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1 Scoring Rules

1.1 Motivation

We next consider the goal of eliciting a good prediction of an uncertain event. For example:

1. You might ask a weather forecaster: will it rain tomorrow?

2. You might ask a political pundit: will a Democrat or a Republican win the next
election?

3. You might ask a Microsoft employee: will the next version of MS Office get shipped
on time, or will it be delayed?

It’s deceptively tricky to evaluate the quality of a prediction. For example, suppose a
weather forecaster declares “30% chance of rain tomorrow,” and then it rains. Was the
forecast bad, or did the forecaster just get unlucky?

For example, one simplistic approach would be to call a prediction “good” if it puts more
than 50% probability on the outcome that actually occurred, and “bad” otherwise. But
this is a weird rule—a forecaster then has no reason to say anything other than “100%” or
“0%.” (Since “51%” is treated the same as “100%,” anyways.) So why should a forecaster
bother formulating a more nuanced prediction? Evidently, we want a less binary notion
of a “good” prediction, with the quality of the prediction increasing with the amount of
probability assigned to the outcome that occurred.

To formalize this idea, let X denote a finite set of all possible outcomes. All of our
examples so far involve a binary event (“rain” or “shine,” “Democrat” or “Republican,” “on
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time” or “delayed”), meaning that X has two elements. It’s fine to think only about binary
outcomes for the rest of this and next lecture, even though the results that we’ll cover apply
more generally.

Definition 1.1 (Scoring Rule) A scoring rule is a real-valued function of the form S(q, i),
where q is a probability distribution over X (a prediction) and i is an outcome of X (the
realized outcome).

For example, q could be “30% chance of rain” and i could be “rain.” Our binary scoring
rule above corresponds to setting S(q, i) = 1 if qi >

1
2

and 0 otherwise (where qi denotes the
probability ascribed to outcome i in the distribution q).

1.2 Strictly Proper Scoring Rules

Our next goal is a notion of a “truthful” scoring rule. To formalize this, we need to specify
what motivates forecasters—i.e., their preferences. Here’s the model:

1. A forecaster has a “belief” p, which is a probability distribution over X.1

2. A forecaster wants to choose her prediction q in order to maximize her score. (Maybe
q equals the forecaster’s true belief p, or maybe not.) Actually this doesn’t quite make
sense, since the forecaster’s score will depend on the realized outcome, which is not
under the forecaster’s control. So we assume that the forecaster wants to maximize
her expected score:

max
q

Ei∼p[S(q, i)] , (1)

where the expectation is with respect to the distribution p over outcomes that the
forecaster believes is the true one.

Note we are assuming that a forecaster cares about her (expected) score. This could be be-
cause the score represents a dollar reward, or some other motivating currency like reputation
points.

Given this model of what a forecaster wants, we are in a position to define “truthful”
scoring rules (where setting q = p is the best course of action). For historical reasons, such
rules are called strictly proper scoring rules.

Here is the key definition to know about scoring rules:

Definition 1.2 (Strictly Proper Scoring Rule) A scoring rule S is strictly proper if, no
matter what the true belief p of the forecaster is, her unique best response is to report
truthfully (i.e., to set q = p).

One can also define (weakly) proper scoring rules, where truthful reporting is one best
response, perhaps among many. Do you see why this is not an interesting definition? Because
even a constant function (like S(q, i) = 0 for all q and i) satisfies this definition. (Our first,
binary, scoring rule is also weakly proper.)

1This belief plays the same role as the “prior distribution” that we adopted last lecture to think about
revenue-maximizing auction design.
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1.3 A Non-Example

Let’s try to find a strictly proper scoring rule. Recall that we want to reward a forecaster
according to the strength of their prediction on the outcome that actually occurred. Maybe
the first thing to try is a reward linear in the prediction probability:

S(q, i) = qi,

where qi denotes the probability assigned to outcome i ∈ X in the prediction q. (In general,
think of q as a nonnegative vector, indexed by the outcomes of X, with

∑
i∈X qi = 1.)

Is this linear scoring rule strictly proper? Actually, it’s not even a weaker proper scoring
rule! This rule incentivizes a forecaster to put 100% of her prediction on the outcome that
she thinks is the most likely (see Exercise Set #9).

1.4 The Quadratic Scoring Rule

Uh oh — we’re seen a number of impossibility results in this class, could there be another
one lurking here? Fortunately not, as there are several natural strictly proper scoring rules.
The first one is the quadratic scoring rule.2 Its definition is:3

S(q, i) = qi −
1

2

∑
j∈X

q2j . (2)

Thus the quadratic rule includes the same linear term as before, but also a quadratic penalty
term designed to penalize extreme reports. (Extreme reports were the problem with the
linear rule, remember?) The key difference is that while the score is still increasing with the
probability assigned to the realized outcome, the rate of increase decreases as the report gets
more extreme.

For example, if the forecaster assigns some event 100% probability and the predicted
event occurs, her score is 1

2
. If the predicted event doesn’t occur, then her score is −1

2
. If

the forecaster reports the uniform distribution, then no matter what outcome happens, her
score is 1

n
− 1

2
· n · 1

n2 = 1
2n

.

Proposition 1.3 The quadratic scoring rule is strictly proper.

Proof: The proof is just calculus. Fix a forecaster with a belief p. For this fixed p, the
expected score (1) of the forecaster when reporting q evaluates to∑

i∈X

piqi −
1

2

∑
i∈X

pi
∑
j∈X

q2j . (3)

2Discovered by Brier in 1950 [2] who, believe it or not, really was interested in how to incentivize weather
forecasters to produce the best-possible reports. (The article appeared in the Monthly Weather Review.)

3Often the quadratic rule is defined as twice the quantity in (2). This scaling factor has no effect on the
rule’s important properties; see also Proposition 1.4.
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This function is strictly concave in q (the first term is linear in q, and the second term, as
a negative quadratic, is strictly concave). This means that the function has a unique maxi-
mizer. So what is it? To identify it, let’s examine the partial derivatives of the function (3).
For h ∈ X, we have

d

dqh
= ph −

∑
i∈X

piqh.

Since
∑

i∈X pi = 1, the partial derivative is simply ph − qh. This means that setting q = p
zeroes out all of the partial derivatives (and is the only way to zero them all out), implying
that q is the unique maximum of (3). �

Several comments on the proof. First, checking that all derivatives are zero (a “first-order
condition”) is generally only necessary for optimality, and need not be sufficient. But for a
strictly concave function like (3), the first-order conditions are also sufficient for optimality.
Second, the proof shows something stronger than what is claimed in Proposition 1.3. Namely,
setting q = p is the unique maximizer of (3) over all real-valued vectors q, not just over
probability distributions q. This is because we only used the first-order conditions of the
unconstrained version of the problem of maximizing (3), rather than the constrained version
which only considers probability distributions q. Of course, if q = p is optimal over all
real-valued vectors, it is optimal in particular among all probability distributions.

Given one strictly proper scoring rule, one can construct others by shifting and scaling
(i.e., by affine transformations).

Proposition 1.4 If S is a strictly proper scoring rule, a > 0, and b ∈ R, then aS+ b is also
a strictly proper scoring rule.

The reason is just that neither shifting everything by a constant b nor scaling everything by
a positive constant a > 0 has any effect on a forecaster’s best response. So if S is strictly
proper (i.e., the unique best response is truthful), then so is aS + b. Of course, the score
actually assigned to the forecaster varies with the choice of a and b.

One application of the above shifting trick is to shift a scoring rule so that forecasters
are guaranteed nonnegative utility (maybe in expectation, or maybe always). For example,
adding 1

2
to the quadratic scoring rule ensures that it is always nonnegative.

1.5 The Logarithmic Scoring Rule

One curiosity about the quadratic scoring rule (2) is that the score assigned to a prediction
depends not only on the report qi on the outcome that actually occurred, but also on the
distribution of q on the outcomes that did not occur. It is arguably unnatural to do this—it’s
not clear why a scoring rule should have jurisdiction over the different predictions on the
outcomes that did not occur. Is this oddity an inevitable consequence of the strongly proper
condition?

Our second rule, discovered by Good in 1952 [6], is the logarithmic scoring rule. It is
simply:

S(q, i) = ln qi. (4)
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Several comments. First, note that the score assigned to a prediction depends only on the
probability that the forecaster assigned to the outcome that occurred, and not on the proba-
bilities assigned to the other outcomes. Second, note that the base of the logarithm doesn’t
really matter, since different logarithms differ by a constant factor (and strict properness is
preserved by scaling). Third, the scoring rule as defined in (4) is never positive, so typically
a shifted version of it is used. For example, adding the constant ln |X| to the rule in (4)
ensures that a forecaster can guarantee herself nonnegative utility (by reporting the uniform
distribution). Finally, note that the logarithmic scoring rule is not bounded below. If a fore-
caster assigns 0 to some outcome and that outcome actually transpires, then the forecaster’s
score is −∞. (Of course, a forecaster who is 100% convinced that an outcome is impossible
won’t care what score she receives in that (impossible) case.) If this is undesirable, the rule
can be modified by imposing a small but positive lower bound on all reported probabilities.

The logarithmic scoring rule is also a strictly proper rule.

Proposition 1.5 The logarithmic scoring rule is strictly proper.

Proof: Again, the proof is just calculus; we provide a sketch of the argument. Fix a forecaster
with belief p. (For clarity, assume that pi > 0 for every i ∈ X, even though this is not
necessary for the proof.) We again begin by writing down the expected score of a given
report q (cf., (3)):

Ei∼p[S(q, i)] =
∑
i∈X

pi ln qi. (5)

Like (3), this expression is strictly concave in q and hence has a unique maximizer. So what
is it?

Again, we consider the partial derivatives, which are

d

dqi
=
pi
qi

(6)

for all i ∈ X. Unlike in the proof of Proposition 1.3, there is no value of q that zeroes
out these derivatives. (Without the constraint that q is a probability distribution, the best
response is to set all entries of q as high as possible.) So instead we need to identify the
report q that, among all probability distributions, maximizes (5). We claim that q is optimal
only if all of the partial derivatives d

dqi
are equal. For suppose one (that of i) was bigger than

another (that of j) — then shifting a little bit of probability mass from j to i would yield
a new distribution q′ with a strictly larger expected score (5).4 Concavity of (5) implies
that the converse is also true — if q equalizes the derivatives (6), then q must be optimal
(further details omitted). The only way to equalize the partial derivatives in (6) is to set q
proportional to p. The unique probability distribution with this property is p. �

4By inspection of (6), this can only happen when qj > 0 and hence there is mass available to move.
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1.6 Final Comments

There are many strictly proper scoring rules beyond the quadratic and logarithmic rules;
you’ll encounter one of them on Exercise Set #9.

Which is better, the quadratic or logarithmic scoring rule? In general, there is no clear
answer. If you’re bothered by the fact that the quadratic scoring rule makes use of proba-
bility reports on the unrealized outcomes, you might prefer the logarithmic rule. If you’re
bothered by the fact that the logarithmic rule is very sensitive to changes of small proba-
bilities (and equals −∞ for “impossible” events), then you might prefer the quadratic rule.
Both rules have been implemented in practice, though the logarithmic rule has been more
widely used (especially in the context of prediction markets, discussed in the next lecture).
In experiments, both seem to do a fine job of eliciting truthful predictions (see e.g. [1]).

Scoring rules are a neat idea, but are they actually useful for anything? We’ll see two
applications: in this lecture, to the problem of incentivizing honest feedback; and next
lecture, to the design or prediction markets.

2 Incentivizing Honest Feedback

2.1 Motivating Examples

Suppose you ask someone to rate a movie, on a scale of 1 to 5. Can we use a scoring rule
to incentivize the reviewer to state their true opinion? Not immediately — the issue is
that scoring rules rely on the realization of some verifiable “ground truth” outcome. This
assumption can fail for two conceptually different reasons: first, if there simply is no ground
truth; second, if there is a ground truth but it is too costly to determine. The assumption
of a verifiable outcome is fine for, say, weather forecasts, but it doesn’t seem appropriate for
scoring subjective opinions like movie ratings.

A second relevant example is peer grading (where students grade the assignments of other
students), especially at large scale, for example in a MOOC (“massive open online course”).
One can imagine a seasoned instructor supplying the “ground truth grade” of an assignment,
and then using a scoring rule to score the grades assigned by students to the assignment.
But this defeats the whole point of peer grading in a massive course (where the instructor
cannot possibly evaluate all of the assignments).

So how is peer grading done in MOOCs now? Without any consideration of incentives.
For example, a student’s assignment might be graded by five peers, with the student receiving
the median of these five grades. Sometimes grades get reweighted according to the apparent
accuracy of the grader.

Unsurprisingly, in practice there’s quite a bit of variance in peer grades (though the
median grade is often surprisingly accurate [9]). What if we wanted to explicitly incentivize
accurate grading, without direct verification? For example, one could make grading quality
part of a student’s grade, or introduce a reputation system to publicly recognize good (and
maybe bad) graders.
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2.2 The Model

Here’s our setup for the problem of incentivizing honest feedback when there is no verifiable
ground truth:

• There are n players (e.g., graders of an assignment in a MOOC).

• Player i has a “signal” si. This signal is supposed to represent the useful information
possessed by player i, such as a grader’s true opinion of the quality of an assignment
(after a close inspection).5

• Each player i submits a report ri (like a grade) to a mechanism (like a MOOC platform).
The report ri can be equal to the player’s signal si, or not.

• The mechanism pays player i πi(r1, . . . , rn).

Several comments. First, the “payment” πi might be in money, or it might be in some other
currency that the player cares about (like extra credit points or reputation). Currently in
most MOOCs, πi is just zero. In any case, we assume that player i wants to maximize
πi(r1, . . . , rn). Finally, observe that the decisions made by the mechanism (i.e., the pay-
ments πi) depend on the only information that it has, the players’ reports r1, . . . , rn (and
not on any “ground truth”).

A player i wants to choose her report ri to maximize her payment πi(r1, . . . , rn) from
the mechanism. But this payment depends on the (presumably unknown) reports of the
other players. So how should player i compare the relative benefits of different reports?
Analogously to last lecture (for revenue-maximizing auctions), we proceed by assuming a
prior distribution over signal profiles.

Precisely, we will assume that the signal profile (s1, . . . , sn) is drawn from a distribution
D, and that D is known to all of the players. For example, with two players and a binary
signal space, such a distribution might look like

s2 = 0 s2 = 1
s1 = 0 .3 .1
s1 = 1 .1 .5

We also assume that D is symmetric, meaning that (i) zooming in on two players i and
j, the joint distribution of their two signals can be represented by a symmetric matrix, as
above; and (ii) this symmetric matrix is the same for every pair i, j of distinct players.

In our example distribution above, the signals of the two players are not independent.
(This stands in contrast to the auction model discussed last lecture, where we assumed
that bidders had independent valuations.) For example, knowing nothing about s1, the
probabilities that s2 is 0 or 1 are 2

5
and 3

5
, respectively. But if we condition on the event

that s1 = 0 (e.g., that one TA gives a bad grade to an assignment), then the (conditional)

5The simple case where si ∈ {0, 1} is already interesting, but the results we’ll cover only assume that si
belongs to some finite set (like { A, B, C, D, F }).
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probabilities that s2 is 0 or 1 become 3
4

and 1
4
, respectively. That is, it becomes much more

likely that the other TA will give the assignment a bad grade. In our motivating applications,
it makes sense that players would have correlated signals. For example, players’ signals could
be perturbed or noisy versions of some unobserved ground truth, like the true quality of an
assignment.

2.3 Output Agreement

So how should we choose the payment functions π1, . . . , πn to incentivize truthful reporting
by players? The first idea is to reward agreement between players. This makes intuitive
sense if we’re hoping to extract a rough consensus from players’ reports. Formally, here’s
how the mechanism works:

Output Agreement

1. For each player i:

(a) Pick a random player j 6= i.

(b) Set i’s payoff πi equal to 1 if ri = rj, and to 0 if ri 6= rj.

The output agreement mechanism will be familiar if you’ve ever played the ESP game
(the canonical “game with a purpose”). The point of the ESP game is to make it fun
for humans to annotate images, thereby generating a nice labeled data set for supervised
machine learning algorithms. The ESP game works by taking two random people, showing
them the same image, asking them to type in descriptive words for the image, and rewarding
them (in a fictitious currency) whenever they type in the same word.6 This is exactly the
output agreement mechanism.

Is the output agreement mechanism truthful? That is, does a player maximize her ex-
pected reward by reporting her true signal? Does this guarantee hold at least in the case
where all other players are reporting truthfully?

The answer depends on the prior distribution D. In the example above, the output
agreement mechanism is truthful, meaning that if all other players are reporting truthfully,
then truthful reporting is the unique best response for a player. For example, if player 1
receives a signal of 0, then conditionally, player 2 is more likely to have signal 0 (3

4
probability)

than 1 (1
4

probability). This means it’s a best response for the first player to report a 0,
which is a truthful report. Similarly, if s1 = 1, then the second player is more likely to have
signal 1 (5

6
probability) than 0 (1

6
), so it is again a best response to (truthfully) report 1.

In general, the output agreement mechanism is not truthful. For example, suppose we
modify the prior distribution above as follows:

6A nice twist is to list already-discovered descriptors as “taboo words,” thereby forcing the two people
to come up with a new and useful descriptor for the image.
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s2 = 0 s2 = 1
s1 = 0 .1 .2
s1 = 1 .2 .5

Suppose the first player receives a signal of 0. The conditional probability that the second
player also received a signal of 0 is 1

3
. This is higher than the unconditional probability ( 3

10
),

but it’s still more likely that the second player received a signal of 1. Thus the best response
of the first player is to report a 1, even though her signal was a 0.

In general, the output agreement mechanism is truthful if and only if the most likely
outcome is a matching of signals—if and only if Pr[s2 = x | s1 = x] > Pr[s2 = y | s1 = x] for
every x and y 6= x. In terms of the defining matrix of the distribution D, this means that
each diagonal entry should be larger than the sum of all of the other entries in the same row
(or column). This condition holds in our first example, but not in our second example.

Is there a mechanism that incentivizes truthful reporting for all symmetric priors?

2.4 The Peer Prediction Mechanism

We next make an additional assumption, that the distribution D over signals is known to
the mechanism. (By contrast, the output agreement mechanism is well defined even without
knowledge of the prior.) This assumption may or may not be reasonable, depending on the
setting. In the peer grading example, for CS161 (undergrad algorithms), which I’ve taught
many times and with hundreds of students, I have a pretty good sense of the distribution (of
the “ground truth” grades, and of TA’s grades given the ground truth grade). In CS269I, at
least in this first offering, I’m not so confident about the distribution D of signals.

We next present the elegant peer prediction mechanism, due to Miller et al. [8]. The
high-level idea is to treat a player’s report as a prediction of other players’ reports, and
then judge this prediction using a strictly proper scoring rule S. Formally, fix such an S
(quadratic, or logarithmic, etc.). The mechanism is:

Peer Prediction

1. For each player i:

(a) Pick a random player j 6= i.

(b) Let Dj(ri) denote the distribution of sj, conditioned on the event
that si = ri.

7

(c) Set i’s payoff πi to
S(Dj(ri)︸ ︷︷ ︸

prediction

, rj︸︷︷︸
realization

).

7In our first example of this section, Dj(0) would be the 3
4 - 14 distribution, while Dj(1) would be the 1

6 - 56
distribution.
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In effect, the mechanism takes player i’s report ri at face value (using ri as a proxy for si),
which induces a conditional probability distribution on sj (and rj, if j is reporting truthfully).

The Peer Prediction mechanism works (i.e., is truthful) under a weak condition: distinct
reports (ri’s) should induce distinct conditional distributions (Dj(ri)’s). For example, my
conditional distribution on the grade that will be assigned by the second TA is different for
each grade (in {A,B,C,D,F}) that could be assigned by the first TA. This assumption is more
or less without loss of generality: if two signals induce the same conditional distribution over
others’ signals, you may as well combine the two signals into one.

The next proposition states that truthful reporting is an equilibrium of the Peer Predic-
tion mechanism.

Proposition 2.1 In the Peer Prediction mechanism, if every player other than i reports
truthfully, then the unique best response of player i is to report truthfully (i.e., set ri = si).

Proof: Since every player j 6= i is assumed truthful, rj = sj for every j 6= i. Thus, given that
i has the signal si, the conditional distribution on rj (and sj) is exactly Dj(si).

Since S is a strictly proper scoring rule, the (unique) best-case scenario for the pay-
off S(Dj(ri), rj) is when Dj(ri) is exactly the distribution from which rj is drawn (i.e.,
Dj(si)). Because distinct reports induce distinct conditional distributions on others’ signals,
the unique way to achieve this best-case scenario is to set ri = si. �

2.5 Implementation Challenges

The Peer Prediction mechanism is a neat idea, but there are some obstacles to implementing
it directly in practice (which have motivated much follow-up work in the last 10 years).
First, we already mentioned the drawback that the mechanism requires advance knowledge
of the prior distribution D over signal profiles. We already noted that this assumption is
sometimes palatable, and sometimes not. A number of subsequently proposed mechanisms
address this issue by, in effect, learning a good approximation of D from players’ reports (at
the cost of additional mechanism complexity and/or additional assumptions on the number
of players).

A second and quite serious issue is the presence of additional (non-truthful and “bad”)
equilibria. This issue is easiest to see with the output agreement mechanism—if every-
body always reports “1” (for example), then everybody gets their best-case payoff of 1 with
certainty. (This would correspond to all graders agreeing to give everybody the maximum-
possible score.) There is a clear incentive for players to coordinate on this equilibrium of
the output agreement mechanism: not only does everybody receive their maximum-possible
payoff, but no effort is required to formulate the report (unlike, say, accurate grading). But
this equilibrium is a disaster for whoever is running the mechanism — the reports are inde-
pendent of players’ signals, and provide no information whatsoever. Such “uninformative”
equilibria also plague the Peer Prediction mechanism.

This problem is not merely theoretical. In experiments, there have been cases where
participants really do seem to coordinate on high-payoff but uninformative equilibria [3, 5].
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To add insult to injury, paying participants a fixed reward (independent of their report) can
lead to more truthful reports than a Peer Prediction-style mechanism [5]! Using a non-trivial
mechanism to elicit feedback seems to nudge participants into thinking strategically, which
in turn can lead to less informative behavior.

Lots of ongoing research is attempting to mitigate these problems. For example, one
approach to escape the obstacles above is to do a limited amount of costly verification to
produce a ground truth for a small number of outcomes (e.g., a few assignments graded
by the instructor rather than the students) [3, 4]. Another approach is to tweak the Peer
Prediction mechanism so that all of the uninformative (i.e., signal-independent) equilibria
provide lower payoffs to all players than the truthful equilibrium, which should encourage
players to coordinate on the truthful equilibrium [7].
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