Let G' denote the associated subnetwork, p =
w(0,¢, A, B) a sufficiently small constant, R'(u) the traffic rate at which L(G', R'(u),£) = 2B(1—pu),
and f' a Nash flow in (G',R'(u),£).

Define d(v)- and d'(v)-values with respect to f and f', respectively, as in Proposition 2.2.

(a) For every pair u,v of f-flow-carrying vertices that both lie in V\{s,t}, |d(u) — d(v)| <é.

(b) For every pair u,v of f'-flow-carrying vertices that both lie in S1 UTo U Q1, in So UT; U Qq,
or in UUQs, |d'(u) —d'(v)] <4.

We also use the following corollary of the Delta Lemma, for vertices of G’ that are not necessarily
f'-flow carrying.

Corollary 3.4 With the same assumptions and notation as in Lemma 3.3: for every pair u,v of
vertices that both lie in S1 UTy U Qq, in So UT1 UQ2, or in UUQs, |d'(u) —d (v)| < 2max{y,d}.

Proof: Fix u and v, say in S; U T5 U Q1; the other two cases are the same. By property (P4) of
good networks, the subgraph of G induced by S; UT5 U @7 contains a two-hop u-v path P in which
both edges have b-coefficient at most . By definition, P is also present in G'. Each edge e of P
is either f’-flow carrying — in which case part (b) of the Delta Lemma and Proposition 2.2 imply
that £.(f!) < 6 — or not, in which case £.(f!) < 7. The corollary now follows immediately from
Proposition 2.2. R

The “Balance Lemma” states, roughly, that the latency of Nash flow paths in G, and also of
Nash flow paths through U in G, is equally split between the two “halves” of the network.
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Lemma 3.5 (Balance Lemma) With the same assumptions and notation as in Lemma 3.3:
(a) For every f-flow-carrying vertez v € V\{s,t}, d(v) < B + 24.
(b) For every vertez v € U, d'(v) > B(1 — p) — 46.

We conclude this section by showing how the Delta and Balance Lemmas, together with
Lemma 3.2, imply Theorem 3.1.

Proof of Theorem 8.1: Define parameters A, Ag, B for distributions 4, B as in Section 3.3 and
let € = €((, A1, A2) be a sufficiently small positive constant to be chosen later. Lemma 3.2 reduces
the proof to showing that there are constants v = (¢, A, B), 7 = 7((, A, B), ng = no((,.A, B), and
po = po(C, A, B) > 1 such that the following holds: every (v, 7)-good network (G,£) with at least
ng vertices admits a traffic rate r such that p(G,r,£) > po.

Fix § = (¢, ¢, A, B) to be a sufficiently small constant; we choose its precise value at the end
of the proof. Choose v = v(4,¢, A, B),7 = 7(,(, A, B) sufficiently small and ng = n¢(4,¢, A, B)
sufficiently large so that the Delta and Balance Lemmas apply to every (v, 7)-good network with
at least ng vertices, for all sufficiently small p < po = po(9,¢,.A, B). We can assume without loss
that v,7 < §. Consider such a network G with associated traffic rate R. Group the vertices as in
Section 3.3 so that properties (P1)—(P4) hold, and let G’ denote the associated subnetwork. The
proof plan is to examine the traffic rate R'(u) at which L(G', R'(u),£) = 2B(1 — u) and show that
R'(u) > R for sufficiently small positive values of p. (R'(p) is uniquely defined by Proposition 2.3
as long as v and p are sufficiently small.)

Fix a sufficiently small positive value of y and let f and f’' denote Nash flows for (G, R, /)
and (G', R'(1), £), respectively. Partition edges (s,v) of G into classes Eg, Er, Ey, Eg according to
whether v belongs to S1, T1, U, or Q1 U Q2 U @3, respectively. If the edge (s,t) is present in G,
place it in Eyy. We can write

R= fet Y fet D, fet D fe (1)

ecEg ecEr ecEy eEEQ

Partition the s-t paths P of G’ into classes Pg, Pr, Py according to the respective set Es, E, By
that contains the first edge of P. (No edges of Eg remain in G'.) We can write

R(u)= > fot+ > fo+ Y fr (2)

PePg PcPr PcPy

By Proposition 2.2 and part (a) of the Balance Lemma, £.(f.) < B+2§ for every f-flow-carrying
edge e incident to s, except possibly for the edge (s,t). Since all edges of Eg and Er are 1-type
and X-type, respectively, we have

26
D> fe < 1Bl 4 — 3)
ecEg
and B+ 25
Z fe < |Eq|- A=Ay (4)
6€ET 2

Also, since every edge of Eg has b-coeflicient at least (1+¢€)B, ) | fe = 0 provided we choose § <

eB/2.

EEEQ
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For an edge e = (s,v) of Ey\{(s,t)} with fo > 0, Proposition 2.2 and the Balance Lemma
imply that

Le(fe) = Le(fe) < d(v) —d'(v) < (B +20) — (B(1 — p) — 46) = 60 + puB.
Similarly, if (s,t) € G, then £g(fst) — £st(fL;) < 2uB. Thus

66 + 2uB

for every e € Ey, implying that
60 +2uB
S fem X = S fem X s< ] BB ®)
eCEy PcPy ecEy ecEy mimn

Next, let Fr denote edges of the form (w,t) with w € T,. For every (1-type) edge (s,v) € Eg
and (X-type) edge (w,t) € Fr, we can apply Proposition 2.2, Corollary 3.4 (recall v < §), and the
definitions of 1- and X-type edges to derive

2B(1-p) = d'(v)+(d'(w) —d'(v)) + (d'(t) - d'(w))
< esv(f;v) +20 + ewt(fqlut)
S [Aufo + U+ OBl + [Azfiy + €B] +26.
Choosing (s,v) € Eg and (w,t) € Fr to minimize the right-hand side and simplifying, we obtain

}>B(1—2u—26)—25

max { min f/, min f,
eckEg

ecFr B A+ As
and hence B(1-2 %) — 26
. — 24 — 2¢) —
3" fb > min{|Esl, |Fr|} - a . (6)
s Al + Ao
€Ps
By an identical argument,
. B(1 —2u —2€) —20
b > Er|,|Fs|} -
Z fP_IIllIl{| T‘a' S‘} A1+A2 ) (7)

PcPr

where Fs denotes the edges (w,t) with w € Ss.
Combining (1)—(7) now yields

. X B(l —2u —2¢) — 26
R(u)~R > (min{|Bsl,|Frl} + min{|Br, |Fs]}) - | 2L 2= 2)

A1+ Ay
26 B+2 66 + 2uB
Bl 2 B 220 g, 2T AET
| S| Amin | T| (1_6)142 | U| Amin

The randomized grouping procedure in Section 3.3 was defined so that the expected sizes of
Es,Er,Fg, Fr are equal — to ypn, where y denotes min{q1(1 — pq1),qx(1 — pgx)} in the no-
tation of Section 3.3. The expected size of Ey equals zpn for some other positive constant z that
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~1/3

depends only on (, A, B. Writing v(n) = (pn) , invoking property (P1) of good networks, and

rewriting, we obtain

R -k > yon( (0= vm)- ) - 0o

4 N 2 2+ (62/y)
Al + A2 (1 - €)A2 Amin

—2uB(1 + v(n)) [Al iAQ + (jﬁlj] >

(8)

51+ v(n) [ )

Rewriting the quantity in brackets in (8) as

B(A1 + A) " ((1 _u(n))(1 —2¢) .2 — 1Y) (1 + ﬂ)) ,

1—¢

and recalling that A; < As, we see that for n sufficiently large and e sufficiently small (depending
only on ¢, A, and B), this quantity is bounded below by a positive constant ¢ = ¢({,.A4, B).
Choosing 6 = d(¢,(,.A, B) sufficiently small ensures that the quantity in (9) is at least —c/2.
There is then a choice of p = u(¢, A, B) > 0 that guarantees that R'(1) > R. Proposition 2.3 now
implies that

L(G,R,t) 1

(GI,R,(N)’K) B 1- H,

>
p(G7R7£) — L

completing the proof. l

3.5 Proof of the Delta Lemma

Proof of Lemma 3.3: For part (a), sort the f-flow-carrying vertices s = wv1,v9,...,0 = t in
nondecreasing order of d-values. We only need to prove that d(vg_1) — d(v2) < §. First, since no
flow-carrying edges have zero latency, Proposition 2.2 implies that all flow entering vy does so via
the edge (s,v2), and all flow departing v_1 uses the edge (vg—1,t). Since d(t) = L(G, R,¢) = 2B,
Proposition 2.2 implies that £.(f.) < 2B for every flow-carrying edge e, and hence f. < 2B/Anin
for every edge e. Thus both the total flow entering vy and the total flow exiting vi_1 is at most
2B/ Amnin-

Let k denote the number of two-hop ws-vp_; paths whose edges both have a b-coefficient
at most . Of the k corresponding edges exiting vy, strictly more than half of them carry at
most 5B/KkAmin flow; similarly for the edges entering vx_1. Applying Proposition 2.2 to two such
edges (ve,w) and (w,vg_1) with a common endpoint gives an upper bound on d(vg_1) — d(ve):

d(’l)k_l) — d(’UQ) <2- (Amaxi + ’y) . (10)
K Amin

As noted in the proof of Lemma 3.2, the expected number of two-hop paths with b-coefficient at
most y between two vertices of a random network is (n2¢), where the hidden constant depends on
and B; this lower bound holds even if we restrict attention to the two-hop paths whose intermediate
vertex lies in a prescribed set @Q;. Property (P4) of good networks then implies that x = Q(n?).
Thus for v < /3 and n larger than some constant ny = ny(d,(,.A, B), the right-hand side of (10)
is at most ¢, as desired.

The proof of part (b) is similar. Consider, for example, the set S; U T U Q1; the other two
cases are the same. Let vg,v;_1 denote the f’-flow-carrying vertices in the set that have minimum
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and maximum d’-values, respectively. The upper bound from (a) on the amount of flow exiting vy
and entering vj_; remains valid. The above arguments also imply that G’ contains Q(n*¢) two-hop
paths of the form vy — w — v;_1, where w € Q1 and both edges have b-coefficient at most y. As
in part (a), this fact is enough to conclude the proof. B

3.6 Proof of the Balance Lemma

Proof of Lemma 3.5: Consider part (a) of the Balance Lemma. We can assume that v = v(4,(, A, B)
is small enough and ny = no(4, ¢, A, B) is large enough that the Delta Lemma applies to all (v, 7)-
good networks with at least ng vertices, where 7 = 7(4,(,.A,B) is a constant, smaller than §,
whose exact value will be chosen later. Assume G is such a network, and sort the f-flow-carrying
vertices s = v1,v9, ...,V =t in nondecreasing order of d-values. We prove that d(vg_1) < B + 26
provided G is sufficiently large. Specifically, define o = d(vg_1) — B; we show that if o > 24,
then the number of vertices n of G can be upper bounded by a constant that depends only on
¢, A B,o,7,T.

The plan is to derive a contradiction by showing that an imbalance in latencies implies an
imbalance between the amount of flow leaving the source and that entering the sink. This requires
a discretization argument, as follows. Let I; denote the interval [i7, (i + 1)7) and call an edge type
(¢,7) if its a- and b-coefficients lie in I; and I, respectively. Assume that (s,t) is not an edge of G,
which is without loss for the following argument. If a type (4,j) edge e incident to ¢ carries flow,
then Proposition 2.2 and part (a) of the Delta Lemma imply that

ée(fe) S 2B — d(’l}g) S 2B — d(’l)kfl) + 6=B-o + 0. (11)
Substituting in the smallest-possible coefficients of a type (7, 7) edge e, we have

B—-o+0d0—j7
iT )

fe <

Analogously, if a type (7, ) edge e incident to s carries flow, then

B+o—-6—-(+1)7
(1417

fe >
Thus the amount of flow on a flow-carrying type (i,j) edge incident to s exceeds that of a flow-
carrying type (7, j) edge incident to ¢ by at least a factor of

B+o—-0—-(j+1)r iT S B Amin
B—-oc+4d§—j7 (i+1)1r " B—§ Apm+7’

(12)

where the inequality uses our standing assumptions that 7 < § and o > 26. We can choose 7 small
enough that the right-hand side of (12) is at least a constant ¢ = ¢(4,.4, B) > 1.

Next, recall that (11) holds for flow-carrying edges incident to ¢; since o > 2§, only edges
incident to ¢ with b-coefficient at most B — § are eligible to carry flow in f. On the other hand, we
claim that every edge incident to s with b-coefficient at most B — ¢ carries flow in f. To see why,
let (s,v) be such an edge. By property (P4) of good networks, there are edges (v, w) and (w,t)
with b-coefficients at most . Arguing as in the proof of Corollary 3.4, £,y (fyw) < max{d,v} and,
using (11), Ly(fwe) < max{y,B — o+ d}. We can assume that v < min{d, B — ¢ + ¢}, so if P
denotes the path s - v — w — ¢, we must have

2B = L(G, R, £) < £p(f) < Lsv(fsw) + B — 0 +26.

15



Since o > 24 and £4,(0) < B, we conclude that fg, > 0.

Consider all pairs of intervals J;C[Amin, Amax) and I;C[0, B — ¢]; these capture the coefficients
of all f-flow-carrying edges incident to ¢, and avoid the coefficients of all non- f-flow-carrying edges
incident to s. Let k;; denote the number of (flow-carrying) edges of type (i,j) incident to s;
by property (P2) of good networks, the number of edges of this type incident to ¢ is at most a
(14 (pn)~1/3)? factor larger. Summing over these edge types shows that the total f-flow exiting
the source is at least a ¢/(1 + (pn) 1/3)? factor times that entering the sink. Since these two
quantities are of course equal (to R) and c is bounded away from 1, we see that the assumption
that o > 26 constrains the number n of vertices of G to be at most a constant. This completes the
proof of part (a).

Part (b) follows from similar arguments. We first claim that for every f’-flow-carrying vertex
veU,d(v) > B(1—pu)—26 (provided G is sufficiently large). This follows from the proof of part (a),
applied to f' restricted to the subgraph of G’ induced by U U Q3 U {s,t}, with minor modifications:
the roles of s and ¢ are exchanged, the factors of B are replaced by factors of B(1 — p), part (b)
of the Delta Lemma takes the place of part (a), and property (P3) of good networks substitutes
for (P2). Since 7y < 4, part (b) of the lemma follows immediately from this claim and Corollary 3.4.
|

4 The 1/x Model

This section studies the 1/z model introduced in Section 2.2. By a random network from G(n,p, q),
we mean a random graph G from the distribution G(n, p) for which each edge of G is independently
assigned the latency function ¢(z) = = with probability ¢ € (0,1) and the latency function £(z) =1
with probability 1 — gq. We call these two types of edges z-edges and I-edges, respectively. For
simplicity, we explicitly disallow a direct (s,t) edge in this section; if such an edge is present and
has constant latency, Braess’s Paradox will not occur. To streamline the exposition, we also assume
that p and q are constants; it will be clear that the same proofs are valid provided p - min{q,1 — ¢}
does not decrease too rapidly as a function of n. Our main result is then the following.

Theorem 4.1 Let p,q,e € (0,1) be constants. With high probability, a sufficiently large random
network (G,£) from G(n,p,q) admits a choice of traffic rate v such that the Braess ratio of the
instance (G,r,£) is at least

4 — 3pq

3 —2pq “
Observe that for small values of pg, the Braess ratio in Theorem 4.1 is nearly 4/3, the largest-
possible Braess ratio in networks with affine latency functions [28, 29].

The proof of Theorem 4.1 follows the general approach outlined in Section 3.2, although the
specifics differ. We start by identifying convenient combinatorial properties possessed by almost all
large random networks from G(n,p, q). First, partition the vertices v # s,t of a network (G, £) into
the following groups:

e if (s,v) is a 1-edge and (v,t) is an z-edge, put v in Sy;

e if (s,v) is not an edge and (v, t) is an z-edge, put v in So;
e if (s,v) is an z-edge and (v, t) is a 1-edge, put v in T};
(s,)

e if (s,v) is an z-edge and (v, t) is not an edge, put v in Th;
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e if (s,v) and (v,t) are both z-edges, put v in U;
e if (s,v) and (v,t) are both 1-edges, put v in Q1;
e if at least one of (s,v), (v,t) is not an edge and neither is an z-edge, put v in Qs.

We call a network (G, £) good if the following random variables take on values within a (14 n~"/3)
factor of their expected values for a random n-vertex network:

(Q1) the sizes of all of the above seven vertex groups;

(Q2) for every pair u,v of vertices, the number of vertices w in V'\{s,t} such that edges (u,w)
and (v, w) exist in G and are z-edges;

(Q3) for each vertex v, the number of z-edges (v, w) with w € S;
(Q4) for each vertex v, the number of z-edges (v, w) with w € T;.

For arbitrarily small constants p and ¢, a sufficiently large random network from G(n,p,q)
is good with high probability. We omit the proof, which is similar to (and simpler than) that of
Lemma 3.2.

Lemma 4.2 For every pair p,q > 0 of constants, a random n-vertex network G of G(n,p,q) is
good with probability approaching 1 as n — oo.

We can now prove Theorem 4.1.

Proof of Theorem 4.1: Lemma 4.2 reduces the proof to showing that there is a constant ng =
no(p, g, €) such that, for every good network (G, £) with at least ng vertices, there is a traffic rate r
such that p(G,r,£) > (4 — 3pq)/(3 — 2pq) — .

Fix a good network (G, £) with n vertices. We set r = pgn, intuitively to “saturate” the z-edges
leaving the source vertex. We first claim that

L(Ga T, g) Z 2 - 511 (13)

where 67 — 0 as n — oo. Let f denote the Nash flow of (G,r,£), let vo and vx_; denote the
f-flow-carrying vertices other than s,# with minimum and maximum d-values (in the sense of
Proposition 2.2), respectively, and write v(n) = n~'/3. Write

d(t) = (d(vg—1) — d(s)) + (d(t) = d(v2)) = (d(vg—1) — d(v2)) - (14)

For each of v = s, t, property (Q1) of good networks implies that there are at most pgn(1+v(n)) z-
edges incident to v. Since r = pgn, there is an f-flow-carrying edge (v, w) with £(fe) > (1+v(n)) .
This implies that the first two terms on the right-hand side of (14) are both at least (1 + v(n))~?.
To complete the claim, we can argue as in the proof of the Delta Lemma (Lemma 3.3) that the third
term is o(1). In detail, assume that d(t) < 14 (14v(n))~!; otherwise the claim is complete. In this
case, d(vq) and d(t) — d(v_1) are both less than 1, implying that (s,v2) and (vg_1,t) are both z-
edges. Moreover, at most one unit of flow enters vy (necessarily from s) and exits vg_1 (necessarily
to t). Property (Q2) of good networks guarantees that the number k of two-hop vs-vi_1 paths that
comprise only z-edges satisfies & > (1 — v(n))p?q>n. On some such path, both edges carry at most
3/k units of flow, and Proposition 2.2 then implies that d(vg_1) — d(v2) < 6/k = o(1), as desired.
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Figure 4: Proof of Theorem 4.1: structure of the subnetwork G’. A thick line denotes several
“essentially parallel” edges.

Define a subnetwork G of G by retaining only the edges incident to s and ¢, and also the z-edges
with one endpoint each in S; and S, or in 77 and T» (Figure 4). We require an analog of part (b)
of the Delta Lemma, as follows. Let f’ denote the Nash flow of (G',7,£) and d' the corresponding
distance labels. We claim that if u,v both lie in S; U Sy or in Ty U T, then |d'(u) — d'(v)| = o(1).
To prove this, consider the sets T} and T; the case of S; and Ss is symmetric. In G’, all vertices
of Ty UTj, are directly connected to s and have no incident edges leading outside 71 UTo U{s, t}; and
each vertex of T} is directly connected to t via a 1-edge. We can assume that L(G',r,£) > 1, in which
case Proposition 2.2 and the structure of G’ imply that every (z-)edge between s and T} carries
f'-flow. Since no edge has zero latency and all edges between T and t are 1-edges, Proposition 2.2
implies that f’-flow at a vertex v € T} travels directly to ¢t. Thus, all edges between T} and ¢
are f’-flow-carrying. Proposition 2.2 then implies that d'(v) = d'(¢t) — 1 for every v € T;. This is
also the maximum d’-value among vertices of T; U Ty. Now consider the vertex v of T} U Ty with
minimum d’'-value; necessarily, v € Ty. The only flow entering v arrives from s. By property (Q1)
of good networks, G’ contains a two-hop s-t path of 1-edges; thus d'(t) < 2. Since (s,v) is an
z-edge, fl, < 2. By property (Q4) of good networks and the definition of G', v is adjacent, via an
z-edge in G, to k > (1 — v(n)) - p2¢*(1 — q)n vertices of T1. Thus f!,, < 2/k for some edge (v, w)
with w € Tb, and Proposition 2.2 implies that d'(v) > d'(w) — 2/k = (d'(t) — 1) — o(1), as desired.

To derive an upper bound on L(G',7,£), let rs, r, and 7y denote the amount of f'-flow that
departs the source for a vertex in S U So, 11 UT5, and U, respectively. Since each vertex of U
participates in a unique s-t path, which comprises two z-edges,

(G',r,2)

L
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Our claim that d'(v) > L(G',r,£) — 1 — o(1) for every v € T} U T, implies that

rr > (|Ti| + |To) - (L(G', 7, 8) —1—69), (16)
where d = 0(1). Symmetrically,

rs > (|S1] +1S2|) - (L(G',7,8) — 1 —62) . (17)

Property (Q1) of good networks implies that [U| > (1—v(n))-p?¢*n and that |S;|+|Ss|, |T1|+|Ts| >
(1 —v(n))-pqg(l — pg)n. Also, rs + rr + ry < r = pgn. Combining these facts with (15)—(17) and

rewriting, we obtain
6 — 4pg + 409(1 — pq)

(4 =3pg)(1 —v(n))
Since 41, d2,v(n) = o(1), taking the ratio of (13) and (18) completes the proof. B

L(G',r0) <

(18)

5 Discussion

In our key results (Theorems 3.1 and 4.1), we assume that the graph and edge latency functions
are random while the traffic rate is adversarially chosen. One could also consider random traffic
rates, but there is healthy evidence that Braess’s Paradox is unlikely to occur across a wide range
of traffic rates (see [14, 25]). Results such as ours seem to require a carefully chosen traffic rate,
although our proofs do permit a limited amount of flexibility in this choice.

We suspect that our main results continue to hold in the G(n, p) model even when p = O(1/4/n),
as well as in other random network models. A particularly interesting direction for additional
research would be to consider random graph models such as power-law graphs that closely resemble
naturally arising networks; in these asymmetric networks, Braess’s paradox might only be present
or severe when the source and sink have relatively low degree. We leave exploration of such models
to future work.
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