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Preface

An L-function, as the term is generally understood, is a Dirichlet series in one com-
plex variable s with an Euler product that has (at least conjecturally) analytic contin-
uation to all complex s and a functional equation under a single reflection s 7→ 1−s.
The coefficients are in particular multiplicative.

By contrast Weyl group multiple Dirichlet series are a new class of Dirichlet series
with arithmetic content that differ from L-functions in two ways. First, although the
coefficients of the series are not multiplicative in the usual sense, they are twisted
multiplicative, the multiplicativity being modified by some n-th power residue sym-
bols – see (1.3) below. Second, they are Dirichlet series in several complex variables
s1, · · · , sr. They have (at least conjecturally) meromorphic continuation to all Cr

and groups of functional equations that are finite reflection groups.

The data needed to define such a series in r complex variables are a root system
Φ of rank r with Weyl group W , a fixed integer n > 1, and a global ground field F
containing the n-th roots of unity; in some of the literature (including this work) the
ground field F is assumed to contain the 2n-th roots of unity. Twisted multiplica-
tivity implies that it is sufficient to describe the prime-power coefficients of such a
series.

In this work we consider the case that Φ is of Cartan type Ar. In this case a
class of multiple Dirichlet series, convergent for <(si) sufficiently large, was described
in [10], where the analytic continuation and functional equations were conjectured.
Their definition is given in detail in Chapter 1 below. The prime-power coefficients
are sums of products of n-th order Gauss sums, with the individual terms indexed
by Gelfand-Tsetlin patterns. It is not clear from this definition that these series have
analytic continuation and functional equations. However it was shown in [9] that
this global property would be a consequence of a conjectured purely local property
of a combinatorial and number-theoretic nature.

Specifically, two distinct versions of the Gelfand-Tsetlin definition were given. It
is not apparent that they are equal. Either of these definitions is purely local in that
it specifies the p-part of the multiple Dirichlet series, and this then determines the

ii



iii

global Dirichlet series by twisted multiplicativity. It was proved in [9] that if these two
definitions are equivalent, then the analytic continuation and functional equations
of the multiple Dirichlet series follows. The argument from [9] is summarized in
Chapter 5 below. It is ultimately based on the analytic continuation in the rank
one case, which was treated by Kubota using the theory of Eisenstein series on the
metaplectic covers of SL2. The reduction to the rank one case makes use of Bochner’s
tube domain theorem from several complex variables. In this work we establish the
desired local equality, that is, the equality of the two definitions of the p-part.

The assignment of number-theoretic quantities to a given Gelfand-Tsetlin pat-
tern can be described representation-theoretically; to do so it is helpful to pass to
an alternative description presented in [7], where the coefficients were reinterpreted
as sums over crystal bases of type Ar. After translating our main result into the
language of crystals, this equivalence takes on another meaning. The crystal basis
definition of the multiple Dirichlet series depends on one choice – that of a “long
word,” by which we mean a decomposition of minimal length of the long element
w0 of the Weyl group into a product of simple reflections. Once this choice is made,
there is, for every element of the crystal a canonical path to the lowest weight vector.
The lengths of the “straight-line” segments of this path (in the sense of Figures 2.1
and 2.2) are the basic data from which its number-theoretic contribution to the
Dirichlet series is computed. See Chapter 2 for details.

The desired local equality turns out to be equivalent to the equality of the local
factors obtained from two particular choices of long word. Comparing the contri-
butions from these two choices, we prove that there exists a bijection preserving
the number-theoretic quantity attached to “most” vertices in the crystal. However,
there is no bijection on the entire crystal (or equivalently, on all Gelfand-Tsetlin
patterns of fixed top row) preserving the number-theoretic quantity – exceptional
vertices that cannot be bijectively matched appear on the boundary of the polytope
that parametrizes a weight space in the crystal, although the bijective matching
works perfectly on the interior of this polytope. It is only after summing over all
contributions from vectors of equal weight that the equality of the two definitions
results. Moreover the equality is more than just combinatorial, since it makes use of
number-theoretic facts related to Gauss sums.

There are many long words; for type Ar, with r = 1, 2, 3, 4, · · · , there are
1, 2, 16, 768, · · · words, respectively. For each rank, only two of these are actually
needed for the proof of the analytic continuation. In some sense these two decom-
positions are as “far apart” as possible; for example, they are the first and last such
decompositions in the lexicographical order. Our proof demonstrates equivalent def-
initions of the multiple Dirichlet series for several additional decompositions of the
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long word along the way, and it is probable that one can extend the results proven
here to the set of all reduced decompositions of the long element.

Some progress has been made in establishing similar results for other Cartan
types. For n sufficiently large (the “stable case”) the authors have given a satisfactory
theory in [6, 8]. For the remaining small n, the situation is more difficult but also
extremely interesting. There have been two distinct approaches to developing a
theory for general n: one based on a novel variant of the Weyl character formula
due to Chinta and Gunnells [18], and the other, the subject of this book, based
on crystal graphs (or Gelfand-Tsetlin patterns). Proving that the two approaches
actually define the same Dirichlet series is a central problem in this field. Chinta and
Gunnells treat all root systems. At this writing, the crystal graph approach can be
used to define Weyl group multiple Dirichlet series for Type Cr (with n odd) as in
Beineke, Brubaker and Frechette [1] and in Type Br (with n even) as in Brubaker,
Bump, Chinta and Gunnells [5] whose conjectured analytic properties can be proved
in a number of special cases for both types.

We believe that ultimately the crystal graph approach will be extended to all root
systems, all n, and all long words. We hope to extend this theory to all Cartan types
and ultimately to symmetrizable Kac-Moody root systems. The alternative approach
of Chinta and Gunnells [18] also should lend itself to the Kac-Moody case, and though
the two approaches are different, it is to be expected that they will eventually be
unified in a single theory. For a connection between the two approaches in certain
cases, see Chinta, Friedberg and Gunnells [16].

A first case of multiple Dirichlet series having infinite group of functional equa-
tions (the affine Weyl group D

(1)
4 in Kac’s classification) may be found in the work

of Bucur and Diaconu [11]. (Their result requires working over the rational function
field; it builds on work of Chinta and Gunnells [18].) If one could establish the an-
alytic properties of such series in full generality, one would have a potent tool for
studying moments of L-functions.

It is expected that Weyl group multiple Dirichlet series for finite Weyl groups
can be identified with the Whittaker coefficients on metaplectic groups. For example
in [7] we show that the multiple Dirichlet series of Type Ar can be identified with
Whittaker coefficients of Eisenstein series. Also, working locally, Chinta and Of-
fen [19] relate the Chinta-Gunnells construction to metaplectic Whittaker functions
on GLr+1(F ) when F is nonarchimedean. However there is reason to avoid identify-
ing this program too closely with the question of metaplectic Whittaker functions.
For if the theory of Weyl group multiple Dirichlet series is to be extended to infinite
Kac-Moody Weyl groups, one will not have the interpretation of the multiple Dirich-
let series as Whittaker functions of automorphic forms, so a combinatorial approach
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will be necessary. The results of this work are a proof of concept that a combinatorial
approach based on crystal graphs should be viable.

The first six chapters provide a detailed introduction and preparation for the
later chapters. The first chapter gives the two definitions of the Type Ar Weyl group
multiple Dirichlet series in which the p-parts are sums over Gelfand-Tsetlin patterns.
In Chapter 2, these two definitions are translated into the language of crystal bases.
Chapter 3 considers the special case n = 1, and Chapter 4 describes variants of
these definitions and an interesting related geometric property of crystals. Return-
ing to the main theorems, Chapter 5 outlines the proofs, which will occupy most
of the book. This chapter introduces many concepts and ideas, and several equiv-
alent forms of the result, called Statements A through F. Each statement is purely
combinatorial, but with each statement the nature of the problem changes. The first
reduction changes the focus from Gelfand-Tsetlin patterns to “short” Gelfand-Tsetlin
patterns, consisting of just three rows. This reduction, based on the Schützenberger
involution, is explained in Chapters 6 and 7. A particular phenomenon called reso-
nance is isolated, which seems to be at the heart of the difficulty in all the proofs.
In Chapters 8 through 13, a reduction to the totally resonant case is accomplished.
Now the equality is of two different sums of products of Gauss sums attached to the
lattice points in two different polytopes. On the interior of the polytopes, the terms
bijectively match but on the boundary a variety of perplexing phenomena occur.
Moreover, the polytopes are irregular in shape. It is shown in Chapter 14 by means
of an inclusion-exclusion process that these sums can be replaced by sums over lat-
tice points in simplices; the terms that are summed are not the original products
of Gauss sums but certain alternating sums of these. Although these terms appear
more complicated than the original ones, they lead to an intricate but explicit rule
for matching terms in each sum. This results in a final equivalent version of our main
theorem, called Statement G, which is formulated in Chapter 15. This is proved in
Chapters 16 through 17. See Chapter 5 for a more detailed outline of the proof.

We would like to thank Gautam Chinta and Paul Gunnells for helpful comments,
and in particular for pointing out the relevance of Littelmann [31], which was the
beginning of the crystal basis approach. We would like to help Maki Nakasuji with
some help in Chapter 3. Both SAGE and Mathematica were used in the investi-
gations. In particular, SAGE has good support for crystals now and was used to
make some of the figures. This work was supported by NSF grants DMS-0354662,
DMS-0353964, DMS-0652609, DMS-0652817, DMS-0652529, DMS-0702438 and by
NSA grant H98230-07-1-0015.
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Chapter 1

Type A Weyl group multiple
Dirichlet series

We begin by defining the basic shape of the class of Weyl group multiple Dirichlet
series. To do so, we choose the following parameters.

• Φ, a reduced root system. Let r denote the rank of Φ.

• n, a positive integer,

• F , an algebraic number field containing the group µ2n of 2n-th roots of unity,

• S, a finite set of places of F containing all the archimedean places, all places
ramified over Q, and large enough so that the ring

oS = {x ∈ F ||x|v 6 1 for v /∈ S}

of S-integers is a principal ideal domain,

• m = (m1, · · · ,mr), an r-tuple of non-zero S-integers.

We may embed F and oS into FS =
∏

v∈S Fv along the diagonal. Let (d, c)n,S ∈ µn
denote the S-Hilbert symbol, the product of local Hilbert symbols at each place
v ∈ S, defined for c, d ∈ F×S . Let Ψ : (F×S )r −→ C be any function satisfying

Ψ(ε1c1, · · · , εrcr) =
r∏
i=1

(εi, ci)n,S

{∏
i<j

(εi, cj)
−1
n,S

}
Ψ(c1, · · · , cr) (1.1)

1



2 CHAPTER 1. TYPE A WEYL GROUP MULTIPLE DIRICHLET SERIES

for any ε1, · · · , εr ∈ o×S (F×,nS ) and ci ∈ F×S . Here (F×,nS ) denotes the set of n-th
powers in F×S . It is proved in [6] that the set M of such functions is a nonzero but
finite-dimensional vector space.

To any such function Ψ and data chosen as above, Weyl group multiple Dirichlet
series are functions of r complex variables s = (s1, · · · , sr) ∈ Cr of the form

Z
(n)
Ψ (s; m; Φ) = ZΨ(s; m) =

∑
c=(c1,··· ,cr)∈(oS/o

×
S )r

ci 6=0

H(c; m)Ψ(c)

Nc−2s1
1 · · ·Nc−2sr

r

, (1.2)

where Nc is the cardinality of oS/coS, and it remains to define the coefficients
H(c; m) in the Dirichlet series. In particular, the function Ψ is not independent
of the choice of representatives in oS/o

×
S , so the function H must possess comple-

mentary transformation properties for the sum to be well-defined.

Indeed, the function H satisfies a “twisted multiplicativity” in c, expressed in
terms of n-th power residue symbols and depending on the root system Φ, which spe-
cializes to the usual multiplicativity when n = 1. Recall that the n-th power residue
symbol

(
c
d

)
n

is defined when c and d are coprime elements of oS and gcd(n, d) = 1.
It depends only on c modulo d, and satisfies the reciprocity law( c

d

)
n

= (d, c)n,S

(
d

c

)
n

.

(The properties of the power residue symbol and associated S-Hilbert symbols in our
notation are set out in [6].) Then given c = (c1, · · · , cr) and c′ = (c′1, · · · , c′r) with
gcd(c1 · · · cr, c′1 · · · c′r) = 1, the function H satisfies

H(c1c
′
1, · · · , crc′r; m)

H(c; m) H(c′; m)
=

r∏
i=1

(
ci
c′i

)||αi||2
n

(
c′i
ci

)||αi||2
n

∏
i<j

(
ci
c′j

)2〈αi,αj〉

n

(
c′i
cj

)2〈αi,αj〉

n

,

(1.3)
where αi, i = 1, · · · , r denote the simple roots of Φ and we have chosen a Weyl group
invariant inner product 〈·, ·〉 for our root system embedded into a real vector space of
dimension r. The inner product should be normalized so that for any α, β ∈ Φ, both
||α||2 = 〈α, α〉 and 2〈α, β〉 are integers. We will devote the majority of our attention
to Φ of type Ar, and will assume the inner product is chosen so that all roots have
length 1.

The function H possesses a further twisted multiplicativity with respect to the pa-
rameter m. Given any c = (c1, · · · , cr), m = (m1, · · · ,mr) and m′ = (m′1, · · · ,m′r)
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with gcd(m′1 · · ·m′r, c1 · · · cr) = 1, H satisfies the twisted multiplicativity relation

H(c;m1m
′
1, · · · ,mrm

′
r) =

(
m′1
c1

)−||α1||2

n

· · ·
(
m′r
cr

)−||αr||2
n

H(c; m). (1.4)

As a consequence of properties (1.3) and (1.4) the specification of H reduces
to the case where the components of c and m are all powers of the same prime.
Given a fixed prime p of oS and any m = (m1, · · · ,mr), let li = ordp(mi). Then
we must specify H(pk1 , · · · , pkr ; pl1 , · · · , plr) for any r-tuple of non-negative integers
k = (k1, · · · , kr). For brevity, we will refer to these coefficients as the “p-part” of H.

To summarize, specifying a multiple Dirichlet series Z
(n)
Ψ (s; m; Φ) with chosen data

is equivalent to specifying the p-parts of H.

Remark 1 Both the transformation property of Ψ in (1.1) and the definition of
twisted multiplicativity in (1.3) depend on an enumeration of the simple roots of Φ.
However the product H·Ψ is independent of this enumeration of roots and furthermore
well-defined modulo units, according to the reciprocity law. The p-parts of H are also
independent of this enumeration of roots.

The definitions given above apply to any root system Φ. For the remainder of
this text, we now take Φ to be of type A, and provide a definition of the p-part of
H for these cases. In fact, we will propose two definitions of H, to be referred to
as HΓ and H∆, either of which may be used to define the multiple Dirichlet series
Z(s; m;Ar). Both definitions will be given in terms of Gelfand-Tsetlin patterns.

By a Gelfand-Tsetlin pattern of rank r we mean an array of integers

T =


a00 a01 a02 · · · a0r

a11 a12 a1r

. . . . . .

arr

 (1.5)

where the rows interleave; that is, ai−1,j−1 > ai,j > ai−1,j. Let λ = (λ1, · · · , λr) be
a dominant integral element for SLr+1, so that λ1 > λ2 > · · · > λr. In the next
chapter, we will explain why Gelfand-Tsetlin patterns with top row (λ1, · · · , λr, 0)
are in bijection with basis vectors for the highest weight module for SLr+1(C) with
highest weight λ.

Given non-negative integers (l1, · · · , lr), the coefficientsH(pk1 , · · · , pkr ; pl1 , · · · , plr)
in both definitions HΓ and H∆ will be described in terms of Gelfand-Tsetlin patterns
with top row (or equivalently, highest weight vector)

λ+ ρ = (l1 + l2 + · · ·+ lr + r, · · · , lr−1 + lr + 2, lr + 1, 0). (1.6)
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We denote by GT(λ+ ρ) the set of all Gelfand-Tsetlin patterns having this top row.
Here ρ = (r, r − 1, · · · , 0) and λ = (λ1, · · · , λr+1) where λi =

∑
j>i lj.

To any Gelfand-Tsetlin pattern T, we associate the following pair of functions
with image in Zr>0:

kΓ(T) = (kΓ,1(T), · · · , kΓ,r(T)), k∆(T) = (k∆,1(T), · · · , k∆,r(T)),

where

kΓ,i(T) =
r∑
j=i

(ai,j − a0,j) and k∆,i(T) =
r∑

j=r+1−i

(a0,j−r−1+i − ar+1−i,j). (1.7)

In the language of representation theory, the weight of the basis vector corresponding
to the Gelfand-Tsetlin pattern T can be read from differences of consecutive row sums
in the pattern, so both kΓ and k∆ are expressions of the weight of the pattern up to
an affine linear transformation.

Then given a fixed r-tuple of non-negative integers (l1, · · · , lr), we make the
following two definitions for p-parts of the multiple Dirichlet series:

HΓ(pk1 , · · · , pkr ; pl1 , · · · , plr) =
∑

T ∈ GT(λ+ ρ)
kΓ(T) = (k1, · · · , kr)

GΓ(T) (1.8)

and

H∆(pk1 , · · · , pkr ; pl1 , · · · , plr) =
∑

T ∈ GT(λ+ ρ)
k∆(T) = (k1, · · · , kr)

G∆(T), (1.9)

where the functions GΓ and G∆ on Gelfand-Tsetlin patterns will now be defined.
We will associate with T two arrays Γ(T) and ∆(T). The entries in these arrays

are

Γi,j = Γi,j(T) =
r∑
k=j

(ai,k − ai−1,k), ∆i,j = ∆i,j(T) =

j∑
k=i

(ai−1,k−1 − ai,k), (1.10)

with 1 6 i 6 j 6 r, and we often think of attaching each entry of the array Γ(T)
(resp. ∆(T)) with an entry of the pattern ai,j lying below the fixed top row. Thus
we think of Γ(T) as applying a kind of right-hand rule to T, since Γi,j involves entries
above and to the right of ai,j as in (1.10); in ∆ we use a left-hand rule where ∆i,j

involves entries above and to the left of ai,j as in (1.10). When we represent these
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arrays graphically, we will right justify the Γ array and left justify the ∆ array. For
example, if

T =


12 9 4 0

10 5 3
7 4

6


then

Γ(T) =

 5 4 3
3 1

2

 and ∆(T) =

 2 6 7
3 4
1

 .
To provide the definitions of GΓ and G∆ corresponding to each array, it is con-

venient to decorate the entries of the Γ and ∆ arrays by boxing or circling certain
of them. Using the right-hand rule with the Γ array, if ai,j = ai−1,j−1 then we say
Γi,j is boxed , and indicate this when we write the array by putting a box around it,
while if ai,j = ai−1,j we say it is circled (and we circle it). Using the left-hand rule
to obtain the ∆ array, we box ∆i,j if ai,j = ai−1,j and we circle it if ai,j = ai−1,j−1.
For example, if

T =


12 10 4 0

10 5 3
7 5

6


then the decorated arrays are

Γ(T) =

 ?>=<89:;4 4 3

4 2

1

 , ∆(T) =

 2 7 8

3 ?>=<89:;3

1

 .
We sometimes use the terms right-hand rule and left-hand rule to refer to both the
direction of accumulation of the row differences, and to the convention for decorating
these accumulated differences.

If m, c ∈ oS with c 6= 0 define the Gauss sum

g(m, c) =
∑

a mod c

(a
c

)
n
ψ
(am
c

)
, (1.11)

where ψ is a character of FS that is trivial on oS and no larger fractional ideal. With
p now fixed, for brevity let

g(a) = g(pa−1, pa), h(a) = g(pa, pa). (1.12)
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These functions will only occur with a > 0. The reader may check that g(a) is non-
zero for any value of a, while h(a) is non-zero only if n|a, in which case h(a) = (q −
1)qa−1 = φ(pa), where q is the cardinality of oS/poS. Thus if n|a then h(a) = φ(pa),
the Euler phi function for paoS. Let

GΓ(T) =
∏

16i6j6r


g(Γij) if Γij is boxed but not circled in Γ(T);
qΓij if Γij is circled but not boxed;
h(Γij) if Γij neither circled nor boxed;
0 if Γij both circled and boxed.

We say that the pattern T is non-strict if ai,j = ai,j+1 for any i, j in the pattern. It
is clear from the definitions that T is nonstrict if and only if Γ(T) has an entry that
is both boxed and circled, so GΓ(T) = 0 for nonstrict patterns. Also let

G∆(T) =
∏

16i6j6r


g(∆ij) if ∆ij is boxed but not circled in ∆(T);
q∆ij if ∆ij is circled but not boxed;
h(∆ij) if ∆ij neither circled nor boxed;
0 if ∆ij both circled and boxed.

Inserting these respective definitions into the formulas (1.8) and (1.9) completes the
two definitions of the p-parts of HΓ and H∆, and with it two definitions for a multiple
Dirichlet series ZΨ(s; m). In [10], the definition HΓ was used to define the series,
and so we will state our theorem on functional equations and analytic continuation
of ZΨ(s; m) using this choice.

Before stating the result precisely, we need to define certain normalizing factors
for the multiple Dirichlet series. These have a uniform description for all root systems
(see Section 3.3 of [6]), but for simplicity we state them only for type A here. Let

Gn(s) = (2π)−2(n−1)sn2ns

n−2∏
j=1

Γ

(
2s− 1 +

j

n

)
. (1.13)

We will identify the weight space for GL(r + 1,C) with Zr+1 in the usual way.
For any α ∈ Φ+, there exist 1 6 i < j 6 r + 1 such that α = αi,j is the root
(0, · · · , 0, 1, 0, · · · ,−1, 0, · · · ) with the 1 in the i-th place and the −1 in the j-th
place. We will also denote the simple roots αi = αi,i+1 for 1 6 i 6 r. If α = αi,j is a
positive root, then define

Gα(s) = Gn

(
1

2
+ (si + si+1 + · · ·+ sj−1)

)
. (1.14)



7

Further let

ζα(s) = ζ

(
1 + 2n

(
si + · · ·+ sj−1 −

j − i
2

))
where ζ is the Dedekind zeta function attached to the number field F . Then the
normalized multiple Dirichlet series is given by

Z∗Ψ(s; m) =

[ ∏
α∈Φ+

Gα(s)ζα(s)

]
ZΨ(s,m). (1.15)

Theorem 1 The Weyl group multiple Dirichlet series Z∗Ψ(s; m) with coefficients HΓ

as in (1.8) has meromorphic continuation to Cr and satisfies functional equations

Z∗Ψ(s; m) = |mi|1−2siZ∗σiΨ(σis; m) (1.16)

for all simple reflections σi ∈ W , where

σi(si) = 1− si, σi(sj) =

{
si + sj − 1/2 if i, j adjacent,

sj otherwise.

Here σi :M→M is a linear map defined in [8].

The endomorphisms σi of the space M of functions satisfying (1.1) are the sim-
ple reflections in an action of the Weyl group W on M. See [6] and [8] for more
information.

This proves Conjecture 2 of [10]. An explicit description of the polar hyperplanes
of Z∗Ψ can be found in Section 7 of [8]. As we will demonstrate in Chapter 3, this
theorem ultimately follows from proving the equivalence of the two definitions of
the p-part HΓ and H∆ offered in (1.8) and (1.9). Because of this implication, and
because it is of interest to construct such functions attached to a representation
but independent of choices of coordinates (a notion we make precise in subsequent
chapters using the crystal description), we consider the equivalence of these two
descriptions to be our main theorem.

Theorem 2 We have HΓ = H∆.

A special role in proving the equivalence of the two definitions HΓ and H∆ is
played by the Schützenberger involution, originally introduced by Schützenberger [37]
in the context of tableaux. It was transported to the setting of Gelfand-Tsetlin
patterns by Berenstein and Kirillov [27], and defined for general crystals (to be
discussed in Chapter 2) by Lusztig [32]. We give its definition now.
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Given a Gelfand-Tsetlin pattern (1.5), the condition that the rows interleave
means that each ai,j is constrained by the inequalities

min(ai−1,j−1, ai+1,j) 6 ai,j 6 max(ai−1,j, ai+1,j+1).

This means that we can reflect this entry across the midpoint of this range and obtain
another Gelfand-Tsetlin pattern. Thus we replace every entry ai,j in the i-th row by

a′i,j = min(ai−1,j−1, ai+1,j) + max(ai−1,j, ai+1,j+1)− ai,j.

This requires interpretation if j = i or j = r + 1. Thus

a′i,i = ai−1,j−1 + max(ai−1,j, ai+1,j+1)− ai,i

and
a′i,r = min(ai−1,r−1, ai+1,r) + ai−1,r − ai,r,

while if i = j = r, set a′r,r = ar−1,r−1 + ar−1,r − ar,r. This operation on the entire
row will be denoted by tr+1−i. Note that it only affects this lone row in the pattern.
Further involutions on patterns may be built out of the ti, and will be called qi
following Berenstein and Kirillov. Let q0 be the identity map, and define recursively
qi = t1t2 · · · tiqi−1. The ti have order two. They do not satisfy the braid relation, so
titi+1ti 6= ti+1titi+1. However titj = tjti if |i− j| > 1 and this implies that the qi also
have order two. The operation qr is called the Schützenberger involution.

For example, let r = 2, and let us compute q2 of a typical Gelfand-Tsetlin pattern.
Following the algorithm outlined above,

q2


9 3 0

7 1
3


 =


9 3 0

7 2
4

 .

Indeed, q2 = t1t2t1 and we compute:
9 3 0

7 1
3

 t1−→


9 3 0

7 1
5

 t2−→


9 3 0

7 2
5


t1−→


9 3 0

7 2
4

 .

We will discuss the the relationship between the Schützenberger involution and
Theorem 2 in Chapters 4, 5 and 6; see in particular (5.1).



Chapter 2

Crystals and Gelfand-Tsetlin
Patterns

We will translate the definitions of the Γ and ∆ arrays in (1.10), and hence of the
multiple Dirichlet series, into the language of crystal bases. The entries in these
arrays and the accompanying boxing and circling rules will be reinterpreted in terms
of the Kashiwara operators. Thus, what appeared as a pair of unmotivated functions
on Gelfand-Tsetlin patterns in the previous chapter now takes on intrinsic represen-
tation theoretic meaning. Despite the conceptual importance of this reformulation,
the reader can skip this chapter and the subsequent chapters devoted to crystals with
no loss of continuity. For further background information on crystals, we recommend
Hong and Kang [23] and Kashiwara [25] as basic references.

We will identify the weight lattice Λ of glr+1(C) with Zr+1. We call the weight
λ = (λ1, · · · , λr+1) ∈ Zr+1 dominant if λ1 > λ2 > . . .. If furthermore λr+1 > 0 we
call the dominant weight effective. (An effective dominant weight is just a partition
of length 6 r + 1.) If λ is a dominant weight then there is a crystal graph Bλ with
highest weight λ. It is equipped with a weight function wt : Bλ −→ Zr+1 such that if
µ is any weight and if m(µ, λ) is the multiplicity of µ in the irreducible representation
of GLr+1(C) with highest weight λ then m(µ, λ) is also the number of v ∈ Bλ with
wt(v) = µ. It has operators ei, fi : Bλ −→ Bλ∪{0} (1 6 i 6 r) such that if ei(v) 6= 0
then v = fi(ei(v)) and wt(ei(v)) = wt(v) + αi, and if fi(v) 6= 0 then ei(fi(v)) = v
and wt(fi(v)) = wt(v)−αi. Here α1 = (1,−1, 0, · · · , 0), α2 = (0, 1,−1, 0, · · · , 0) etc.
are the simple roots in the usual order. These root operators give Bλ the structure
of a directed graph with edges labeled from the set 1, 2, · · · , r. The vertices v and w

are connected by an edge v
i−→w or v

fi−→w if w = fi(v).

9
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Remark 2 The elements of Bλ are basis vectors for a representation of the quantized
enveloping algebra Uq(glr+1(C)). Strictly speaking we should reserve fi for the root
operators in this quantized enveloping algebra and so distinguish between fi and f̃i
as in [26]. However we will not actually use the quantum group but only the crystal
graph, so we will simplify the notation by writing fi instead of f̃i, and similarly for
the ei. We will use the terms crystal, crystal base and crystal graph interchangeably.

The crystal graph Bλ has an involution Sch : Bλ −→ Bλ that such that

Sch ◦ei = fr+1−i ◦ Sch, Sch ◦fi = er+1−i ◦ Sch . (2.1)

In addition to the involution Sch there is a bijection ψλ : Bλ −→ B−w0λ such that

ψλ ◦ fi = ei ◦ ψλ, ψλ ◦ ei = fi ◦ ψλ. (2.2)

Here w0 is the long Weyl group element. If λ = (λ1, · · · , λr+1) is a dominant weight
then −w0λ = (−λr+1, · · · ,−λ1) is also a dominant weight so there is a crystal B−w0λ

with that highest weight. The map ψλ commutes with Sch and the composition
φλ = Sch ◦ψλ = ψλ ◦ Sch has the effect

φλ ◦ fi = fr+1−i ◦ φλ, φλ ◦ er+1−i = ei ◦ φλ. (2.3)

The involution Sch was first described by Schützenberger [37] in the context of
tableaux. It was transported to the setting of Gelfand-Tsetlin patterns by Beren-
stein and Kirillov [27], and defined for general crystals by Lusztig [32]. Another
useful reference for the involutions is Lenart [30].

If we remove all edges of type r from the crystal graph Bλ, then we obtain a
crystal graph of rank r− 1. It inherits a weight function from Bλ, which we compose
with the projection Zr+1 −→ Zr onto the first r coordinates.

The restricted crystal may be disconnected, in which case it is a disjoint union of
crystals of type Ar−1, and the crystals that appear in this restriction are described
by the following branching rule:

Bλ =
⋃

µ = (µ1, · · · , µr)
µ dominant
λ, µ interleave

Bµ (2.4)

where the “interleave” condition means that µ runs through dominant weights such
that

λ1 > µ1 > λ2 > . . . > λr+1.
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The branching rule is multiplicity-free, meaning that no crystal Bµ occurs more than
once. Since representations of the quantized enveloping algebra Uq

(
glr+1(C)

)
corre-

spond exactly to representations of GLr+1(C), follows from the well-known branching
rule from GLr+1(C) to GLr(C). See for example Bump [12], Chapter 44.

There is a bijection between the crystal graph with highest weight λ and Gelfand-
Tsetlin patterns with top row λ. There are several ways of seeing this. The first
way is that, given v ∈ Bλ, we first branch down from Ar to Ar−1 by the branching
rule, which means selecting the unique crystal Bµ from (2.4) with v ∈ Bµ, that is,
the connected component of the restricted crystal which contains v. Then λ and µ
are the first two rows of the Gelfand-Tsetlin pattern. Continuing to branch down to
Ar−2, Ar−3, · · · we may read off the remaining rows of the pattern. Let Tv be the
resulting Gelfand-Tsetlin pattern.

The crystal Bλ contains Bµ if and only if λ and µ interleave, which is equivalent
to −w0λ and −w0µ interleaving, and hence if and only if B−w0λ contains B−w0µ. The
operation ψλ in (2.2) which reverses the root operators must be compatible with this
branching rule, and so each row of Tψλv is obtained from the corresponding row of
Tv by reversing the entries and changing their sign. Thus, denoting by “rev” the
operation of reversing an array from left to right and by −T the pattern with all
entries negated, we have

Tψλv = −Trev
v . (2.5)

An alternative way of getting this bijection comes from the interpretation of
crystals as crystals of tableaux. We will assume that λ is effective, that is, that its
entries are nonnegative.

We recall that Gelfand-Tsetlin patterns with top row λ are in bijection with
semi-standard Young tableau with shape λ and labels in {1, 2, 3, · · · , r + 1}. In this
bijection, one starts with a tableau, and successively reduces to a series of smaller
tableaux by eliminating the entries. Thus if r + 1 = 4, starting with the tableau

T =
1 1 2 2
2 4
3

and eliminating 4, 3, 2, 1 successively one has the following sequence of tableaux:

1 1 2 2
2 4
3

−→
1 1 2 2
2
3

−→ 1 1 2 2
2

−→ 1 1
.
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Now reading off the shapes of these tableaux gives r + 1 shapes which are the rows
of a Gelfand-Tsetlin pattern T. In this example:

T 7→ T =


4 2 1 0

4 1 1
4 1

2

 .

In discussing the bijection between Gelfand-Tsetlin patterns and tableaux, we
have assumed that λ is effective, but what if it is not? If λ is a dominant weight, so
is

λ+ (nr+1) = (λ1 + n, · · · , λr+1 + n)

for any n. (As usual, (nk) = (n, · · · , n) is the partition with k parts each equal to
n.) We will denote the corresponding crystal Bλ+(nr+1) = detn⊗Bλ since this opera-
tion corresponds to tensoring with the determinant character for representations of
glr+1(C). There is a bijection from Bλ to detn⊗Bλ which is compatible with the root
operators and which shifts the weight by (nr+1). If λ is not effective, still λ+ (nr+1)
is effective for sufficiently large n. On the other hand, if λ is effective (so there is a
bijection with tableaux of shape λ) then it is instructive to consider the effect of this
operation on tableaux corresponding to the bijection Bλ −→ detn⊗Bλ. It simply
adds n columns of the form

1
2
...

r + 1

at the beginning of the tableau. So if λ is not effective, we may still think of Bλ
as being in bijection with a crystal of tableaux with the weight operator shifted by
(nr+1), which amounts to “borrowing” n columns of this form.

Returning to the effective case, the tableau T parametrizes a vector in a ten-
sor power of the standard module of the quantum group Uq(slr+1(C)) as follows.
Following the notations in Kashiwara and Nakashima [26] the standard crystal (cor-
responding to the standard representation) has basis i (i = 1, 2, · · · , r + 1). The

highest weight vector is 1 and the root operators have the effect i
fi−→ i+ 1 .

The tensor product operation on crystals is described in Kashiwara and Naka-
shima [26], or in Hong and Kang [23]. If B and B′ are crystals, then B ⊗ B′ consists
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of all pairs x⊗y with x ∈ B and y ∈ B′. The root operators have the following effect:

fi(x⊗ y) =

{
fi(x)⊗ y if φi(x) > εi(y),
x⊗ fi(y) if φi(x) 6 εi(y),

ei(x⊗ y) =

{
ei(x)⊗ y if φi(x) > εi(y),
x⊗ ei(y) if φi(x) < εi(y).

Here φi(x) is the largest integer φ such that fφi (x) 6= 0 and similarly εi(x) is the
largest integer ε such that eεi (x) 6= 0.

Now tableaux are turned into elements of a tensor power of the standard crystal
by reading the columns from top to bottom, and taking the columns in order from
right to left. Thus the tableau

1 1 2 2
2 4
3

becomes 2 ⊗ 2 ⊗ 1 ⊗ 4 ⊗ 1 ⊗ 2 ⊗ 3 .

The set of vectors coming from tableaux with shape λ form a subcrystal of the tensor
power of the standard crystal. This crystal of tableaux has highest weight λ and is
isomorphic to Bλ. Thus we get bijections

Bλ ←→
{

Tableau in 1, · · · , r
with shape λ

}
←→

{
Gelfand-Tsetlin patterns

with top row λ

}
.

(2.6)
This is the same as the bijection between Bλ and Gelfand-Tsetlin patterns that was
described previously in terms of branching rules. Indeed, the branching rule for
tableaux is as follows. Beginning with a tableau T in 1, · · · , r of shape λ, erase all
r’s. This produces a tableau T ′ of shape µ where λ and µ interleave, and the Gelfand-
Tsetlin pattern of T ′ is the Gelfand-Tsetlin pattern corresponding to T minus its
top row.

We will soon explain yet another way of relating the Gelfand-Tsetlin pattern to
v ∈ Bλ. This is based on ideas in Lusztig [33], Berenstein and Zelevinsky [3, 2] and
Littelmann [31]. Let w be an element of the Weyl group W , and let us give a reduced
decomposition of w into simple reflections. That is, if l(w) is the length of w, let
1 6 Ωi 6 r be given (1 6 i 6 l(w)) such that

w = σΩ1σΩ2 · · ·σΩN .

We call the sequence Ω1, · · · ,ΩN a word, and if N = l(w) we call the word reduced.
A reduced word for w0 is a long word. Now if v ∈ Bλ let us apply fΩ1 to v as many
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times as we can. That is, let b1 be the largest integer such that f b1Ω1
v 6= 0. Then let b2

be the largest integer such that f b2Ω2
f b1Ω1

v 6= 0. Let v′ = f bNΩN
· · · f b1Ω1

v. We summarize
this situation symbolically as follows:

v

[
b1 · · · bN
Ω1 · · · ΩN

]
v′ . (2.7)

We refer to this as a path.
The crystal Bλ has a unique highest weight vector vhigh such that wt(vhigh) = λ,

and a unique lowest weight vector vlow such that wt(vlow) = w0(λ). Thus w0(λ) =
(λr+1, · · · , λ1).

Lemma 1 If w = w0 then (2.7) implies that v′ = vlow. In this case the integers
(b1, · · · , bN) determine the vector v.

Proof See Littelmann [31] or Berenstein and Zelevinsky [2] for the fact that v′ =
vlow. (We are using fi instead of the ei that Littelmann uses, but the methods of
proof are essentially unchanged.) Alternatively, the reader may prove this directly
by pushing the arguments in Proposition 1 below a bit further. The fact that the bi
determine v follows from vlow = f bNΩN

· · · f b1Ω1
v since then v = eb1Ω1 · · · e

bN
ΩN
vlow. �

The Gelfand-Tsetlin pattern can be recovered intrinsically from the location of a
vector in the crystal as follows. Assume (2.7) with w = w0. Let

BZLΩ(v) = BZL
(f)
Ω (v) = (b1, b2, · · · , bN).

There are many reduced words representing w0, but two will be of particular concern
for us. If either

Ω = ΩΓ = (1, 2, 1, 3, 2, 1, · · · , r, r − 1, · · · , 3, 2, 1) (2.8)

or
Ω = Ω∆ = (r, r − 1, r, r − 2, r − 1, r, · · · , 1, 2, 3, · · · , r), (2.9)

then Littelmann showed that

b1 > 0 (2.10)

b2 > b3 > 0

b4 > b5 > b6 > 0
...

and that these inequalities characterize the possible patterns BZLΩ. See in particular
Theorem 4.2 of Littelmann [31], and Theorem 5.1 for this exact statement for ΩΓ.
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Proposition 1 Let v 7−→ T = Tv be the bijection defined by (2.6) from Bλ to the
set of Gelfand-Tsetlin patterns with top row λ.
(i) If Ω is the word ΩΓ defined by (2.8) in Lemma 1, so

v

[
b1 b2 b3 b4 b5 b6 · · · bN−r+1 bN−r+2 · · · bN−2 bN−1 bN
1 2 1 3 2 1 · · · r r − 1 · · · 3 2 1

]
vlow,

where N = 1
2
r(r + 1). Then, with Γ(T) as defined in (1.10),

Γ(Tv) =


. . .

...
...

...
b4 b5 b6

b2 b3

b1

 .
(ii) If Ω is the word Ω∆ defined in (2.9) in Lemma 1, so

v

[
z1 z2 z3 z4 z5 z6 · · · zN−r+1 zN−r+2 · · · zN−2 zN−1 zN
r r − 1 r r − 2 r − 1 r · · · 1 2 · · · r − 2 r − 1 r

]
vlow,

then, with ∆(T) as in (1.10),

∆(qrTv) =


...

...
... . . .

z6 z5 z4

z3 z2

z1

 .
(iii) We have TSch(v) = qrTv.

Proof Most of this is in Littelmann [31], Berenstein and Zelevinsky [2] and Beren-
stein and Kirillov [27]. However it is also possible to see this directly from Kashiwara’s
description of the root operators by translating to tableaux, and so we will explain
this.

Let Ω = ΩΓ. We consider a Gelfand-Tsetlin pattern

T = Tv =


. . .

... . . .

ar−1,r−1 ar−1,r

arr


with corresponding tableau T . Then arr is the number of 1’s in T , all of which
must occur in the first row since T is column strict. In the tensor these correspond
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to 1 ’s. Applying f1 will turn some of these to 2 ’s. In fact it follows from the
definitions that the number b1 of times that f1 can be applied is the number of 1’s
in the first row of T that are not above a 2 in the second row. Now the number of
2’s in the second row is ar−1,r. Thus b1 = arr − ar−1,r.

For example if

T =


10 5 3 0

9 4 2
7 3

5

 ↔ T =
1 1 1 1 1 2 2 3 3 4
2 2 2 3 4
3 3 4

then we can apply f1 twice (so b1 = a33 − a23 = 5− 3 = 2) and we obtain

1 1 1 2 2 2 2 3 3 4
2 2 2 3 4
3 3 4

Now b2 is the number of times we can apply f2. This will promote 2 −→ 3 but
only if the 2 in the tableau is not directly above a 3. One 2 will be promoted from
the second row (1 = a23− a13 = 3− 2) and three will be promoted from the first row
(3 = a22 − a12 = 7− 4). Thus b2 = a22 + a23 − a12 − a13. This produces the tableau

1 1 1 2 3 3 3 3 3 4
2 2 3 3 4
3 3 4

After this, we can apply f1 once (1 = a23 − a13 = 3− 2) promoting one 1 and giving

1 1 2 2 3 3 3 3 3 4
2 2 3 3 4
3 3 4

Thus b3 = a23 − a13. After this, we apply f3 seven times promoting two 3’s in the
third row (2 = 2 − 0 = a31 − a30), one 3 in the second row (1 = 4 − 3 = a12 − a02)
and and four 3’s in the first row (4 = 9− 5 = a11 − a01) to obtain

1 1 2 2 3 4 4 4 4 4
2 2 3 4 4
4 4 4



17

Thus b4 = a11 + a12 + a13 − a01 − a02 − a03. One continues in this way.
From this discussion (i) is clear. We refer to Berenstein and Kirillov [27] for the

computation of the involution Sch. Thus we will refer to [27] for (iii) and using (iii)
we will prove (ii). By (iii) and (2.5) the map φλ : Bλ −→ B−w0λ satisfying (2.3) has
the effect

Tφλv = qrTψv = (−qrTv)
rev. (2.11)

Since φλ changes fi to fr+1−i it replaces b1, · · · , bN (computed for φλv ∈ B−w0λ) by
z1, · · · , zN . It is easy to see from the definition (1.10) that Γ(−Trev) = ∆(T)rev, and
(ii) follows. �

Now let us reinterpret the factors GΓ(Tv) and G∆(qrTv) defined in Chapter 1. It
follows from Proposition 1 that the numbers Γij and ∆ij that appear in the respective
arrays are exactly the quantities that appear in BZLΩ(v) when Ω = ΩΓ or Ω∆, and
we have only to describe the circling and boxing decorations.

The circling is clear: we circle bi if either i ∈ {1, 3, 6, 10, · · · } (so bi is the first
element of its row) and bi = 0, or if i 6∈ {1, 3, 6, 10, · · · } and bi = bi+1. This is a
direct translation of the circling definition in Chapter 1.

Let us illustrate this with an example. In Figure 2.1 we compute Γ(Tv) for a
vertex of the A2 crystal with highest weight (5,3,0).

v

[
0 2 2
1 2 1

]
vlow

so that b1 = 0, b2 = b3 = 2. The inequalities (2.10) assert that b1 > 0 and b2 > b3 > 0.
Since two of these are sharp, we circle b1 and b2 and

Γ(Tv) =

[ ?>=<89:;2 2

?>=<89:;0

]
, Tv =


5 3 0

3 2
2

 .

As for the boxing, the condition has an interesting reformulation in terms of the
crystal, which we describe next. Given the path

v, fΩ1v, f
2
Ω1
v, · · · , f b1Ω1

v, fΩ2f
b1
Ω1
v, · · · , f b2Ω2

f b1Ω1
v, fΩ3f

b2
Ω2
f b1Ω1

v, · · · , f bNΩN
· · · f bNΩ1

v = vlow

through the crystal from v to vlow, the bj are the lengths of consecutive moves along
edges fΩj in the path. (These are depicted by straight-line segments in the figure.)
If u is any vertex and 1 6 i 6 r, then the i-string through u is the set of vertices that
can be obtained from u by repeatedly applying either ei or fi. The boxing condition
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1
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1
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3

13
4

01
0

01
1

01
2

01
3

01
4

02
0

02
1

02
2

02
3

02
4

02
5

f2

f2

f1f1

v

vlow

Figure 2.1: The circling rule. The crystal graph has highest weight λ = (5, 3, 0).
The element vlow has lowest weight w0λ = (0, 3, 5), and v has weight (2, 0, 3). The
labels of the vertices are the Γ arrays. The word ΩΓ = 121 is used to compute Γ(Tv).
The root operator f1 moves left along crystal edges, and the root operator f2 moves
down and to the right. The crystal has been drawn so that elements of a given weight
are placed in diagonally aligned clusters.

then amounts to the assumption that the canonical path contains the entire Ωt string
through f

bt−1

Ωt−1
· · · f b1Ω1

v. That is, the condition for bt to be boxed is that

eΩtf
bt−1

Ωt−1
· · · f b1Ω1

v = 0.
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f1

f1f2

f2

f2

f1
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vlow

Figure 2.2: The boxing rule. The crystal graph Bλ with λ = (4, 2, 0). The element
vlow has lowest weight w0λ = (0, 2, 4), and v has weight (3, 2, 1). The word ΩΓ = 121
is used to compute Γ(Tv). The root operator f1 moves left along edges, and the
root operator f2 moves down and to the right. The crystal has been drawn so that
elements of a given weight are placed in diagonally aligned clusters.

Here is an example. Let λ = (4, 2, 0), and let Ω = ΩΓ = (1, 2, 1). Then (see
Figure 2.2) we have b1 = 2, b2 = 3 and b3 = 1. Since the path includes the entire
2-string through f 2

1 v (or equivalently, since e2f
2
1 v = 0) we box b2 and

Γ(Tv) =

{
3 1

2

}
, Tv =


4 2 0

4 1
3

 .

It is not hard to see that the decorations of Γ(Tv) described this way agree with
those already defined in Chapter 1.

Now that we have explained the boxing and circling rules geometrically for the
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BZL pattern, it is natural to make the definition

GΓ(v) = G
(f)
Γ (v) =

1
2
r(r+1)∏
i=1


qbi if bi is circled,
g(bi) if bi is boxed,
h(bi) if bi is neither circled nor boxed,
0 if bi is both circled and boxed,

(2.12)

where the bi are as in Proposition 1 (i), and the boxing and circling rules are to be

discussed. The definition of G∆(v) = G
(f)
∆ (v) is identical, except that we use the zi

in Proposition 1 (ii).

GΓ(v) = GΓ(Tv), G∆(v) = G∆(Tv). (2.13)

In order to finish describing the p-part of the multiple Dirichlet series in com-
pletely we need to describe kΓ and k∆. If T is a Gelfand-Tsetlin pattern, let di = di(T)
be the sum of the i-th row of T, so that if T is as in (1.5), then di =

∑r
j=i aij.

Proposition 2 If v ∈ Bλ and di are the row sums of Tv, then

wt(v) = (dr, dr−1 − dr, · · · , d0 − d1). (2.14)

Moreover if b1, · · · , b 1
2
r(r+1) are as in Proposition 1 (i),

〈wt(v)− w0(λ), ρ〉 =
∑
i

bi. (2.15)

Proof Let b1, · · · , b 1
2
r(r+1) be as in Proposition 1 (i). Thus they are the entries

in Γ(T). Since vlow is obtained from v by applying f1 b1 + b3 + b6 + . . . times, f2

b2 + b5 + b9 times, etc., we have

wt(v)− w0(λ) = wt(v)− wt(vlow) = krα1 + kr−1α2 + . . .+ k1αr (2.16)

where kr = b1 +b3 +b6 + . . ., kr−1 = b2 +b5 + . . .. Now (2.15) follows since 〈αi, ρ〉 = 1.
By Proposition 1 (i) the bi are the entries in Γ(Tv). In particular b1 = ar,r−ar−1,r,

b3 = ar−1,r − ar−2,r, etc. and so the sum defining kr collapses, and since a0,i = λi+1

we have
kr = ar,r − a0,r = dr − λr+1.

Similarly

kr−1 = dr−1 − λr − λr+1

kr−2 = dr−2 − λr−1 − λr − λr+1

...
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In view of (1.7) the definitions of the previous chapter, ki = kΓ,i.
Remembering that wt(vlow) = w0(λ) = (λr+1, λr, · · · , λ1), this shows that

wt(v)− (λr, λr−1, · · · , λ1) =

(dr − λr+1)α1 + (dr−1 − λr − λr+1)α2 + . . . .+ (d1 − λ2 − . . .− λr)αr =

(dr − λr, dr−1 − dr − λr−1, · · · ,−d1 + λ2 + . . .+ λr).

Since d0 = λ1 + . . .+ λr, we get (2.14). �

Proposition 3 Let v ∈ Bλ, and let ki = kΓ,i(Tv). The ki are the unique integers
such that

r∑
i=1

kiαi = λ− w0 (wt(v)) . (2.17)

Proof Equation (2.17) applies from applying w0 to (2.16), since w0αi = αr+1−i.
The uniqueness of the ki comes from the linear independence of the ki. �

Theorem 3 We have

HΓ(pk1 , · · · , pkr ; pl1 , · · · , plr) =
∑

v ∈ Bλ+ρ

wt(v) = w0

`
λ−

P
i kiαi

´
GΓ(v),

H∆(pk1 , · · · , pkr ; pl1 , · · · , plr) =
∑

v ∈ Bλ+ρ

wt(v) = w0

`
λ−

P
i kiαi

´
G∆(v),

where λ = (λ1, · · · , λr+1) with λi =
∑

j>i li.

In view of Theorem 2, these two expressions are equal.

Proof This is clear in view of (2.13) and (2.17). �



Chapter 3

Tokuyama’s Theorem

It was shown in [7] that the p-parts of the Weyl group multiple Dirichlet series
ZΨ(s; m) can be identified with Whittaker functions of Eisenstein series on the n-
fold metaplectic cover of GLr+1. When n = 1, these can be computed explicitly by
the formula of Shintani [38] and Casselman and Shalika [14]: they are the values of
the characters of irreducible representations of the L-group GLr+1(C).

Let z = (z1, · · · , zr+1) be complex numbers that in the Weyl character formula
are the eigenvalues of an element of GLr+1(C). In the application to the Casselman-
Shalika formula we will take the zi to be the Langlands parameters. (In terms of the
si the zi are determined by the conditions that

∏
zi = 1 and zi/zi+1 = q1−2sr+1−i .)

If µ = (µ1, · · · , µr+1) is a weight and z = (z1, · · · , zr+1) we will denote zµ =
∏
zµii .

By the Weyl character formula, an irreducible character of GLr+1(C) is of the form∑
w∈W (−1)l(w)zw(λ+ρ)

z−ρ
∏

α∈Φ+(1− zα)
.

The p-part of the normalizing factor of the Eisenstein series is

1∏
α∈Φ+(1− q−1zα)

, (3.1)

which resembles the denominator in the Weyl character formula – except for a “shift,”
i.e. the q−1). By (1.15) this is also the p-part of the normalizing factor of ZΨ(s; m).

Tokuyama [41] gave a deformation of the Weyl character formula; in this de-
formation, the denominator has a parameter t, which can be specialized to −q−1

so that Tokuyama’s denominator matches (3.1). The numerator is a sum not over
the Weyl group, but over Gelfand-Tsetlin patterns. When n = 1, the numerator in
Tokuyama’s formula is exactly the p-part of ZΨ(s; m).

22
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We will state and prove Tokuyama’s formula, then translate it into the language
of crystals.

If T is a Gelfand-Tsetlin pattern in the notation (1.5) let s(T) be the number of
entries aij with i > 0 such that ai−1,j−1 < aij < ai−1,j. Let l(T) be the number of
entries aij with i > 0 such that aij = ai−1,j−1. Thus l(T) is the number of boxed
elements in Γ(T), and s(T) is the number of entries that are neither boxed nor circled.
For 0 6 i 6 r let di(T) =

∑r
j=i aij be the i-th row sum of T.

We will denote by sλ(z1, · · · , zr+1) the standard Schur polynomial (Macdon-
ald [34]). Thus sλ is a symmetric polynomial and if zi are the eigenvalues of
g ∈ GLr+1(C) then sλ(z1, · · · , zr+1) = χλ(g), where χλ is the character of the irre-
ducible representation with highest weight λ. In this Chapter there will be an induc-
tion on r, so we will sometimes write ρ = ρr = (r, r−1, · · · , 0). Let GT(λ) = GTr(λ)
be the set of Gelfand-Tsetlin patterns with r + 1 rows having top row λ.

Theorem 4 (Tokuyama [41]) We have

∑
T ∈ GT(λ+ ρ)

T strict

(t+ 1)s(T)tl(T)zdr1 z
dr−1−dr
2 · · · zd0−d1

r+1 =

{∏
i<j

(zj + zit)

}
sλ(z1, · · · , zr+1).

(3.2)

For comparison with the original paper, we note that we have reversed the order
of the zi, which does not affect the Schur polynomial since it is symmetric. The
following proof is essentially Tokuyama’s original one.

Proof There is a homomorphism Λ(r+1) −→ Λ(r) in which one sets zr+1 7−→ 1.
The homomorphism is not injective, but its restriction to the homogeneous part
of Λ of fixed degree r is injective. We note that as polynomials in the zi both
sides of (3.2) are homogeneous of degree d0 = |λ| + 1

2
r(r + 1). (If λ is a partition

then |λ| =
∑

i λi|. See Macdonald [34] for background on partitions and symmetric
functions.) Two homogeneous polynomials of the same degree are equal if they are
equal when zr+1 = 1, so it is sufficient to show that (3.2) is true when zr+1 = 1, and
for this we may assume inductively that the formula is true for r − 1.

The branching rule from GLr+1(C) to GLr(C), already mentioned in connection
with (2.4), may be expressed as

sλ(z1, · · · , zr, 1) =
∑

µ interleaves λ

sµ(z1, · · · , zr). (3.3)

See for example Bump [12], Chapter 44.
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Also on setting zr+1 = 1,{ ∏
16i<j6r+1

(zj + zit)

}
becomes

{ ∏
16i<j6r

(zj + zit)

}[
r∑

k=0

tkek(z1, · · · , zr)

]
,

where ek is the k-th elementary symmetric polynomial, that is, the sum of all square-
free monomials of degree k.

Now we recall Pieri’s formula in the form

eksµ =
∑

ν⊥|µ|+ k
ν\µ is a vertical strip

sν .

See for example Bump [12], Chapter 42. The notation ν⊥|µ| + k means that ν is a
partition of |µ|+ k. The condition that ν\µ is a vertical strip means that the Young
diagram of ν contains the Young diagram of µ, and that the skew-diagram ν\µ has
no two entries in the same row.

The condition means that each νi = µi or µi + 1, and that νi = µi + 1 exactly k
times. Thus when zr+1 = 1 the right-hand side of (3.2) becomes

∑
k

{ ∏
16i<j6r

(zj + zit)

}
tk

∑
µ interleaves λ

∑
ν⊥|µ|+ k

ν\µ is a vertical strip

sν(z1, · · · , zr).

Now by induction { ∏
16i<j6r

(zj + zit)

}
sν(z1, · · · , zr) =

∑
T′ ∈ GTr−1(ν + ρr−1)

T′ strict

(t+ 1)s(T
′)tl(T

′)z
d′r−1

1 z
d′r−2−d′r−1

2 · · · zd′0−d′1r ,

where d′i are the row sums of T′. We substitute this and interchange the order of
summation and make the summation over µ the innermost sum. The condition that
ν\µ is a vertical strip means that µi 6 νi ≤ µi + 1. Combining this with the fact
that µ interleaves λ we have

λi + 1 ≥ µi + 1 ≥ νi ≥ µi ≥ λi+1 (3.4)
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and therefore ν + ρr−1 interleaves λ+ ρr. Since k = |ν| − |µ|, the right hand side of
(3.2) is ∑

ν
ν + ρr−1 interleaves λ+ ρr

∑
T′ ∈ GTr−1(ν + ρr−1)

T′ strict

(t+ 1)s(T
′)tl(T

′)


∑

µ interleaving λ
ν ⊃ µ

ν\µ is a vertical strip

t|ν|−|µ|

 z
d′r−1

1 z
d′r−2−d′r−1

2 · · · zd′0−d′1r .

Now we assemble λ+ρr and the Gelfand-Tsetlin pattern T′ into a big Gelfand-Tsetlin
pattern T. The row sums of T and T′ are the same except the top row, so di = d′i−1

for 1 6 i 6 r. We may just as well sum over T, in which case T′ is the pattern
obtained by discarding the top row of T. We get

∑
T ∈ GTr(λ+ ρ)

T strict

(t+ 1)s(T
′)tl(T

′)


∑

µ interleaving λ
ν ⊃ µ

ν\µ is a vertical strip

t|ν|−|µ|

 zdr1 z
dr−1−dr
2 · · · zd1−d2

r−1 .

We evaluate the term in brackets. It is

r∏
i=1

 ∑
λi > µi > λi+1

µi = νi or νi − 1

tνi−µi

 .
We now show that this equals (t+ 1)s(T)−s(T′)tl(T)−l(T′). By (3.4), if νi = λi + 1 then
νi = µi + 1 and so tνi−µi = 1. This is the case that the i-th entry of the second
row in T is boxed. The number of such terms is l(T) − l(T′) and so we have a
contribution of tl(T)−l(T); this is the case where the i-th entry of the second row in T

is circled. If νi = λi+1, then (3.4) implies that νi = µi and there is no contribution
from these factors. In the remaining cases we have λi + 1 > νi > λi+1 both t and 1
can occur. The number of such terms is s(T)− s(T′), and so we have a contribution
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of (t+ 1)s(T)−s(T′).

∑
λi > µi > λi+1

µi = νi or νi − 1

tνi−µi =


t if the boxed case,
t+ 1 in the unboxed, uncircled case,
1 in the circled case.

Hence the term in brackets equals tltop(T)(t+ 1)stop(T) , where ltop(T) is the number of
boxed entries in the top row of Γ(T) and stop(T) is the number of entries in the top
row of Γ(T) that are neither boxed nor circled. Clearly l(T) = l(T′) + ltop(T) and
s(T) = s(T′) + stop(T) so we obtain the left-hand side of (3.2), with zr+1 = 1. This
completes the induction. �

We will give a version of Tokuyama’s formula for crystals. We will take n = 1 in
(1.12). In this case the Gauss sums may be evaluated explicitly and

g(a) = −qa−1, h(a) = (q − 1)qa−1.

Theorem 5 If λ is a dominant weight, and if z1, · · · , zr+1 are the eigenvalues of
g ∈ GLr+1(C), then∏

α∈Φ+

(1− q−1zα)χλ(g) =
∑

v∈Bρ+λ

GΓ(v)q−〈wt(v)−w0(λ+ρ),ρ〉zwt(v)−w0ρ.

Proof We will prove this in the form∑
v∈Bρ+λ

GΓ(v)q−〈wt(v)−w0(λ+ρ),ρ〉zwt(v) =
∏
i<j

(zi − q−1zj)χλ(g). (3.5)

This is equivalent since zw0ρ
∏

α∈Φ+(1− q−1zα) = z2z
2
3 · · · zrr+1

∏
i<j(1−q−1zi/zj). By

Theorem 4 with t = −q−1, the right-hand side of (3.5) equals∑
T ∈ GT(λ+ ρ)

T strict

(1− q−1)s(T)(−q−1)l(T)zdr1 z
dr−1−dr
2 · · · zd0−d1

r .

Turning to the left-hand side of (3.5), let v ∈ Bρ+λ. By (2.14) we have zwt(v) =

zdr1 z
dr−1−dr
2 · · · zd0−d1

r while (with bi as in Proposition 1 (i))

q−〈wt(v)−w0(λ+ρ),ρ〉 =
∏
i

q−bi . (3.6)
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We may discard those v for which Tv is nonstrict, since for these GΓ(Tv) = 0. Indeed
if Tv is nonstrict then some ai,j = ai,j+1. This means that ai,j = ai+1,j+1 = ai,j+1

and so the entry Γi+1,j+1 is both boxed and circled in Γ(Tv), which implies that
GΓ(v) = GΓ(Tv) = 0. On the other hand if Tv is strict then by (3.6) and the
definition of G(v)

GΓ(v)q−〈wt(v)−w0(λ+ρ),ρ〉 =
∏
i

q−bi
∏
i


−qbi−1 if bi is boxed,
qbi if circled,
(q − 1)qbi−1 neither

which evidently equals (−q)l(Tv)(1− q−1)s(Tv) and the statement is proved. �

The Casselman-Shalika formula for GLr+1 may be written as follows. Let ψ0

be a character of the nonarchimedean local field K that is trivial on the ring o of
integers but no larger fractional ideal. Let $ be a prime element in o, and let q be
the cardinality of the residue field. Let λ = (λ1, · · · , λr+1) be a dominant weight and
write λi =

∑
j>i lj. Define a character of the group N− of lower triangular unipotent

elements by

ψλ


1
x21 1
... . . . . . .

xr+1,1 · · · xr+1,r 1

 = ψ0($l1xr+1,r + . . .+$lrx21).

Let f ◦ be the function on GLr+1(F ) defined by

f ◦




$µ1 ∗ · · · ∗
$µ2 ∗

. . .
...

$µr+1

 k

 =
∏

q−
1
2

(r+2−2i)zµ, k ∈ GLr+1(o)

where z = (z1, · · · , zr+1) are the Langlands parameters. Then the Casselman-Shalika
formula can be written∫

N−

f ◦(n)ψλ(n) dn = z−w0λ

[ ∏
α∈Φ+

(1− q−1zα)

]
sλ(z1, · · · , zr+1). (3.7)

The integral is absolutely convergent if |zα| < 1.
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On the other hand, Tokuyama’s formula describes the right-hand side of this
equation. So what we have proved is the formula∫

N−

f ◦(n)ψλ(n) dn =
∑

v∈Bρ+λ

GΓ(v)q−〈wt(v)−w0(λ+ρ),ρ〉zwt(v)−w0(ρ+λ). (3.8)

We observe:

• The identical formula appears to be true if f is taken on the n-th order meta-
plectic group, in which case the GΓ(v) are products of Gauss sums as in Chap-
ter 2.

• There is a homomorphism B∞ −→ Bλ+ρ of crystals, where B∞ is the crystal
base on the quantized enveloping algebra of N−, as considered by Lusztig [32]
and by Kashiwara [24]. So the right-hand side may be regarded as a sum
over B∞.

• This is suggestive, since the left-hand side is an integral over the unipotent
group N−, and the right-hand side is a sum over the crystal basis on the
quantized universal enveloping algebra of Lie(N−).



Chapter 4

Duality

In Chapter 2 we used the notation

v

[
b1 · · · bN
i1 · · · iN

]
v′ or v

[
b1 · · · bN
i1 · · · iN

](f)

v′

to mean that v′ = f bNiN · · · f
b1
i1
v where each integer bk is as large as possible in the

sense that f bk+1
ik

f
bk−1

ik−1
· · · f b1i1 v = 0. In this chapter, we will exclusively use the sec-

ond notation – the superscript (f) will be needed to avoid confusion since we now
analogously define

v

[
b1 · · · bN
i1 · · · iN

](e)

v′ (4.1)

to mean that v′ = ebNiN · · · e
b1
i1
v where ebk+1

ik
e
bk−1

ik−1
· · · eb1i1 v = 0 for all 1 6 k 6 N . Thus

v

[
b1 · · · bN
i1 · · · iN

](e)

v′ if and only if v′
[
bN · · · b1

iN · · · i1

](f)

v.

Let us assume that (4.1) holds, where Ω = (i1, · · · , iN) and N = 1
2
r(r+1). Assuming

that Ω = ΩΓ or Ω∆, defined in (2.8) and (2.9), we may decorate the values bk with
circling and boxing, just as in Chapter 2. Thus bk is circled if and only if either bk = 0
(when k is a triangular number) or bk = bk+1 (when it is not). And bk is boxed if and

only if fike
bk−1

ik−1
· · · eb1i1 v = 0, which is equivalent to saying that the path (4.1) includes

the entire ik string through e
bk−1

ik−1
· · · eb1i1 v. In this case, dual to Lemma 1, we have

v′ = vhigh.

29
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The definition of the multiple Dirichlet series can be made equally well with
respect to the ei. Indeed, we adapt (2.12) and define

G
(e)
∆ (v) =

1
2
r(r+1)∏
i=1


qbi if bi is circled,
g(bi) if bi is boxed,
h(bi) if bi is neither circled nor boxed,
0 if bi is both circled and boxed,

assuming that Ω = Ω∆; if instead Ω = ΩΓ, then G
(e)
Γ is defined by the same formula.

Corollary to Theorem 3. We have

HΓ(pk1 , · · · , pkr ; pl1 , · · · , plr) =
∑

v ∈ Bλ+ρ

wt(v) = λ−
P
i kiαi

G
(e)
∆ (v).

H∆(pk1 , · · · , pkr ; pl1 , · · · , plr) =
∑

v ∈ Bλ+ρ

wt(v) = λ−
P
i kiαi

G
(e)
Γ (v).

Proof We replace v by Sch(v) in Theorem 3. It follows from (2.1) that

G
(e)
∆ (Sch(v)) = G

(f)
Γ (v),

and wt(Sch(v)) = w0(wt(v)), and the statement follows. �

The circling and boxing rules seem quite different from each other, but actually
they are closely related, and the involution sheds light on this fact also. Let us apply
Proposition 1 (i) to Tv and Proposition 1 (ii) to Tv = qrTSch(v). For the latter, we
see that

∆(Tv) =


...

...
... . . .

l6 l5 l4
l3 l2
l1

 ,
where by (2.1)

Sch(v)

[
l1 l2 l3 l4 l5 l6 · · · lN−2 lN−1 lN
r r − 1 r r − 2 r − 1 r · · · r − 2 r − 1 r

](f)

vlow.

Now by definition an entry is circled in Γ(Tv) if and only if the corresponding entry
is boxed in ∆(Tv). This means that if we use the word ΩΓ for v and Ω∆ for Sch(v),
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22 0 321
f2

f2

f1f1

v

Sch(v)

vlow

Tv =


5 3

����
0

3 2
����

2


Γ(Tv) =

[/.-,()*+2 2

/.-,()*+0

]

∆(Tv) =

[
2 3

1

]

Figure 4.1: Box-Circle Duality. Here v is the marked element of Bλ, λ = (5, 3, 0).
With T = Tv, Γ(T) and ∆(T) are obtained from v and Sch(v) as BZL patterns for
the words ΩΓ = (1, 2, 1) and Ω∆ = (2, 1, 2). Boxes in one array correspond to circles
in the other.

then we obtain two BZL patterns in which circled entries in one correspond to boxed
entries in the other!

Figure 4.1 illustrates this with an example. The two equalities marked in Tv give
rise to two circles in Γ(Tv) and two boxes in ∆(Tv). We can see these in the marked
paths from v and Sch(v) to vlow.

But there is another way to look at this. It follows from (2.1) that

v

[
l1 l2 l3 l4 l5 l6 · · · lN−2 lN−1 lN
1 2 1 3 2 1 · · · 3 2 1

](e)

vhigh.
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f2

f2

f1f1

e1

e2

e2

e2

e1 e1

v

vlow

vhigh

Tv =


5 3

����
0

3 2
����

2


Γ(Tv) =

[/.-,()*+2 2

/.-,()*+0

]

∆(Tv) =

[
2 3

1

]

Figure 4.2: More Box-Circle Duality. Here v is the marked element of Bλ,
λ = (5, 3, 0). With T = Tv, Γ(T) and ∆(T) are obtained from v as BZL patterns for
the word ΩΓ = (1, 2, 1), but using f root operators for Γ and e root operators for ∆.
The cirling of entries in one path corresponds to boxing of entries in the other path,
a striking combinometrical property of the crystal.

This means that we may generate Γ(Tv) and ∆(Tv) from the same element v and the
same word ΩΓ, but applying fi successively to generate the entries bi of Γ(Tv) and
applying the ei (in the same order) to generate the entries li of ∆(Tv). The boxing
and circling rules are defined analogously for the ∆(Tv) as for Γ(Tv). Now box-circle
duality means that there a bijection between the bi and the li in which bi is circled if
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and only if the corresponding li is boxed. Note that this bijection changes the order:

b1 b2 b3 b4 b5 b6 · · ·
l l l l l l
l1 l3 l2 l6 l5 l4 · · ·

This is a rather striking property of the crystal graph.



Chapter 5

Outline of the Proof

The proof of Theorem 1 involves many remarkable phenomena, and we wish to
explain its structure in this chapter. To this end, will give the first of a succession
of statements, each of which implies the theorem. Passing from each statement to
the next is a nontrivial reduction that changes the nature of the problem to be
solved. We will outline the ideas of these reductions here and tackle them in detail
in subsequent chapters.

Statement A. We have HΓ = H∆.

This reduction was already mentioned in the first chapter, where Statement A
appeared as Theorem 2. Owing to results from the previous chapter, HΓ and H∆

may be regarded as sums parametrized by either Gelfand-Tsetlin patterns or crystal
bases.

The proof that this implies Theorem 1 is Theorem 1 of [9]. We review the idea of
the proof. To prove the functional equations that ZΨ(s; m) is to satisfy, using the
method described in [13], [4], [6] and [8] based on Bochner’s convexity prinicple, one
must prove meromorphic continuation to a larger region and a functional equation
for each generator σ1, · · · , σr of the Weyl group – the simple reflections. These act
on the coordinates by

σi(sj) =


1− sj if j = i,
si + sj − 1

2
if j = i± 1,

sj if |j − i| > 1.

We proceed inductively. Taking H = HΓ as the definition of the series, all but one
of these functional equations may be obtained by collecting the terms to produce
a series whose terms are multiple Dirichlet series of lower rank. To see this re-
duction, note that we have described the p-part of H as a sum over Gelfand-Tsetlin

34
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patterns, extended this to a definition to H(c1, · · · , cr;m1, · · · ,mr) by (twisted) mul-
tiplicativity. Equivalently, one may define H(c1, · · · , cr;m1, · · · ,mr) by specifying a
Gelfand-Tsetlin pattern Tp for each prime; for all but finitely many p the pattern
must be the minimal one

r r − 1 · · · 0
r − 1 · · · 0

. . . . . .

0

 .

Summing over such data with (for each p) fixed top row (determined by the ordp(mi))
and fixed row sums (determined by ordp(ci)) gives H(c1, · · · , cr;m1, · · · ,mr). More
precisely we may group the terms as follows. For each prime p of oS, fix a partition λp
of length r into unequal parts such that for almost all p we have λp = (r, r−1, · · · , 0);
then collect the terms in which for each p the top row of Tp is λp. These produce
an exponential factor times a term Z(s; m′;Ar−1) where m′ depends on λp (for each
p). This expansion gives, by induction, the functional equations for the subgroup
of W generated by σ2, · · · , σr. Similarly starting with H = H∆ gives functional
equations for the subgroup generated by σ1, · · · , σr−1. Notice that these two sets of
reflections generate all of W . If Statement A holds, then combining these analytic
continuations and functional equations and invoking Bochner’s convexity principle
gives the required analytic continuation and functional equations. We refer to [9] for
further details.

Since HΓ and H∆ satisfy the same twisted multiplicativity, it suffices to work at
powers of a single prime p. We see that there are two ways in which these coefficients
differ. First, given a lattice point k = (k1, . . . , kr) in the polytope defined by the
Gelfand-Tsetlin patterns of given top row, there are two ways of attaching a set
of Gelfand-Tsetlin patterns to k, namely the set of T with kΓ(T) = k, or with
k∆(T) = k. Second, given a pattern T, there are two ways of attaching numbers to
it: GΓ(T), resp. G∆(T).

An attack on Statement A can be formulated using the Schützenberger involution
on Gelfand-Tsetlin patterns. This is the involution qr, which was already defined in
Chapter 1. It interchanges the functions k∆ and kΓ, and one may thus formulate
Statement A as saying that∑

kΓ(T)=(k1,··· ,kr)

GΓ(T) =
∑

kΓ(T)=(k1,··· ,kr)

G∆(qrT). (5.1)

In many cases, for example if T is on the interior of the polytope of Gelfand-
Tsetlin patterns with fixed kΓ(T), it can be proved that GΓ(T) = G∆(qrT). If this
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were always true there would be no need to sum in (5.1). In general, however, this
is false. What is ultimately true is that the patterns may be partitioned into fairly
small “packets” such that if one sums over a packet,

∑
GΓ(T) =

∑
G∆(qrT). The

packets, we observe, can be identified empirically in any given case, but are difficult
to characterize in general, and not even uniquely determined in some cases. See [9].

To proceed further, we introduce the notion of a short Gelfand-Tsetlin pattern or
(for short) short pattern. By this we mean an array with just three rows

t =


l0 l1 l2 · · · ld+1

a0 a1 ad
b0 · · · bd−1

 . (5.2)

where the rows are nonincreasing sequences of integers that interleave, that is,

li > ai > li+1, ai > bi > ai+1. (5.3)

We will refer to l0, · · · , ld+1 as the top or zero-th row of t, a0, · · · , ad as the first or
middle row and b0, · · · , bd−1 as the second or bottom row . We may assume that the
top and bottom rows are strict, but we need to allow the first row to be nonstrict.
We define the weight k of t to be the sum of the ai.

If t is a short pattern we define another short pattern

t′ =


l0 l1 l2 · · · ld+1

a′0 a′1 a′d
b0 · · · bd−1

 , (5.4)

where
a′j = min(lj, bj−1) + max(lj+1, bj)− aj, 0 < j < d, (5.5)

a′0 = l0 + max(l1, b0)− a0, a′d = min(ld, bd−1) + ld+1 − ad. (5.6)

We call t′ the (Schützenberger) involute of t. To see why this definition is reasonable,
note that if the top and bottom rows of t are specified, then ai are constrained by
the inequalities

min(lj, bj−1) > aj > max(lj+1, bj), 0 < j < d, (5.7)

l0 > a0 > max(l1, b0), min(ld, bd−1) > ad > ld+1. (5.8)

These inequalities express the assumption that the three rows of the short pattern
interleave. The array t′ is obtained by reflecting aj in its permitted range.

The Schützenberger involution of full Gelfand-Tsetlin patterns is built up from
operations involving three rows at a time, based on the operation t 7−→ t′ of short
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Gelfand-Tsetlin patterns. This is done 1
2
r(r+ 1) times to obtain the Schützenberger

involution. Using this decomposition and induction, we prove that to establish State-
ment A one needs only the equivalence of two sums of Gauss sums corresponding to
Gelfand-Tsetlin patterns that differ by a single involution. This allows us to restrict
our attention, within Gelfand-Tsetlin patterns, to short patterns. To be more precise
and to explain what must be proved, we make the following definitions.

By a short pattern prototype S of length d we mean a triple (l, b, k) specifying
the following data: a top row consisting of an integer sequence l = (l0, · · · , ld+1), a
bottom row consisting of a sequence b = (b0, · · · , bd), and a positive integer k. It is
assumed that l0 > l1 > . . . > ld+1, that b0 > b1 > . . . > bd−1 and that li > bi > li+2.

We say that a short pattern t of length d belongs to the prototype S if it has the
prescribed top and bottom rows, and its weight is k (so

∑
i ai = k). By abuse of

notation, we will use the notation t ∈ S to mean that t belongs to the prototype S.
Prototypes were called types in [9], but we will reserve that term for a more restricted
equivalence class of short patterns.

Given a short Gelfand-Tsetlin pattern, we may define two two-rowed arrays Γt

and ∆t, to be called preaccordions, which display information used in the evaluations
we must make. These are defined analogously to the patterns associated with a full
Gelfand-Tsetlin pattern, which were denoted Γ(t) and ∆(t). There is an important
distinction in that in Γt we use the right-hand rule on the first row, and the left-hand
rule on the second row, and for ∆t we reverse these. In the full-pattern Γ(T) we used
the right-hand rule for every row, and in ∆(T) we used the left-hand rule for every
row. Specifically

Γt =

{
µ0 µ1 · · · µd

ν0 · · · νd−1

}
, (5.9)

and

∆t =

{
κ0 κ1 · · · κd

λ0 · · · λd−1

}
, (5.10)

where

µj =
d∑
k=j

(ak − lk+1), νj =

j∑
k=0

(ak − bk),

and

κj =

j∑
k=0

(lk − ak), λj =
d−1∑
k=j

(bk − ak+1).

We also use the right-hand rule to describe the circling and boxing of the elements
of the first row of Γt, and the left-hand rule to describe the circling and boxing
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of elements of the bottom row, reversing these for ∆t. This means we circle µj if
aj = lj+1 and box µi if aj = lj; we circle νj if bj = aj and box νj if bj = aj+1. The
boxing and circling rules are reversed for ∆t: we box κj if αj = lj+1 and circle αi if
αj = lj; we box λj if bj = aj and box λj if bj = aj+1.

We give an example to illustrate these definitions. Suppose that

t =


23 15 12 5 2 0

20 12 5 4 2
14 9 5 3

 .

Then

Γt =

{
9 ?>=<89:;4 ?>=<89:;4 4 2

6 9 ?>=<89:;9 10

}
.

We have indicated the circling and boxing of entries. Now applying the involution,

t′ =


23 15 12 5 2 0

18 14 9 4 0
14 9 5 3

 ,

and

∆t′ =

{
5 6 9 10 12

?>=<89:;4 ?>=<89:;4 4 3

}
.

We observe the following points.

• The first row of Γt is decreasing and the bottom row is increasing; these are
reversed for ∆t′ , just as the boxing and circling conventions are reversed.

• The involution does not preserve strictness. If t is strict, no element can be
both boxed and circled, but if t is not strict, an entry in the bottom row is
both boxed and circled, and the same is true for ∆t′ : if t′ is not strict, then an
entry in the bottom row of ∆t′ is both boxed and circled.

If T is a Gelfand-Tsetlin pattern, then in Γ(T) we use the right-hand
rule in every row, and in ∆(T) we use the left-hand row in every row.
But if t is a short Gelfand-Tsetlin pattern then in Γt and ∆t one row
uses the right-hand rule, the other the left-hand rule.
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Let us define

GΓ(t) =
∏
x∈Γt


g(x) if x is boxed in Γt, but not circled;
qx if x is circled, but not boxed;
h(x) if x is neither boxed nor circled;
0 if x is both boxed and circled.

Thus if t is not strict, then GΓ(t) = 0. Similarly, let

G∆(t′) =
∏
x∈∆t′


g(x) if x is boxed in ∆t′ , but not circled;
qx if x is circled, but not boxed;
h(x) if x is neither boxed nor circled;
0 if x is both boxed and circled.

Thus in our examples,

GΓ(t) = h(9) · q4 · q4 · h(4) · g(2) · h(6) · h(9) · q9 · h(10)

and
G∆(t′) = h(5) · h(6) · h(9) · h(12) · g(12) · q4 · q4 · h(4) · h(3).

Statement B. Let S be a short pattern prototype. Then∑
t∈S

GΓ(t) =
∑
t∈S

G∆(t′). (5.11)

A reinterpretation of Statement B in terms of crystal bases will be given in
Chapter 7.

This was conjectured in [9]. By Theorems 7 and 8 below we actually have, for
many t (in some sense most)

GΓ(t) = G∆(t′). (5.12)

However this is not always true, so the summation in (5.11) is needed.
The reduction to Statement B was proved in [9], which was written before State-

ment B was proved. We will repeat this argument (based on the Schützenberger
involution) in Chapter 6. In a nutshell, Statement A can be deduced from State-
ment B because the Schützenberger involution qr is built up from the involution
t 7−→ t′ of short Gelfand-Tsetlin patterns by repeated applications, and this will be
explained in detail in Chapter 6.

Just as in (5.12), it is in some sense usually true that the individual terms agree
in this identity, that is, GΓ(T) = G∆(T′). In many case, for example if T is on
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the interior of the polytope of Gelfand-Tsetlin patterns with fixed kΓ(T), it can
be proved that GΓ(T) = G∆(qrT). If this were always true there would be no
need to sum in (5.1). In general, however, this is false. What is true is that the
patterns may be partitioned into fairly small “packets” such that if one sums over a
packet we have

∑
GΓ(T) =

∑
G∆(qrT). The packets, we observe, can be identified

empirically in any given case, but are difficult to characterize in general, and not even
uniquely determined in some cases. These phenomena occur in microcosm for the
short Gelfand-Tsetlin patterns, so studying the phenomena that occur in connection
with (5.11) gives us insight into (5.1).

Instead of pursuing the identification of packets as suggested in [9], we proceed by
using (5.1) to reduce Statement A to Statement B, and the mysterious packets will
eventually be sorted out by further combinatorial transformations of the problem
that we will come to presently (Statements C, D, E, F and G).

Most our effort will be devoted to the proof of Statement B, to which we now
turn. We call the short pattern totally resonant if the bottom row repeats the top
row, that is, if it has the form

t =


l0 l1 l2 · · · ld+1

a0 a1 ad
l1 · · · ld

 . (5.13)

Notice that this is a property of the prototype, whose data consists of the top and
bottom rows, and the middle row sum.

Statement C. Statement B is true for totally resonant short pattern prototypes .

The fact that Statement C implies Statement B will be proved in Theorem 9,
which requires the introduction of some new concepts. Given a short pattern (5.2),
we will associate with its prototype a certain graph called the cartoon by connecting
ai to either li if i = 0, or else to either li or bi−1, whichever is numerically closer to
ai. If bi−1 = li, then we connect ai to both. We will also connect ai to either li+1 or
bi, whichever is numerically closer to ai, or to both if they are equal, provided i < d;
and ad is connected to ld+1. The connected components of the cartoon are called
episodes .

We will subdivide the prototype into smaller equivalence classes called types . Two
patterns t1 and t2 have the same type if, first of all, they have the same prototype
(hence the same cartoon), and if for each episode E , the sum of the ai that lie in E
are the same for t1 and t2. Statement B follows from the stronger statement that
(5.11) holds when we sum over a type. We will reduce this statement to a series of
separate problems, one for each episode. But each of these problems will be reduced
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to a single common problem (Statement D below) that is equivalent to Statement B
for totally resonant prototypes.

The reduction to the totally resonant case involves some quite fascinating com-
binatorial phenomena. A key point is a combinatorial Lemma, which was called the
“Snake Lemma” in [9], but which is not the familiar Snake Lemma from homological
algebra. This Lemma says the elements in Γt can be matched up with the elements
in ∆t′ in a bijection that has quite surprising properties. (The “snakes” appear in
graphing this bijection.)

In addition to such combinatorial phenomena, number theory enters as well,
in particular in the “Knowability Lemma” (Proposition 14), which we now briefly
discuss. The term “knowability” refers to the fact that Gauss sums such as g(a)
when n - a have known absolute values, but their arguments as complex numbers
are still mysterious. They are “unknowable.” We will refer to an expression that is a
product of terms of the form qa, h(a) and g(a) as “knowable” if it can given a closed
expression as a polynomial in q. Thus g(a), taken in isolation, is unknowable unless
n|a, in which case g(a) = −qa−1. But even if n - a the product g(a)g(b) is knowable
if n|a+ b since then g(a)g(b) = qa+b−1.

There is a strong tendency for the Gauss sums that appear in the terms GΓ(t)
(for short patterns t) or in GΓ(T) (for full Gelfand-Tsetlin patterns T), to appear
in knowable combinations. The Knowability Lemma give an explanation for this.
Moreover it gives key information that is needed for the sequel. Stable patterns are
an important exception. We recall that a pattern is stable if every entry (except
those in the top row) equals one of the two directly above it. The stable patterns are
in a sense the most important ones, since they are the only patterns that contribute
in the stable case (when n is large). If the Gelfand-Tsetlin patterns with fixed
top row are embedded into a Euclidean space, the stable patterns are the extremal
ones. The Gauss sums that appear in the stable terms are unknowable. Thus when
r = 1, ZΨ(s; m) is Kubota’s Dirichlet series [28], and its use by Heath-Brown and
Patterson [22] to study the distribution of cubic Gauss sums exploited precisely the
appearance of such unknowable terms.

In order to prove Statement C, we must work with the evaluations of GΓ(t) and
G∆(t′). To do so, it is convenient to describe these evaluations by introducing some
new notation and terminology. A Γ-accordion (of length d and weight s) is an array
of nonnegative integers

a =

{
s µ1 µ2 · · · µd

ν1 ν2 · · · νd

}
, (5.14)

in which the first row is decreasing, the second increasing, and µi + νi = s. Thus if
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t is a short Gelfand-Tsetlin pattern, then the preaccordion Γt is an accordion if the
condition µi + νi = s is satisfied. We will sometimes write

µ0 = νd+1 = s, ν0 = µd+1 = 0. (5.15)

Also, by a ∆-accordion (of length d+ 1 and weight s) we mean an array

a′ =

{
ν1 ν2 · · · νd s

µ1 µ2 · · · µd

}
, (5.16)

where the first row is increasing, the bottom decreasing, and µi + νi = s. We will
make use of the map a 7−→ a′ that takes Γ-accordions to ∆-accordions.

The significance of these definitions is that if t is a totally resonant short Gelfand-
Tsetlin pattern, then its Γ-preaccordion is a Γ-accordion. Moreover the ∆-pre-
accordion of t′ is the ∆-accordion a′.

We have already described the decoration of preaccordions with boxes and circles.
In the special case of an accordion, the decorations have some pleasant additional
properties because they come from totally resonant short patterns.

• No entry of the first row is both boxed and circled. An entry of the bottom row
may be both boxed and circled, in which case we say the accordion is nonstrict .

• In a Γ-accordion, a bottom row entry is circled if and only if the entry above
it and to the left is circled, and a bottom row entry is boxed if and only if the
entry above it and to the right is boxed. Thus in (5.14), νi is circled if and
only if the µi−1 is circled, and νi is boxed if and only if µi is boxed.

• In a ∆-accordion, a bottom row entry is circled if and only if the entry above
it and to the right is circled, and a bottom row entry is boxed if and only if
the entry above it and to the left is boxed.

• In either (5.14) or (5.16) µi is circled if and only if µi = µi+1, and νi is circled
if and only if νi = νi−1. (But note that µi is in the first row in (5.14) but in
the second row in (5.16).) Invoking (5.15), special cases of this rule are that
s is circled if and only if s = µ1, µd is circled if and only if µd = 0, and ν1 is
circled if and only if ν1 = 0.

• There is no corresponding rule for the boxing. Thus the circling is determined
by a but the boxing is not.
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We also note that the Knowability Lemma mentioned above allows us to assume that
n|s.

Our goal is to systematically describe all decorated accordions that arise and their
corresponding evaluations, so that we may sum over them and establish Statement
C. If a is a decorated accordion (of either kind), then in view of the second and third
rules, the decoration of the second row is determined by the decoration of the top
row. We encode this by a signature, which is by definition a string σ = σ0 · · ·σd,
where each σi is one of the symbols e,� or ∗. We associate a signature with a
decorated accordion by taking σi = e if µi is circled in the first row (with µ0 = s, of
course), � if µi is boxed, and ∗ if it is neither circled or boxed. We say the accordion
a and the signature σ are compatible if the following circling compatibility condition
is satisfied (for conformity with the rules already stated for the decorations). For
Γ-accordions labeled as in (5.14) the condition is

σi = e if and only if µi = µi+1. (5.17)

In view of (5.15), if i = 0, this means s = µ1, and if i = d it means µd = 0. For
∆-accordions labeled as in (5.16) the condition is

σi = e if and only if νi = νi−1,

which means that σ0 = e if and only if ν1 = 0, and σd = e if and only if s = ν1.
Since the signature determines the decoration, we will denote by aσ the decorated

accordion, where σ is a signature compatible with the accordion a. We will apply
the same signature σ to the involute a′. Thus if σ = ∗� ∗ ∗ e∗ and

a =

{
9 7 6 4 2 2

2 3 5 7 7

}
then

aσ =

{
9 7 6 5 ?>=<89:;2 2

2 3 5 7 ?>=<89:;7

}
,

which is a decorated Γ-accordion, while

a′σ =

{
2 3 5 7 ?>=<89:;7 9

7 6 4 ?>=<89:;2 2

}
,

which is a decorated ∆-accordion. Observe that the signature encodes the decoration
of the first row, and since we use the same signature in both a and a′, it follows that
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the location of the boxes and circles in the first row is the same for a as for the
∆-accordion a′. However the decoration of the bottom rows are different. This is
because the boxing and circling rules are different for Γ-accordions and ∆-accordions.

Now if aσ is a decorated Γ-accordion, let

GΓ(a, σ) = GΓ(aσ) =
∏
x∈a


g(x) if x is boxed in aσ (but not circled),
qx if x is circled (but not boxed),
h(x) if x is neither boxed nor circled,
0 if x is both boxed and circled.

The notations GΓ(aσ) and GΓ(a, σ) are synonyms; we will prefer the former when
working with the free abelian group on the decorated accordions, the latter when a

is fixed and σ is allowed to vary.
If a′σ is a decorated ∆-accordion, we define G∆(a′σ) by the same formula. We

retain the subscripts Γ and ∆ since GΓ and G∆ have different domains. Thus in the
last example

GΓ(aσ) = h(9)g(7)g(2)h(6)h(3)h(5)h(5)q2h(7)h(2)q7,

G∆(a′σ) = h(2)h(7)g(3)g(6)h(5)h(4)h(7)q2q7h(2)h(9).

Now let positive integers s, c0, c1, · · · , cd be given. By the Γ-resotope (of length
d), to be denoted AΓ

s (c0, c1, · · · , cd), we mean the sum, in the free abelian group ZΓ

on the set of decorated accordions, of such aσ such that the parameters in a satisfy

0 6 s− µ1 6 c0, 0 6 µ1 − µ2 6 c1, · · · , 0 6 µd 6 cd, (5.18)

and

σi =


e if µi − µi+1 = 0;
� if µi − µi+1 = ci;
∗ if 0 < µi − µi+1 < ci.

If A = AΓ
s (c0, c1, · · · , cd), by abuse of notation we may write aσ ∈ A to mean that

aσ appears with nonzero coefficient in A as described above. Let A′ be the image of
A under the involution aσ 7−→ a′σ; we call A′ a ∆-resotope.

The set of Γ-accordions of the form (5.14), embedded into Euclidean space by
mapping a 7−→ (µ1, · · · , µd), may be regarded as the set of lattice points in a poly-
tope. The resotopes we have just described correspond to these points with compat-
ible decorations and signatures attached. We will sometimes discuss the geometry of
the underlying polytope without making explicit note of the additional data attached
to each point.

Given a totally resonant type, we will prove in the Corollary to Proposition 16
below that the accordion Γt runs through a resotope A, and ∆t′ runs through A′.
This allows us to pass from Statement C to the following statement.
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Statement D. Let A be a Γ-resotope. Then∑
aσ∈A

GΓ(aσ) =
∑

a′σ∈A′
G∆(a′σ). (5.19)

We turn to the proof of Statement D. We will show that if a lies in the in-
terior of the resotope, then its signature is just ∗ · · · ∗, and we have GΓ(aσ) =
h(s)

∏d
i=1 h(µi)h(νi) = G∆(a′σ′). This may fail, however, when a is on the boundary,

so this is the remaining obstacle to proving Statement D. The approach suggested
in [9] is to try to partition the boundary into small “packets” such that the sums
over each packet are equal. In practice one can carry this out in any given case, but
giving a coherent theory of packets along these lines seems unpromising. First, the
resotopes themselves are geometrically complex. Second, even when the resotope is
geometrically simple, the identification of the packets can be perplexing, and devoid
of any apparent pattern. An example is done at the end of [9].

Figure 5.1: A resotope, when d = 3.

Geometrically, a resotope is a figure obtained from a simplex by chopping off
some of the corners; the pieces removed are themselves simplices. But the resulting
polytopes are quite varied. Figure 5.1 shows a resohedron (2-dimensional resotope)
with five pentagonal faces and three triangular ones. To avoid these geometric diffi-
culties we develop an approach, based on the Principle of Inclusion-Exclusion, that
allows us to replace the complicated geometry of a general polytope with the simple
geometry of a simplex.

The process of passing from the simplex of all accordions to an arbitrary resotope
is complex. Indeed, as one chops corners off the simplex of all accordions to obtain a
general resotope, interior accordions become boundary accordions, so their signatures
change. Sometimes the removed simplices overlap, so one must restore any part that
has been removed more than once. As we shall show, there is nonetheless a good
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way of handling it. Before we formulate this precisely, let us consider an example.
The set of all Γ-resohedra, with d = 2 and fixed value s is represented in Figure 5.2
by the triangle M abc with vertices

a =

{
s s 0

0 s

}
, b =

{
s 0 0

s s

}
, c =

{
s s s

0 0

}
.

We are concerned with the shaded resotope A = AΓ
s (c0, c1,∞), which is obtained by

truncating the simplex M abc by removing M aeg and M dbh. We use ∞ to mean
any value of c2 that is so large that the inequality µ2 6 c2 is automatically true
(and strict) for all Γ-accordions; indeed any c2 > s can be replaced by ∞ without
changing A.

a

b c

d

e f g

h

A

s−µ1=0

s−µ1=c0
µ2=0

µ1−µ2=0

µ1−µ2=c1

Figure 5.2: Inclusion-Exclusion.

Then, since the M def has been removed twice, it must be restored, and we may
write

A =M abc− M aeg− M dbh+ M def.

Now in this equation, M def (for example) should be regarded as an element of ZΓ,
and in addition to specifying its support – its underlying set – we must also specify
what signatures occur with each accordion that appears in it, and with what sign.
For example, in M def the accordion f will occur with four different signatures: the
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actual contribution of f to M def is

f��∗ − f�∗∗ − f∗�∗ + f∗∗∗ .

Now let us give a formal description of this setup. A signature η is called nodal
if each ηi is either e or �. We fix a nodal signature η. Let CPη(c0, · · · , cd) be the
“cut and paste” simplex, which is the set of Γ-accordions

a =

{
s µ1 · · · µd

ν1 · · · νd

}
(5.20)

that satisfy the inequalities

µi − µi+1 > c′i, c′i =

{
ci if σi = �,
0 if σi = e,

(5.21)

To see that this is truly a simplex, embed it into Euclidean space via the map

a 7−→ (a0, a1, · · · , ad), ai = µi − µi+1 − c′i.

The image of this map is the set of integer points in the simplex defined by the
inequalities

ai > 0, a0 + . . .+ ad 6 N, N = s−
∑

c′i.

Thus in the above example, with η = �� e we have

M abc = CP∗∗ c(c0, c1,∞), M aeg = CP∗� c(c0, c1,∞),

M dbh = CP�∗ c(c0, c1,∞), M def = CP�� c(c0, c1,∞).

If σ and τ are signatures, we say that τ is a subsignature of σ if τi = σi whenever
τi 6= ∗, and we write τ ⊂ σ in this case. In other words, τ ⊂ σ if τ is obtained from σ
by changing some �’s or e’s to ∗’s. If τ is a signature, we will denote sgn(τ) = (−1)ε

where ε is the number of boxes in τ .
Returning to the general case, let a be a Γ-accordion, and let σ be a compatible

signature for a. Define

ΛΓ(a, σ) =
∑

a-compatible τ ⊂ σ

sgn(τ)GΓ(a, τ), Λ∆(a′, σ) =
∑

a-compatible τ ⊂ σ

sgn(τ)G∆(a′, τ).

In the definition of subsignature we allow either �’s or e’s to be changed to ∗’s
(needed for later purposes). But in this summation, because τ and σ are both
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required to be compatible with the same accordion a, only �’s are changed to ∗
between σ and τ in the τ that appear in this definition.

Thus in the above example

ΛΓ(f,��∗) = GΓ(f��∗)− GΓ(f�∗∗)− GΓ(f∗�∗) + GΓ(f∗∗∗) .

Now let η be a nodal signature, and we may take ci = ∞ if ηi = e. Let
a ∈ CPη(c0, · · · , cd). Let σ = σ(a) be the subsignature of η obtained by changing ηi
to ∗ when the inequality (5.21) is strict.

Statement E. Assume that n|s. We have∑
a∈CPη(c0,··· ,cd)

ΛΓ(a, σ) =
∑

a∈CPη(c0,··· ,cd)

Λ∆(a′, σ). (5.22)

We reiterate that in this sum σ depends on a, and we have described the nature
of the dependence above.

We have already noted that n|s can be imposed in Statement D and now we
impose it explicitly. We will show in Chapter 14 that Statement E implies Statement
D by application of the Inclusion-Exclusion principle. We hope for the purpose of this
outline of the proof, the above example will make that plausible. In that example,
the four triangles M abc, M aeg, M dbc and M def are examples of cut and paste
simplices.

We have already mentioned that in the context of Statements B, C or D, it is
empirically possible to partition the sum into a disjoint union of smaller units called
packets such that the identity is true when summation is restricted to a packet.Yet it
is also true that in those contexts, a general rule describing the packets is notoriously
slippery to nail down. However, in the context of Statement E we are able to describe
the packets explicitly. The d-dimensional simplex CPη(c0, · · · , cd) is partitioned into
facet , which are subsimplices of lower dimension. Specifically, there are

(
d+1
f+1

)
facets

that are simplices of dimension f ; we will call these f -facets . We will define the
packets so that if a lies on the interior of an f -facet, then the packet containing a

has
(
d+1
f+1

)
elements, one chosen from the interior of each r-facet.

Let us make this precise. First we observe the following description of the d + 1
vertices ai of CPη(c0, · · · , cd). If 0 6 i 6 d let ai be the accordion whose coordinates
µi are determined by the equations

µj − µj+1 = c′j, for all 0 6 j 6 d with j 6= i.

A closed (resp. open) f -facet of CPη(c0, · · · , cd) will be the set of integer points in
the closed (resp. open) convex hull of a subset with cardinality f + 1 of the set
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{a0, · · · , ad} of vertices. Clearly every element of CPη(c0, · · · , cd) lies in a unique
open facet.

We associate the facets with subsignatures σ of η; if σ is obtained by replacing ηi
(i ∈ S) by ∗, where S is some subset of {0, 1, 2, · · · , d}, then we will denote the set
of integer points in the closed (resp. open) convex hull of ai (i ∈ S) by Sσ (resp. Sσ).
The facet Sσ is itself a simplex, of dimension f . Thus if σ is a signature with exactly
f + 1 ∗’s, we call σ an f -signature or an f -subsignature of η.

Now if σ and τ are f -subsignatures of η, then we will define a bijection φσ,τ :
Sσ −→ Sτ . It is the unique affine linear map that takes the vertices of Sσ to the
vertices of Sτ in order. This means that if

S = {s0, · · · , sf}, 0 6 s0 < s1 < · · · < sf 6 d

is the set of i such that σi = ∗, and similarly if

T = {t0, · · · , tf}, 0 6 t0 < t1 < · · · < tf 6 d

is the set of i such that τi = ∗, then φσ,τ takes asi to ati , and this map on vertices is
extended by affine linearity to a map on all of Sσ.

It is obvious from the definition that φσ,σ is the identity map on Sσ and that if
σ, τ, θ are f -subsignatures of η then φτ,θ ◦φσ,τ = φσ,θ. This means that we may define
an equivalence relation on CPη(c0, · · · , cd) as follows. Let a, b ∈ CPη(c0, · · · , cd).
Let Sσ and Sτ be the (unique) open facets such that a ∈ Sσ and b ∈ Sτ . Then a is
equivalent to b if and only if φσ,τ (a) = b. The equivalence classes are called packets .
It is clear from the definitions that the number f + 1 of ∗’s in σ is constant for σ
that appear in a packet Π, and we will call Π a f -packet . Clearly every f -packet
contains exactly one element from each f -simplex.

Statement F. Assume that n|s. Let Π be a packet. Then∑
a∈Π

ΛΓ(a, σ) =
∑
a∈Π

Λ∆(a′, σ). (5.23)

As in Statement E, σ depends on a in this sum, and from the definition of packets,
no σ appears more than once; in fact, if Π is an f -packet, then every f -subsignature
σ of η appears exactly once on each side of the equation.

It is obvious that Statement F implies Statement E. There is one further suffi-
cient condition that we call Statement G, but a proper formulation requires more
notation than we want to give at this point. We will therefore postpone Statement G
to the end of Chapter 15, describing it here in informal terms.
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Due to the knowability property of the products of Gauss sums that make up
GΓ(a, σ), these can be evaluated explicitly when n|s (Proposition 21) and this leads
to an evaluation of ΛΓ(a, σ) and a similar evaluation of Λ∆(a′, σ) (Theorems 11
and 12). However, these evaluations depend on the divisibility properties of the µi
that appear in the top row of a given by (5.20); more precisely, if Σ is a subset of
{1, 2, · · · , d}, let δn(Σ; a) be 1 if n|µi for all i ∈ Σ and 0 otherwise. Then there is a
sum over certain such subsets Σ of a – only those i such that σi 6= © can appear
– and the terms that appear are with a coefficient δn(Σ; a). We recall that each σ
appears only once on each side of (5.23), and hence a is really a function of σ. Thus
we are reduced to proving Statement G, amounting to an identity (15.9) in which
there is first a sum over all f -subsignatures σ of η, and then a sum over subsets Σ,
of {1, 2, · · · , d}.

The identity (15.9) seems at first perplexing since δn(Σ; a) depends on a. It won’t
work to simply interchange the order of summation since then δn(Σ; a) will not be
constant on the inner sum over a (or equivalently σ). However we are able to identify
an equivalence relation that we call concurrence on pairs (σ,Σ) such that δn(Σ; a)
is constant on concurrence classes (Proposition 22). We will then need a result that
implies that some groups of terms from the same side of (15.9) involve concurrent
data (Proposition 23). These concurrent data are called Γ-packs for the left-hand
side or ∆-packs for the right-hand side. Then we will need a rather more subtle
result (Proposition 24) giving a bijection between the Γ-packs and the ∆-packs that
also matches concurrent data. With these combinatorial preparations, we will be
able to prove (15.9) and therefore Statement G.



Chapter 6

Statement B implies Statement A

In this chapter we will recall the use of the Schützenberger involution on Gelfand-
Tsetlin patterns in [9] to prove that Statement B implies Statement A. We will return
to the involution in the next chapter and we reinterpret this proof in terms of crystal
bases.

We observe that the Schützenberger involution qr can be formulated in terms of
operations on short Gelfand-Tsetlin patterns. If

T =


a00 a01 a02 · · · a0r

a11 a12 a1r

. . . . . .

arr


is a Gelfand-Tsetlin pattern and 1 6 k 6 r, then extracting the r− k, r+ 1− k and
r+2−k rows gives a short Gelfand-Tsetlin pattern t. Replacing this with the pattern
t′ gives a new Gelfand-Tsetlin pattern which is the one denoted trT in Chapter 1.
Thus

t1


λ1 λ2 λ3

a b
c

 =


λ1 λ2 λ3

a b
a+ b− c


and

t2


λ1 λ2 λ3

a b
c

 =


λ1 λ2 λ3

a′ b′

c


where a′ = λ1 + max(λ2, c)− a and b′ = λ3 + min(λ2, c)− b.

We defined q0 to be the identity map, and defined recursively qi = t1t2 · · · tiqi−1.
The ti have order two. They do not satisfy the braid relation, so titi+1ti 6= ti+1titi+1.
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However titj = tjti if |i − j| > 1 and this implies that the qi also have order two.
One may check easily that

We note that
qi = qi−1qi−2tiqi−1. (6.1)

Let Ai =
∑

j ai,j be the sum of the i-th row of T. It may be checked that the row
sums of qrT are (in order)

A0, A0 − Ar, A0 − Ar−1, · · · , A0 − A1.

From this it follows that
kΓ(qrT) = k∆(T).

From this we see that Statement A will follow if we prove∑
kr(T)=k

GΓ(T) =
∑

kr(T)=k

G∆(qrT). (6.2)

We note that the sum is over all patterns with fixed top row and row sums .
Let us denote

Gi
R(T) =

r∏
j=i


g(Γij) if Γij is boxed but not circled in Γ(T);
qΓij if Γij is circled but not boxed;
h(Γij) if Γij neither circled nor boxed;
0 if Γij both circled and boxed

and

Gi
L(T) =

r∏
j=i


g(∆ij) if ∆ij is boxed but not circled in Γ(T);
q∆ij if ∆ij is circled but not boxed;
h(∆ij) if ∆ij neither circled nor boxed;
0 if ∆ij both circled and boxed,

where Γij and ∆ij are given by (1.10). Thus

GΓ(T) =
r∏
i=1

Gi
R(T), G∆(T) =

r∏
i=1

Gi
L(T).

To facilitate our inductive proof we denote (r)GΓ(T) = GΓ(T) and (r)G∆(T) = G∆(T).
Also if i 6 r let Ti denote the pattern formed with the bottom i+ 1 rows of T.∑

kΓ=k GΓ(T) =
∑

kΓ=k Gr
R(T) · (r−1)GΓ(T)

=
∑

kΓ=k Gr
R(T) · (r−1)G∆(qr−1T)

=
∑

kΓ=k Gr
R(T) ·Gr−1

L (qr−1T) · (r−2)G∆(qr−1T)

=
∑

kΓ=k Gr
R(T) ·Gr−1

L (qr−1T) · (r−2)GΓ(qr−2qr−1T)

=
∑

kΓ=k Gr
R(qr−2qr−1T) ·Gr−1

L (qr−2qr−1T) · (r−2)GΓ(qr−2qr−1T).
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Here the first step is by definition; the second step is by applying the induction
hypothesis that Statement A is true for r− 1 to Tr−1; the third step is by definition;
the fourth step is by induction, using Statement A for r− 2 applied to Tr−2; and the
last step is because qr−2qr−1 does not change the top two rows of T, hence does not
affect the value of Gr

R, and similarly qr−2 does not change the value of Gr−1
R .

On the other hand we have∑
kΓ=k G∆(qrT) =

∑
kΓ=k Gr

L(qrT) · (r−1)G∆(qrT)

=
∑

kΓ=k Gr
L(qrT) · (r−1)GΓ(qr−1qrT)

=
∑

kΓ=k Gr
L(qrT) ·Gr−1

R (qr−1qrT) · (r−2)GΓ(qr−1qrT)

=
∑

kΓ=k Gr
L(qr−1qrT) ·Gr−1

R (qr−1qrT) · (r−2)GΓ(trqr−1qrT).

Here the first step is by definition, the second by induction, the third by definition,
and the fourth because qr−1 does not affect the top two rows of qr−1qrT, and tr does
not affect the rows of (qr−1qrT)r−2. Now we use the assumption that Statement B is
true. Statement B implies that∑

Gr
L(qr−1qrT) ·Gr−1

R (qr−1qrT) =
∑

Gr
R(trqr−1qrT) ·Gr−1

L (trqr−1qrT)

where in this summation we may collect together all qr−1qrT with the same first,
third, fourth, ... rows and let only the second row vary to form a summation over
short Gelfand-Tsetlin pattern. Substituting this back into the last identity gives∑

kΓ=k

G∆(qrT) =
∑
kΓ=k

Gr
R(trqr−1qrT) ·Gr−1

L (trqr−1qrT) · (r−2)GΓ(trqr−1qrT).

Now we make use of (6.1) in the form trqr−1qr = qr−2qr−1 to complete the proof of
Statement A, assuming Statement B.



Chapter 7

Accordions and Crystal Graphs

We will translate Statements A and B into Statements A′ and B′ in the language of
crystal bases, and explain how Statement B′ implies Statement A′. This sheds light
on the last chapter but is not used later, so the reader may skip this chapter with
no loss of continuity.

Paralleling the definition on Gelfand-Tsetlin patterns, we now define

GΩ(v) =
∏

bi∈BZLΩ(v)


g(bi) if bi is boxed but not circled in BZLΩ(v),
qbi if bi is circled but not boxed,
h(bi) if bi is neither circled nor boxed,
0 if bi is both boxed and circled.

Then Statement A (Section 5) can be paraphrased as follows.

Statement A′. We have ∑
wt(v)=µ

GΩΓ
(v) =

∑
wt(v)=µ

GΩ∆
(v).

We believe that if the correct definition of the boxing and circling decorations
can be given, we could say that

∑
wt(v)=µGΩ(v) is independent of the choice of Ω.

However the description of the boxing and circling might be different for Ω other
than Ω∆ and ΩΓ, and we will limit our discussion to those two words. This need
for caution may be related to assumptions required by Littelmann [31] in order to
specify sets of BZL patterns associated to a particular “good” long word. Littelmann
found that for particular choices of “good” decompositions, including Ω = ΩΓ,Ω∆,
one can easily compute explicit inequalities which describe a polytope whose integer
lattice points parametrize the set of all BZL patterns in a highest weight crystal. The
decoration rules are closely connected to the location of BZLΩ(v) in this polytope.
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The crystal graph formulation in Statement A′ is somewhat simpler than its
Gelfand-Tsetlin counterpart. In particular, in the formulation of Statement A,
we had two different Gelfand-Tsetlin patterns T and T′ that were related by the
Schützenberger involution, but the equality in Statement A was further complicated
because the involution changes the weight of the pattern. In the crystal graph formu-
lation, different decompositions of the long element simply result in different paths
from the same vertex v to the lowest weight vector.

We will explain how Statement A′ can be proved inductively. First we must
explain the interpretation of the short Gelfand-Tsetlin patterns t and their associated
preaccordions Γt and ∆t in the crystal language.

Removing all edges labeled either 1 or r from the crystal graph results in a disjoint
union of crystals of type Ar−2. The root operators for one of these subcrystals have
indices shifted – they are f2, · · · , fr−1 and e2, · · · , er−1 – but this is unimportant.
Each such subcrystal has a unique lowest weight vector, characterized by fi(v) = 0
for all 1 < i < r. If v ∈ Bλ we will say that v is a short end if fi(v) = 0 for all
1 < i < r. Thus there is a bijection between these subcrystals and the short ends.

Now consider the words

ωΓ = (1, 2, 3, · · · , r − 1, r, r − 1, · · · , 3, 2, 1)

and
ω∆ = (r, r − 1, r − 2, · · · , 3, 2, 1, 2, 3, · · · , r − 1, r).

Identifying the Weyl group with the symmetric group Sr+1 and the simple reflections
σi ∈ W with transpositions (i, i+ 1), these give reduced decompositions of the long
element expressed as the transposition (1, r + 1). That is, if ω = ωΓ or ω∆ and

ω = (b1, · · · , b2r−1)

then σb1 · · ·σbr+1 = (1, r + 1).
The following result interprets the preaccordions Γt and ∆t′ of a short Gelfand-

Tsetlin pattern, which have occupied so much space in this document, as paths in
the crystal.

Theorem 6 Let v be a short end, and let ω = ωΓ or ω∆. Then we have

v

[
b1 · · · b2r−1

ω1 · · · ω2r−1

]
v′ (7.1)

with v′ = vlow. Moreover, the bi satisfy the inequalities

b1 > b2 > . . . > br−1 > 0, br > br+1 > . . . > b2r−1 > 0.
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Let t = t(v) be the short Gelfand-Tsetlin pattern obtained by discarding all but the
top three rows of qr−1Tv. Then if ω = ωΓ we have in the notation (5.9)

Γt =

{
br br+1 br+2 · · · b2r−2 b2r−1

br−1 br−2 · · · b2 b1

}
(7.2)

where d = r − 1. On the other hand if ω = ω∆ then in the notation (5.10)

∆t′ =

{
b2r−1 b2r−2 b2r−3 · · · br+1 br

b1 b2 · · · br−2 br−1

}
. (7.3)

If v1 and v2 are two short ends such that t(v1) and t(v2) are in the same short pattern
prototype, then wt(v1) = wt(v2).

Proof Let Bµ be the Ar−1 crystal containing v which is obtained from Bλ by deleting
the r-labeled edges. We make use of the word

Ω∆,r−1 = (r − 1, r − 2, r − 1, r − 3, r − 2, r − 1, · · · , 1, 2, 3, · · · , r − 1)

which represents the long element of Ar−1 and obtain a path

v

[
0 0 0 · · · 0 b1 b2 b3 · · · br−1

r − 1 r − 2 r − 1 · · · r − 1 1 2 3 · · · r − 1

]
v′

where the initial string of 0’s is explained by the fact that fiv = 0 when 2 6 i 6 r−1.
Thus we could equally well write

v

[
b1 b2 b3 · · · br
1 2 3 · · · r

]
v′.

By Proposition 1, v′ is the lowest weight vector of Bµ, so f1v
′ = · · · = fr−1v

′ = 0.
Next we make use of the word

ΩΓ = (1, 2, 1, 3, 2, 1, · · · , r, r − 1, · · · , 3, 2, 1)

and apply it to v′. Again, the first fi that actually “moves” v′ is fr, and so we obtain
a path

v′
[

0 0 0 · · · 0 br br+1 br+2 · · · b2r−1

1 2 1 · · · 1 r r − 1 r − 2 · · · 1

]
vlow

which we could write

v′
[
br br+1 br+2 · · · b2r−1

r r − 1 r − 2 · · · 1

]
vlow.
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Splicing the two paths we get (7.1).

Next we prove (7.2). We note that the top row of Γt depends only on the top
two rows of t, which are the same as the top two rows of T = Tv since qr−1 does not
affect these top two rows and t consists of the top three rows of qr−1t. The top row
of Γt is obtained from the top two rows of t by the right-hand rule (see Chapter 1),
and so it agrees with the top row of ΓT.

Now we regard v′ as an element of the crystal Bµ and apply the word Ω∆,r−1. We
see that b1, · · · , br are the top row of ∆(qr−1Tr−1) where Tr−1 is the Gelfand-Tsetlin
pattern obtained by discarding the top row of T. Now the top two rows of qr−1Tr−1

are the middle and bottom rows of t, which in Γt is read by the left-hand rule, which
is the same as ∆(qr−1Tr−1). It follows that b1, · · · , br form the top row of Γt, as
required. This proves (7.2).

It remains for us to prove (7.3). As in Proposition 1 we can make use of φv
which interchanges the words ωΓ and ω∆. Using (2.11) and arguing as at the end
of Proposition 1 we see that the right-hand side of (7.3) equals Γrev

u , where u is the
short Gelfand-Tsetlin pattern obtained by taking the top three rows of −qr−1qrT

rev
v .

Now we make use of (6.1) in the form qr−1qr = qr−2trqr−1 to see that u is the short
Gelfand-Tseltin pattern obtained by taking the top three rows of −qr−2trqr−1T

rev
v ,

and since qr−2 does not affect these top three rows, we see that u is −(t′)rev. Now
Γrev

u = ∆t′ which concludes the proof. �

Having identified the Γt and ∆t′ that appear in Statement B, let us paraphrase
Statement B as follows. If v is a short end, we may define decorations on Γt(v) and
∆t(v)′ . These may be described alternatively as in Chapter 5 or geometrically as in
this chapter: bi is circled if i = r− 1 or 2r− 1 and bi = 0 or if i 6= r− 1 or 2r− 1 and
bi = bi+1. Also bi is boxed if the segment of length bi that occurs in the canonical
path contains the entire i-segment.

Statement B′. We have∑
short end v
wt(v) = µ

GωΓ
(v) =

∑
short end v
wt(v) = µ

Gω∆
(v),

where the sum is over short ends of a given weight.

This statement is equivalent to Statement B and is thus proved in the preceding
chapters. We now explain how Statement B′ implies Statement A′.

This is proved by induction on r. It will perhaps be clearer if we explain this point
with a fixed r, say r = 4; the general case follows by identical methods. We have
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two paths from v to vlow, each of which we may decorate with boxing and circling.
These paths will be denoted

v

[
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 2 1 3 2 1 4 3 2 1

]
vlow (7.4)

and

v

[
z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

4 3 4 2 3 4 1 2 3 4

]
vlow. (7.5)

We have

GΓ(Tv) = GΩΓ
(v) =

∏
i


g(bi) if bi is boxed but not circled,
qbi if bi is circled but not boxed,
h(bi) if bi is neither circled nor boxed,
0 if bi is both boxed and circled,

and similarly for G∆(T′v) = GΩ∆
(v). We split the first path into two:

v

[
b1 b2 b3 b4 b5 b6

1 2 1 3 2 1

]
v′, v′

[
b7 b8 b9 b10

4 3 2 1

]
vlow.

Since 1, 2, 1, 3, 2, 1 is a reduced decomposition of the long element in the Weyl group of
type A3 = Ar−1 generated by the 1, 2, 3 root operators, v′ is the lowest weight vector
in the connected component containing v of the subcrystal obtained by discarding
the edges labeled r. This means that we may replace

v

[
b1 b2 b3 b4 b5 b6

1 2 1 3 2 1

]
v′ by v

[
c1 c2 c3 c4 c5 c6

3 2 3 1 2 3

]
v′

and we obtain a new path:

v

[
c1 c2 c3 c4 c5 c6 b7 b8 b9 b10

3 2 3 1 2 3 4 3 2 1

]
vlow.

We split this again:

v

[
c1 c2 c3

3 2 3

]
v′′, v′′

[
c4 c5 c6 b7 b8 b9 b10

1 2 3 4 3 2 1

]
vlow.

Now 3, 2, 3 is a reduced word for the Weyl group of type A2 = Ar−2 whose crystals
are obtained by discarding edges labeled 1 and 4, and so v′′ is a short end. It follows
that we may replace the path from v′′ to vlow by

v′′
[
d4 d5 d6 z7 z8 z9 z10

4 3 2 1 2 3 4

]
vlow.
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(We have labeled some of these z since we will momentarily see that these zi are the
same as z7 − z10 in (7.5).) We may also replace the path from v to v′′ by

v

[
d1 d2 d3

2 3 2

]
v′′

because both 323 and 232 are reduced words for A2 and v′′ is the lowest weight vector
in an A2 crystal. Combining these paths through v′′ we obtain a path

v

[
d1 d2 d3 d4 d5 d6 z7 z8 z9 z10

2 3 2 4 3 2 1 2 3 4

]
vlow.

Now we split the path again:

v

[
d1 d2 d3 d4 d5 d6

2 3 2 4 3 2

]
v′′′, v

[
z7 z8 z9 z10

1 2 3 4

]
vlow.

We observe that 2, 3, 2, 4, 3, 2 is a reduced decomposition of the long element in the
Weyl group of type A3 = Ar−1 whose crystals are obtained by discarding edges
labeled 1, and so v′′′ is a lowest weight vector of one of these, so we have also a path

v

[
z1 z2 z3 z4 z5 z6

4 3 4 2 3 4

]
v′′′,

which we splice in and now we have obtained the path (7.5) by the following sequence
alterations of (7.4).

v

[
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 2 1 3 2 1 4 3 2 1

]
vlow

v

[
c1 c2 c3 c4 c5 c6 b7 b8 b9 b10

3 2 3 1 2 3 4 3 2 1

]
vlow

v

[
c1 c2 c3 d4 d5 d6 z7 z8 z9 z10

2 3 2 4 3 2 1 2 3 4

]
vlow

v

[
d1 d2 d3 d4 d5 d6 z7 z8 z9 z10

2 3 2 4 3 2 1 2 3 4

]
vlow

v

[
z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

4 3 4 2 3 4 1 2 3 4

]
vlow

To each of these paths we may assign in a now familiar way a set of decorations and
hence a value

G(path) =
∏

x∈path


g(x) if x is boxed but not circled,
qx if x is circled but not boxed,
h(x) if x is neither circled nor boxed,
0 if x is both boxed and circled.
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Now if we sum G(path) over all v of given weight, each of these terms contributes
equally to the next. For the second step, this is by Statement B′; for the others, this
is by inductive hypothesis. Putting everything together, we obtain Statement A′.

Finally, we characterize accordions among preaccordions. Let α1, · · · , αr be the
simple roots.

Proposition 4 Let v be a short end in Bλ. Then the associated preaccordions ΓTv

and ∆T′v are accordions if and only if wt(v)−w0(λ) is a multiple of the longest root
α1 + α2 + . . .+ αr.

Thus the phenomenon of resonance can be understood as relating to the “diagonal”
short ends, whose weights have equal components for all roots.

Proof By Theorem 6 we have

v

[
b1 b2 · · · br−1 br br+1 · · · b2r−1

1 2 · · · r − 1 r r − 1 · · · 1

]
vlow

This means that the path from v to vlow involves b1+b2r−1 applications of f1, b2+b2r−2

applications of f2, and so forth, and br applications of fr. Since wt(fi(x)) = wt(x)−
αi, and since wt(vlow) = w0(λ), this means that

wt(v)− w0(λ)(b1 + b2r−1)α1 + (b2 + b2r−2)α2 + . . .+ brαr.

Since the roots are linearly independent, this means wt(v) − w0(λ) is a multiple of
α1 + . . . + αr if and only if b1 + b2r−1 = . . . = br−1 + br+1 = br. This is precisely the
condition for (7.2) to be an accordion. �



Chapter 8

Cartoons

Proposition 5 (i) If n - a then h(a) = 0, while if n|a we have

h(a+ b) = qah(b), g(a+ b) = qah(b).

(ii) If n|a then

h(a) = φ(pa) = qa−1(q − 1), g(a) = −qa−1,

while if n - a then h(a) = 0 and |g(a)| = qa−
1
2 . If n - a, b but n|a+ b then

g(a)g(b) = qa+b−1.

Proof This is easily checked using standard properties of Gauss sums. �

For the reduction to totally resonant prototypes – that is, the fact that State-
ment C implies Statement B – only (i) is used. The properties in (ii) become impor-
tant later.

To define the cartoon, we will take a slightly more formal approach to the short
Gelfand-Tsetlin patterns. Let

Θ = {(i, j) ∈ Z× Z| 0 6 i 6 2, 0 6 j 6 d+ 1− i}.

We call this set the substrate, and divide Θ into three rows , which are

Θ0 = {(0, j) ∈ Θ|0 6 j 6 d+ 1},
Θ1 = {(1, j) ∈ Θ|0 6 j 6 d},
Θ2 = {(2, j) ∈ Θ|0 6 j 6 d− 1},
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Let ΘB = Θ1 ∪ Θ2. Each row has an order in which (i, j) 6 (i, j′) if and only if
j 6 j′.

Now we can redefine a short Gelfand-Tsetlin pattern to be an integer valued
function t on the substrate, subject to the conditions that we have already stated.
Thus the pattern (5.2) corresponds to the function on Θ such that li = t(0, i),
ai = t(1, i) and bi = t(2, i). The Γ and ∆ preaccordions then become functions on
ΘB (the bottom and middle rows) in the same way. Specifying the circled and boxed
elements just means specifying subsets of ΘB.

Now the vertices of the cartoon will be the elements of the substrate Θ, and we
have only to define the edges. With t as in (5.2) we connect (1, i) to (0, i) if either
i = 0 or li 6 bi−1, and we connect (1, i) to (2, i−1) if i > 1 and bi−1 6 li. Furthermore
we connect (1, i) to (0, i+ 1) if either i = d or if i < d and li+1 > bi, and we connect
(1, i) to (2, i) if i < d and bi > li+1. For example, consider the short pattern of rank
5:

t =


23 15 12 5 2 0

20 12 5 4 2
14 9 5 3

 (8.1)

It is convenient to draw the cartoon as a graph on top of the preaccordion representing
t, as follows:

23
DD 15 12 5

<< 2
<< 0

20
zz

12
zz

5
��

<< 4
<< 2

��

14
zz

9
}}}

5
��

3

. (8.2)

• The cartoon depends only on the top and bottom rows of t, so it is really a
function of the prototype S to which t belongs.

• The cartoon encodes the relationship between t and t′. Indeed, suppose that
the cartoon has a subgraph x−−y −−z where y is in the middle row, x and z
are each in either the top or bottom row, with x is to the left of y and z is to
the right. Then in t′, y is replaced by x+ z − y.

For example, if t is given by (8.1), then the cartoon (8.2) tells us how to compute

t′ =


23 15 12 5 2 0

18 14 9 4 0
14 9 5 3

 ;

the middle row entries are 18 = 23 + 15 − 20, 14 = 12 + 14 − 12, 9 = 5 + 9 − 5,
4 = 5 + 3− 4 and 0 = 2 + 0− 2.
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The connected components of the cartoon are called episodes . These may be
arranged in an order E1, · · · , EN so that if i < j and α ∈ Ei, β ∈ Ej, and if α and
β are in the same row of the substrate Θ, then α < β. With this partial order, if
α ∈ Ei, β ∈ Ej then t(α) > t(β) regardless of whether or not α and β are in the same
row.

We call short pattern (5.2) resonant at i if li+1 = bi. A resonance of order k is
a sequence R = {i, i + 1, · · · , i + k − 1} such that t is resonant at each j ∈ R; the
sequence must be maximal with this property, so that t is not resonant at i − 1 or
i+ k. In the example (8.1), a resonance at 2 can be recognized from the cartoon by
the diamond shape between l3 = b2 = 5.

We will next describe another kind of diagram related to the cartoon in which
we mark certain edges with double bonds, and box and circle certain vertices. We
will refer to the diagram in which the bonded edges and circled vertices are marked
as the bond-marked cartoon. See (8.3) and (8.4) below for examples.

• Unlike the cartoon, the bond-marked cartoon really depends on t, not just on
its prototype.

• The bond-marked cartoon is useful since the circling and boxing of the Γ and
∆ preaccordions can be read off from it.

The edge joining α, β ∈ Θ will be called distinguished if t(α) = t(β). In representing
the bond-marked cartoon graphically we will mark the distinguished edges by double
bonds, which may be read as equal signs. Thus in the example (8.1), the cartoon of
t becomes

23
DD 15 12 5

<< 2 <<<< 0

20
zz

12
zzzz

5
����

<<<< 4
<< 2

��

14
zz

9
}}}

5
��

3

.

(We have drawn this labeling on top of t itself, but ultimately we will draw it on top
of the Γ or ∆ preaccordions.)

We observe that while the original bond-unmarked cartoon only depends on the
pattern prototype S to which t belongs, this diagram does depend on t. In particular,
t and t′ no longer have the same cartoon, since the double bonds move under the
involution t 7−→ t′. However the rule is quite simple:

Lemma 2 Suppose the bond-marked cartoon of t has a subgraph of the form x−−z =
= z, where the first z is in the middle row, so that x and the second z are in the top
or bottom row. Then in the bond-marked cartoon the double bond moves to the other
edge, so the bond-marked cartoon of t′ contains a subgraph x == x−−z.
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Proof Immediate from the definitions. �

In this example, the bond-marked cartoon of t′ is

23
DD 15 12 5

<< 2
<< 0

18
zz

14
zz

9
��

<< 4
<< 0

����

14
zzzz

9

}}} }}}
5

��
3

.

As we have already mentioned, the cartoon is very useful when superimposed on
the Γ and ∆′ preaccordions, where Γ = Γt and ∆′ = ∆t′ . Since these arrays have
only two rows, we add a third row at the top. We will also box and circle certain
entries, by a convention that we will explain after giving an example. Thus in this
example

Γ =

{
9 4 4 4 2

6 9 9 10

}
, ∆′ =

{
5 6 9 10 12

4 4 4 3

}
.

We superimpose the cartoon on these, representing Γ thus:

◦ ◦ ◦ ◦ ◦ ◦

9

::: ��� ?>=<89:;4
���

��� ��� ?>=<89:;4
���

||| |||

====
==== 4

>>>

��� 9999 2

��
BBB

BBB

6 9 ?>=<89:;9 10

(8.3)

and ∆′ as
◦ ◦ ◦ ◦ ◦ ◦

5

::: ���
6

���
���

���
9

���
���

���

555 10

>>>

���� 9999 12

BB ||||

?>=<89:;4 ?>=<89:;4 4 3

(8.4)

We’ve inserted a row of ◦’s in the top (0-th) row since the Γ and ∆′ preaccordions
have first and second rows but no 0-th row; we supply these for the purpose of
drawing the bond-marked cartoon. When the bond-marked cartoon is thus placed
on top of the Γ and ∆′ preaccordions, the circling and boxing conventions can be
conveniently understood.

• In the first row of Γ or the second row of ∆′ we circle an entry if a double bond
is above it and to the right. We box an entry if a double bond is above it and
to the left. Thus:

�����
�����

>>>>
>>>>

?>=<89:;x y
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• In the second row of Γ or the first row of ∆′ we circle an entry if a double bond
is above it and to the left. We box an entry if a double bond is above it and
to the right. Thus:

~~~~
~~~~

AAAAA
AAAAA

z ?>=<89:;w
Now we have the basic language that will allow us to prove the reduction to the
totally resonant case.



Chapter 9

Snakes

The key lemma of this chapter was stated without proof in [9]. There it was called
the “Snake Lemma.” Here we will recall it, prove it, and use it to prove the statement
made in Chapter 5, that (5.12) is “often” true.

By an indexing of the Γ preaccordion we mean a bijection

φ : {1, 2, · · · , 2d+ 1} −→ ΘB.

With such an indexing in hand, we will denote Γt(α) by γk(t) or just γk if α = φ(k)
corresponds to k. Thus

{γ1, γ2, · · · , γ2d+1} = {Γ(α) |α ∈ ΘB}.

We will also consider an indexing ψ of the ∆′ preaccordion, and we will denote
∆′(α) by δ′k if α = ψ(k). It will be convenient to extend the indexings by letting
γ0 = γ2d+2 = 0 and δ′0 = δ′2d+2 = 0.

Proposition 6 There exist indexings of the Γ and ∆′ preaccordions such that

δ′k =

{
γk if k is even,
γk + γk−1 − γk+1 if k is odd.

(9.1)

If i ∈ {1, 2, · · · , 2d + 2}, and if φ(i) ∈ Ek, then ψ(i) ∈ Ek also. Moreover if
φ(j), ψ(j) ∈ El and k < l then i < j.

Before we prove this, let us confirm it in the specific example at hand. With Γ

66



67

and ∆′ as in (8.3) and (8.4), we may take the correspondence as follows:

k 0 1 2 3 4 5 6 7 8 9 10
(i, j) in the
Γ ordering

(1, 0) (1, 1) (2, 0) (1, 2) (2, 1) (1, 3) (2, 2) (2, 3) (1, 4)

episode E1 E2 E2 E3 E3 E3 E3 E3 E4

γk 0 9 4 6 4 9 4 9 10 2 0
(i, j) in the
∆′ ordering

(1, 0) (2, 0) (1, 1) (2, 1) (1, 2) (2, 2) (2, 3) (1, 3) (1, 4)

δ′k 0 5 4 6 4 9 4 3 10 12 0
episode E1 E2 E2 E3 E3 E3 E3 E3 E4

(9.2)
The meaning of the last assertion of Proposition 6 is that each indexing visits the
episodes of the sequence in order from left to right, and after it is finished with an
episode, it moves on to the next with no skipping around. Thus both indexings must
be in the same episode.

The reason that Proposition 6 was called the “Snake Lemma” in [9] is that if
one connects the nodes of ΘB in the indicated orderings, a pair of “snakes” becomes
visible. Thus in the example (9.2) the paths will look as follows. The Γ indexing is
represented:

◦ ◦ ◦ ◦ ◦ ◦

9 4 4 4 2

6 9 9 10

and the ∆′ indexing:

◦ ◦ ◦ ◦ ◦ ◦

5 6 7 10 12

4 4 4 3
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• The proof will provide a particular description of the pair of snakes; in applying
Proposition 6 will will sometimes need this particular description. We will
describe the pair of indexings, or “snakes,” as canonical if they are produced
by the method described in the proof, which is expressed in Table 9.1 below.
Thus we implicitly use the proof as well as the statement of the Lemma.

• If there are resonances, there will be more than one possible pair of snakes.
(Indeed, the reader will find another way of drawing the snakes in the preceding
example.) These will be obtained through a process of specialization that will
be described in the proof. Any one of these pairs of snakes will be described
as canonical.

Proof For this proof, double bonds are irrelevant, and we will work with the
bond-unmarked cartoon. Thus both Γ and ∆′ are again represented by the same
cartoon, which in the example (8.1) was the cartoon (8.2). Resonances are a minor
complication, which we eliminate as follows. We divide the cartoon into panels , each
being of one five types:

t T B b R
◦
◦

@@
◦

◦
@@ ◦

@@

◦

◦
◦

~~
◦

~~
◦

◦
◦

~~
◦

◦
@@

~~
◦

@@

~~
◦

The first panel is always of type t and the last one of type b. We call a cartoon
simple if it contains no panels of type R.

The panel type R occurs at each resonance. Including it in our discussion would
unnecessarily increase the number of cases to be considered, so we resolve each reso-
nance by arbitrarily replacing each R by either a T or B. This will produce a simple
cartoon. We refer to this process as specialization.

For example the cartoon (8.2) corresponds to the word tBBRTb, meaning that
these panels appear in sequence from left to right. We replace the resonant panel
R arbitrarily by either T or B; for example if we choose B we obtain the simple
cartoon:

◦ ◦ ◦ ◦ ◦ ◦

◦

~~~~~~

@@@@@@
◦

~~~~~~

~~~~~~
◦

~~~~~~

~~~~~~
◦

~~~~~~
@@@@@@ ◦

~~~~~~

@@@@@@

◦ ◦ ◦ ◦
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Now, from the simple cartoon we may describe the algorithm for finding the pair
of snakes, that is, the Γ and ∆′ indexings. Each connected component (episode) in
the simple cartoon has three vertices, the middle one being in the second row. We
may classify these episodes into four classes as follows:

Class I Class II Class III Class IV
◦ ◦

◦
~~~~ @@@@

◦ ◦

◦ ◦

◦
@@@@ ~~~~

◦ ◦

◦ ◦

◦
@@@@

@@@@

◦ ◦

◦ ◦

◦
~~~~

~~~~

◦ ◦

Now we can describe the snakes. For each episode, we select a path from Table 9.1.
The nodes labeled ? will turn out to be indexed by even integers, and the nodes
labeled • will be indexed by odd integers. We’ve subscripted the ?’s to indicate
which entries are corresponding in the Γ and ∆′. A ? means that the information at
hand does not determine whether the entry will be even or odd in the indexing, so
we do not attempt to assign it a ? or •.

There are modifications at the left and right edges of the pattern: for example,
if the first two panels are tB then the first connected component is of Class II, and
the left parts of the Γ and ∆′ indexings indicated in the table are missing. Thus we
have a modification of the Class II pattern that we call IIt.

Γ indexing ∆′ indexing

Class IIt

◦ ◦

• ?4

•

◦ ◦

• ?

?4

Similarly there are Classes IIIt, IIb and IVb that can occur at the left or right
edge of the pattern. In every case these are obtained by simply deleting part of the
corresponding pattern, and we will not enumerate these for this reason.

It is necessary to see that these paths are assigned consistently. For example,
suppose that the cartoon contains consecutive panels TBT . Inside the resulting
configuration are both a Class II connected component and a Class I component.
Referring to Table 9.1, both these configurations mandate the following dashed line
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Γ labeling ∆′ labeling

Class I

◦ ◦

? ?1 •

• ?2

◦ ◦

• ?2 ?

?1 •

Class II

◦ ◦

? • ?4

?3 •

◦ ◦

?3 • ?

• ?4

Class III

◦ ◦

? • •

?5 ?6

◦ ◦

?5 ?6 ?

• •

Class IV

◦ ◦

? ?7 ?8

• •

◦ ◦

• • ?

?7 ?8

Table 9.1: Snake taxonomy.

in the Γ diagram.

◦ ◦ ◦

? • ? •

? • ?
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This sort of consistency must be checked in eight cases, which we leave to the reader.
Then it is clear that splicing together the segments prescribed this way gives a
consistent pair of snakes, and the indexings can be read off from left to right.

It remains, however, for us to prove (9.1). This is accomplished by four Lemmas.
There are many things to verify; we will do one and leave the rest to the reader.

Lemma 3 If the j-th connected component is of Class I, then

∆′(1, j) = Γ(2, j)

∆′(2, j − 1) = Γ(1, j)

∆′(2, j) = Γ(2, j − 1) + Γ(1, j)− Γ(2, j).

This asserts a part of (9.1), namely the equality δ′k = γk for the vertices labeled
?1 and ?2 in Table 9.1, and the equality δ′k = γk+γk−1−γk+1 for the unstarred vertex
in the connected component.

We prove that ∆′(1, j) = Γ(2, j). With a′i defined by (5.5) and (5.6) we have

∆′(1, j) =

(∑
i6j

li

)
−

(∑
i6j

a′i

)
.

Our assumption that the j-th connected component is of Class I means that lj > bj−1

and that lj+1 > bj, so a′j = bj−1 + bj − aj. Moreover, since lj > bj−1 we have∑
i<j

[min(li, bi−1) + max(li+1, bi)] =

max(lj, bj−1) +
∑
i<j

[min(li, bi−1) + max(li, bi−1)] =

lj +
∑
i<j

(li + bi−1) =
∑
i6j

li +
∑
i6j−2

bi.

By (5.5) we therefore have∑
i6j

a′i =
∑
i6j

li + bi − ai, ∆′(1, j) =
∑
i6j

ai − bi = Γ(2, j).

We leave the remaining two statements to the reader.

Lemma 4 If the j-th connected component is of Class II, then

∆′(1, j) = Γ(1, j) + Γ(2, j − 1)− Γ(1, j + 1).
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Lemma 5 If the j-th connected component is of Class III, then

∆′(1, j) = Γ(2, j),

∆′(2, j) = Γ(1, j) + Γ(2, j − 1)− Γ(2, j).

Lemma 6 If the j-th connected component is of Class IV, then

∆′(2, j − 1) = Γ(1, j),

∆′(1, j) = Γ(2, j − 1) + Γ(1, j)− Γ(1, j + 1).

We leave the proofs of the last Lemmas to the reader. The assertions in (9.1)
are contained in the Lemmas, for each δ′k whose corresponding vertex is in the given
connected component. It must lie in the first (middle) or second row of the cartoon,
which is why there are three identities for Class I, one for Class II and two for
Classs III and IV. Thus (9.1) is proved for every δ′k. The final assertion, that the
episodes of the cartoon are visited from left to right in order by both indexings, can
be seen by inspection from Table 9.1. �

Lemma 7 (Circling Lemma) Assume that t is strict.
(i) Suppose that either of the following two configurations occurs in either Γt or ∆t.
Then x = y.

?
������

?>=<89:;x y

?
>>>

>>>

y ?>=<89:;x
(ii) If x occurs circled in either the Γ or ∆ preaccordions of a strict pattern t, then
either the same value x also occurs uncircled (and unboxed) at another location, or
x = 0.

Proof The first statement follows from the definition. To prove the second state-
ment, we note that y = x is unboxed since the pattern is strict. If it is uncircled, (ii)
is proved. If it is circled, we continue to the right (if y is to the right of x) or to the
left (if y is to the left of x) until we come to an uncircled one. This can only fail if
we come to the edge of the pattern. If this happens, then x = 0. �



Chapter 10

Noncritical Resonances

We recall that a short pattern (5.2) is resonant at i if li+1 = bi. This property
depends only on the associated prototype, so resonance is actually a property of
prototypes. We also call a first (middle) row entry ai critical if it is equal to one of
its four neighbors , which are li, li+1, bi and bi−1. We say that the resonance at i is
critical if either ai or ai+1 is critical.

Theorem 7 Suppose that t is a strict pattern with no critical resonances; then t′ is
also strict with no critical resonances. Choose canonical indexings γi and δ′i as in
Proposition 6. Then either GΓ(t) = G∆(t) = 0 or n|γi. In any case, we have

GΓ(t) = G∆(t′).

As an example, the pattern is called superstrict if the inequalities (5.7) and (5.8)
are strict, that is, if

min(lj, bj−1) > aj > max(lj+1, bj), 0 < j < d, (10.1)

l1 > a1 > max(l2, b1), min(ld, bd−1) > ad > ld+1. (10.2)

Thus if the patterns within a type are regarded as lattice points in a polytope, the
superstrict patterns are the interior points. Again, the pattern (or prototype) is
called nonresonant if there are no resonances. The theorem is clearly applicable if t

is either superstrict or nonresonant.

Proof To see that t′ is strict, let ai, bi, li and a′i be as in (5.2) and (5.4). If t′ is not
strict, we must have a′i = a′i−1 for some i, and it is easy to see that this implies that
li = bi−1, and that t has a critical resonance at i. It is also easy to see that if t′ has
a critical resonance at i so does t.
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Choose a pair of canonical indexings of Γ = Γt and ∆′ = ∆t′ . Our first task is to
show that either GΓ(t) = G∆(t′) = 0 or n|γi for all even i. It is easy to see that γi
and δ′i are not boxed, since if it were, examination of every case in Table 9.1 shows
that it would be at the terminus of a double bond in the bond-marked cartoon that
is not one of the marked bonds in the figures. This could conceivably happen since
in the proof of Proposition 6 we began by replacing the cartoon by a simple cartoon,
a process that can involve discarding some parallel pairs of the bonds; however it
would force γi (or δ′i) to be a neighbor of a critical resonance, and we are assuming
that t has no critical resonances.

Suppose that γi is not circled (i even). Then GΓ(t) is a multiple of h(γi), which
vanishes unless n|γi. If γi is circled, we must argue differently. By Lemma 7, either
the same value γi occurs uncircled and unboxed somewhere in the Γ preaccordion,
in which case GΓ(t) is again a multiple of h(γi), or γi = 0. Since n|γi if γi = 0 the
conclusion that GΓ(t) = 0 or n|γi is proved. Since γi = δ′i when n is even, we may
also conclude that G∆(t′) = 0 unless the γi (i even) are all divisible by n.

We assume for the remainder of the proof that n|γi when i is even. Let us denote

γ̃i =


qγi if γi is circled in the Γ indexing,
g(γi) if γi is boxed in the Γ indexing,
h(γi) otherwise,

with δ̃′i defined similarly. Thus

GΓ(t) =
∏

γ̃i, G∆(t′) =
∏

δ̃′i.

We next show that ∏
i even

γ̃i =
∏
i even

δ̃′i. (10.3)

Since γi = δ′i when i is even, and since as we have noted these entries are never
boxed, the only way this could fail is if one of γ̃i and δ̃′i is circled and the other not.
We look at the connected component in the bond-unmarked cartoon containing γ̃i.
In Table 9.1, this entry is starred and must correspond to one of ?1, ?2, ?6 or ?7.
(Since the snake is obtained by splicing pieces together different pieces of Table 9.1
it may also appear ?3, ?4, ?5 or ?8.) If it is ?6, then it is circled in the Γ indexing
if and only if the bond above it is doubled, and by Lemma 2 the bond above ?6 in
the ∆′ indexing is also doubled, so ?6 is circled in both indexings; and similarly with
?7. Turning to the Class I components, it is impossible for ?1 to be circled in the Γ
indexing, since this would imply a critical resonance; and ?2 is never circled in the
∆′ indexing for the same reasoning. Nevertheless it is possible for ?2 to be circled
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in the Γ indexing but not the ∆′ indexing. In this case, Lemma 2 shows that ?2 is
starred in the ∆′ indexing but not the Γ indexing. This happens when the labeling
of a Class I component looks like:

Γ indexing ∆′ indexing

◦ ◦

? ?1 •

• ?2

◦ ◦

• ?2 ?

?1 •

Thus if ?1 is the i-th vertex in both orderings we have

γ̃i = h(γi), γ̃i+2 = qγi+2 , δ̃′i = qδ
′
i = qγi , δ̃′i+2 = h(δ′i+2) = h(γ′i+2),

and it is still true that γ̃iγ̃i+2 = δ̃′iδ̃
′
i+2. This proves (10.3).

Now we prove ∏
i odd

γ̃i =
∏
i odd

δ̃′i. (10.4)

When i is odd, it follows from Lemma 2 that γi is circled or boxed in the Γ indexing
if and only if δ′i is. Using (9.1), and remembering that since i− 1 and i+ 1 are even
we are now assuming γi−1 and γi+1 are multiples of n, we obtain

δ̃′i = qγi−1−γi+1 γ̃i.

Thus taking the product over odd i, the powers of q will cancel in pairs, giving (10.4).
Combining this with (10.3), the theorem is proved. �

There is another important case where (5.12) is true. This is case where the
pattern t is stable. We say that t is stable if each ai equals either li or li+1, and each
bi equals either ai or ai+1. Thus every element of the Γ preaccordion is either circled
or boxed. If this is true then it follows from Lemma 2 that t′ is also stable. Theorem 7
does not apply to stable patterns since they usually have critical resonances.

Theorem 8 Suppose that t is stable. Then GΓ(t) = G∆(t′).

Proof It is easy to see that every element of the Γ and ∆′ preaccordions is either
circled or boxed, and that the circled entries are precisely the ones that equal zero.
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As we will explain, the boxed elements are precisely the same for the Γ and ∆′

preaccordions.
Let S be the set of elements of the top row of t. Between the top row and the row

below it, one element is omitted; call it a. Between this row and the next, another
element is omitted; call this b. In t′ the same two elements are dropped, but in the
reverse order. The boxed entries that appear in Γ are

first row: {x− a|x ∈ S, x > a}
second row: {b− x|x ∈ S, x < b, x 6= a}

The boxed entries that appear in ∆′ are:

first row: {b− x|x ∈ S, x > b}
second row: {x− a|x ∈ S, x > a, x 6= b}

The entry a− b appears in both cases only if a > b. The statement is now clear. �



Chapter 11

Types

We now divide the prototypes into much smaller units that we call types . We fix a
top and bottom row, and therefore a cartoon. For each episode E of the cartoon, we
fix an integer kE . Then the set S of all short Gelfand-Tsetlin patterns (5.2) with the
given top and bottom rows such that for each E∑

α∈Θ1∩E

t(α) = kE (11.1)

is called a type. Thus two patterns are in the same type if and only if they have the
same top and bottom rows (and hence the same cartoon), and if the sum of the first
(middle) row elements in each episode is the same for both patterns.

Let us choose Γ and ∆′ indexings as in Proposition 6 (Proposition 6). With
notations as in that Lemma, and E a fixed episode of the corresponding cartoon,
there exist k and l such that φ(i) ∈ E and ψ(i) ∈ E precisely when k 6 i 6 l. let

LE =

{
k if k is even,
k − 1 if k is odd,

RE =

{
l if l is even,
l + 1 if l is odd.

Then Proposition 6 implies that

l∑
i=k

δi(t
′) =

(
l∑

i=k

γi(t)

)
+ γLE (t)− γRE (t), (11.2)

for all elements of the type. We recall that our convention was that γ0 = γ2d+2 = 0.
We take LE = 0 for the first (leftmost) cartoon and RE = 2d+ 2 for the last episode.

We may classify the possible episodes into four classes generalizing the classi-
fication in Table 9.1, and indicate in each case the locations of γLE and γRE in the
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Γ preaccordions, which may be checked by comparison with Table 9.1. Indeed, it
must be remembered that in that proof, every panel of type R is replaced by one
of type T or type B. Whichever choice is made, Table 9.1 gives the same location
for LE and RE . The classification of the episode into one of four types is given in
Table 11.1.

Class I

◦ ◦ ◦ · · · ◦ ◦ ◦

◦
����

γLE

{{{{{
CCCCC

zzzz
◦

>>>>

�����

����

<<<<< · · · ◦

>>>>

�����

����

<<<<< ◦

>>>>

�����
CCCCC ◦

EEEEE

◦ ◦ ◦ · · · ◦ ◦ γRE

Class II

◦ ◦ ◦ · · · ◦ ◦ ◦

◦
CCCCC ◦

DDDDD

<<<<<

����
◦

>>>>

�����

����

<<<<< · · · ◦

>>>>

�����

����

<<<<< ◦

>>>>

�����

����
γRE

{{{{{

γLE ◦ ◦ · · · ◦ ◦ ◦

Class III

◦ ◦ ◦ · · · ◦ ◦ ◦

◦
DDDD ◦

FFFFF

>>>>

~~~~
◦

@@@@

����

~~~~

>>>> · · · ◦
@@@@

����

~~~~

>>>> ◦
@@@@

����
EEEE ◦

FFFFF

γLE ◦ ◦ · · · ◦ ◦ γRE

Class IV

◦ ◦ ◦ · · · ◦ ◦ ◦

◦
����

γLE

zzzz
DDDD

zzzz
◦

>>>>

����

����

>>>> · · · ◦

>>>>

����

����

>>>> ◦

>>>>

����

����
γRE

yyyy

◦ ◦ ◦ · · · ◦ ◦ ◦

Table 11.1: The four classes of episodes in Γt.

The location of δ′LE and δ′RE in the ∆ preaccordion of t′ may also be read off
from Table 9.1. The classification of the episode into one of four classes is given in
Table 11.2.

Proposition 7 If F is the episode that consecutively follows E, then RE = LF . The
values γLE (t) and γRE (t) are constant on each type. Moreover GΓ(t) = G∆(t′) = 0
for all patterns t in the type unless the γLE are divisible by n. In the Γ and ∆′

preaccordions, γLE and δ′LE may be circled or not, but never boxed.

Proof From Tables 11.1 and 11.2, it is clear that RE = LF for consecutive episodes.
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Class I

◦ ◦ ◦ · · · ◦ ◦ ◦

◦

}}}}}
◦

�����
888888

�����
◦

;;;;;

������

�����

888888 · · · ◦

;;;;;

������

�����

888888 δ′RE

BBBB

�����
=====

◦

;;;;;

δ′LE ◦ ◦ · · · ◦ ◦ ◦

Class II

◦ ◦ ◦ · · · ◦ ◦ ◦

δ′LE

=====
◦

;;;;;

888888

�����
◦

;;;;;

������

�����

888888 · · · ◦

;;;;;

������

�����

888888 ◦

;;;;;

������

}}}}}
◦

�����

◦ ◦ ◦ · · · ◦ ◦ δ′RE

Class III

◦ ◦ ◦ · · · ◦ ◦ ◦

δ′LE
AAAA

◦

;;;;;

;;;;;

�����
◦

;;;;;

�����

�����

;;;;; · · · ◦

;;;;;

�����

�����

;;;;; δ′RE

BBBB

}}}}
BBBB

◦

;;;;;

◦ ◦ ◦ · · · ◦ ◦ ◦

Class IV

◦ ◦ ◦ · · · ◦ ◦ ◦

◦
yyyyy ◦

}}}}
;;;;;

~~~~
◦

@@@@

�����

~~~~

;;;;; · · · ◦
@@@@

�����

~~~~

;;;;; ◦
@@@@

�����

xxxxx ◦
}}}}

δ′LE ◦ ◦ · · · ◦ ◦ δ′RE

Table 11.2: The four classes of episodes in ∆t′ .

If E is of Class I or Class IV, then we see that

γLE =
∑
F>E

( ∑
α∈Θ1∩F

t(α)−
∑

α∈Θ0∩F

t(α)

)
,

where the notation means that we sum over all episodes to the right of E (including
E itself). If E is of Class II or III, we have

γLE =
∑
F6E

( ∑
α∈Θ1∩F

t(α)−
∑

α∈Θ2∩F

t(α)

)
.

In either case, these formulas imply that γLE is constant on the patterns of the type.
Given their described locations, the fact that γLE = δ′LE is never boxed in either

the Γ or ∆′ preaccordions may be seen from the definitions.
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We now show that GΓ(t) = G∆(t′) = 0 unless n|γLE . Indeed, it follows from an
examination of the locations of γLE in the Γ preaccordions and in the ∆′ preaccordions
(where it appears as δ′LE ) that it is unboxed in both Γ and ∆′. If it is uncircled in the
Γ preaccordion, then GΓ(t) is divisible by h(γLE ), hence vanishes unless n|γLE . If it is
circled, then we apply Lemma 7 to conclude that the same value appears somewhere
else uncircled and unboxed, unless γLE = 0 (which is divisible by n), which again
forces GΓ(t) = 0 if n - γLE ; and similarly for G∆(t′) = 0. �

• Due to this result, we may impose the assumption that n|γLE for every episode.
This assumption is in force for the rest of the book.

Now let E1, · · · , EN be the episodes of the cartoon arranged from left to right, and
let ki = k(Ei). By a local pattern on Ei subordinate to S we mean an integer-
valued function on Ei that can occur as the restriction of an element of S to Ei. Its
top and bottom rows are thus the restrictions of the given top rows, and it follows
from the definition of the episode that if (0, t) and (2, t − 1) are both in Ei then
t(0, t) = t(2, t − 1); that is, if both an element of the top row and the element of
the bottom row that is directly below it are in the same episode, then t has the
same value on both, and patterns in the type are resonant at t. The local pattern is
subject to the same inequalities as a short pattern, and by (11.2) the sum of its first
(middle) row elements must be ki. Let Si be the set of local patterns subordinate
to S. We call Si a local type.

Lemma 8 A pattern is in S if and only if its restriction to Ei is in Si for each i
and so we have a bijection

S ∼= S1 × · · · ×SN .

Proof This is obvious from the definitions, since the inequalities (11.1) for the
various episodes are independent of each other. �

Now if t is a short pattern let us define for each episode E

GEΓ(t) =
∏

α∈E∩ΘB


g(α) if α is boxed in Γt,
qα if α is circled in Γt,
h(α) otherwise,

GE∆(t) =
∏

α∈E∩ΘB


g(α) if α is boxed in ∆t,
qα if α is circled in ∆t,
h(α) otherwise,

(11.3)

provided t is locally strict at E , by which we mean that if α, β ∈ E∩Θ1 and α is to the
left of β then t(α) > t(β). If t is not locally strict, then we define GEΓ(t) = GE∆(t) = 0.
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Proposition 8 Suppose that n|γLE for every episode. Assume also that for each Si

we have ∑
ti∈Si

GEi∆(t′i) = q
γLEi

−γREi
∑
t∈Si

GEiΓ (ti). (11.4)

Then ∑
t∈S

G∆(t′) =
∑
t∈S

GΓ(t). (11.5)

This proposition is the bridge between types and local types. Two observations
are implicit in the statement of equation (11.4).

• Since by its definition GEiΓ (t) depends only on the restriction ti of t to Si, we
may write GEiΓ (ti) instead of GEiΓ (t), and this is well-defined.

• The statement uses the fact that γLE (t) and γRE (t) are constant on the type,

since otherwise q
γLEi

−γREi would be inside the summation.

Proof If ti ∈ Si is the restriction of t ∈ S, we have∑
t∈S

GΓ(t) =
∏
i

∑
ti∈Si

GEiΓ (ti) =
∏
i

q
γLEi

−γREi
∑
ti∈Si

GEi∆(t′i).

By Proposition 7, the factors q
γLEi

−γREi cancel each other REi = LEi+1
, and since our

convention is that γ0 = γ2d+2 = 0. Thus we obtain∏
i

∑
ti∈Si

GEi∆(t′i) =
∑
t∈S

G∆(t′).

�

In the rest of the chapter we will fix an episode E = Ei, and let L = LE and
R = RE to simplify the notation for the four remaining Propositions, which describe
more precisely the relations between the Γ and ∆′ preaccordions within the episode E .

Proposition 9 Let t be a short pattern whose cartoon contains the following Class II
resonant episode E of order d:

L0 L1 L2 · · · Ld Ld+1

◦
@@@@@ a0

BBBB

CCCC

||||
a1

BBBB

{{{{

||||

CCCC · · · ad

BBBB

{{{{

wwww
◦

yyyyyy

◦ L1 L2 · · · Ld ◦
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Then there exist integers s, µ1, ν1, µ2, ν2, · · · , µd, νd such that µi+νi = s (i = 1, · · · , d),
and the Γ and ∆′ preaccordions are given in the following table.

Γt

◦ ◦ ◦ · · · ◦ ◦

◦
@@@@@ s− γL

KKKKKK

JJJJJ

tttttt
µ1

CCCCC

||||

{{{{{

BBBB · · · µd

CCCCC

||||

}}}}
γR

~~~~~

γL ν1 ν2 · · · νd ◦

∆t′

◦ ◦ ◦ · · · ◦ ◦

γL
@@@@@ ν1

@@@@

BBBB

{{{{{
ν2

CCCCC

||||

{{{{{

BBBB · · · s− γR

KKKKKK

ttttt

ssssss
◦

~~~~~

◦ µ1 µ2 · · · µd γR

The values s, γL and γR are constant on the type containing the pattern.

Note: If the episode E occurs at the left edge of the cartoon, then our convention is
that γL = γ0 = 0, and if E occurs at the right edge of the cartoon, then γR = γ2d+2 =
0. We would modify the picture by omitting γL or γR in these cases, but the proof
below is unchanged.

Proof Let γL = γLE and γR = γRE in the notation of the previous chapter, and let
s, µi, νi be defined by their locations in the Γ preaccordion. Let s = ŝ + γR + γL,
µi = µ̂i + γR and νi = ν̂i + γL. It is immediate from the definitions that

ŝ =
d∑
j=0

(aj − Lj+1), µ̂i =
d∑
j=i

(aj − Lj+1), ν̂i =
i−1∑
j=0

(aj − Lj+1).

From this it we see that µi + νi = s and µ̂i + ν̂i = ŝ.

In order to check the correctness of the ∆′ diagram, we observe that the resonance
contains d panels of type R, each of which may be specialized to a panel of type T
or B. We specialize these to panels of type T . We obtain the following canonical
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snakes, representing the Γ and ∆′ preaccordions.

◦ ◦ ◦ · · · ◦ ◦ ◦

? s− γL µ1 · · · µr−2 µr−1 γR

γL ν1 ν2 · · · νr−2 νr−1 ?

◦ ◦ ◦ · · · ◦ ◦ ◦

δ′L ◦ ◦ · · · ◦ ◦ ◦ ◦

◦ ◦ ◦ · · · ◦ ◦ δ′R

Now looking at the even numbered locations in these indexings, starting with γL =
δ′L, Proposition 6 asserts the values ν1, · · · , νd are as advertised in the ∆′ labeling.
Looking at the first odd numbered location, which is the first spot in the bottom
row of the episode, Proposition 1 asserts its value to be (s− γL) + γL − ν1 = µ1; the
second odd numbered location gets the value µ1 + ν1 − ν2 = µ2, and so forth. �

Proposition 10 Let t be a short pattern whose cartoon contains a Class I resonant
episode E of order d. Then there exist integers s, µ1, ν1, µ2, ν2, · · · , µd, νd such that
µi + νi = s (i = 1, · · · , d), and the portions of in Γ and ∆′ preaccordions in E are
given in the following table.

Γt

◦ ◦ · · · ◦

γL

ttttt
BBBB

zzzzz
µ1

DDDD

||||

zzzz

BBBB · · · µd

DDDD

||||
CCCC

s− γL ν1 ν2 · · · νd γR

∆t′

◦ ◦ · · · ◦

ν1

||||
BBBB

zzzzz
ν2

DDDDD

||||

zzzzz

BBBB · · · γR

EEEEE

{{{{
JJJJJ

γL µ1 µ2 · · · µd s− γR

The values s, γL and γR are constant on the type containing the pattern.
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Proof We define s, µi and νi to be the quantities that make the Γ preaccordion
correct. The correctness of the second diagram may be proved using snakes as in
Proposition 9. The proof that µi + νi = s is also similar to Proposition 9. �

Proposition 11 Let t be a short pattern whose cartoon contains a Class III resonant
episode E of order d. Then there exist integers s, µ1, ν1, µ2, ν2, · · · , µd, νd such that
µi + νi = s (i = 1, · · · , d), and the portions of the Γ and ∆′ preaccordions in E are
given in the following table.

Γt

◦ ◦ ◦ · · · ◦

◦
@@@@@ s− γL

KKKKKK

JJJJJ

tttttt
µ1

CCCCC

||||

{{{{{

BBBB · · · µd

CCCCC

||||
CCCC

γL ν1 ν2 · · · νd γR

∆t′

◦ ◦ ◦ · · · ◦

γL
@@@@@ ν1

AAAA

BBBB

zzzzz
ν2

DDDDD

||||

zzzzz

BBBB · · · γR

EEEEE

{{{{
JJJJJ

◦ µ1 µ2 · · · µd s− γR

The values s, γL, γR and ξ are constant on the type containing the pattern.

Proof We define s, µi and νi to be the quantities that make the Γ preaccordion
correct. The correctness of the second diagram may be proved using snakes as in
Proposition 9. The proof that µi + νi = s is also similar to Proposition 9. �

Proposition 12 Let t be a short pattern whose cartoon contains a Class IV resonant
episode E of order d. Then there exist integers s, µ1, ν1, µ2, ν2, · · · , µd, νd such that
µi + νi = s (i = 1, · · · , d), and the portions of the Γ and ∆′ preaccordions in E are
given in the following table.

Γt

◦ ◦ · · · ◦ ◦

γL

ttttt
BBBB

zzzzz
µ1

DDDD

||||

zzzz

BBBB · · · µd

DDDD

||||

||||
γR

~~~~~

s− γL ν1 ν2 · · · νd ◦

∆t′

◦ ◦ · · · ◦ ◦

ν1

||||
BBBB

{{{{{
ν2

CCCCC

||||

{{{{{

BBBB · · · s− γR

KKKKKK

ttttt

ssssss
◦

~~~~~

γL µ1 µ2 · · · µd γR

The values s, γL, γR and ξ are constant on the type containing the pattern.
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Proof We define s, µi and νi to be the quantities that make the Γ preaccordion
correct. The correctness of the second diagram may be proved using snakes as in
Proposition 9. The proof that µi + νi = s is also similar to Proposition 9. �



Chapter 12

Knowability

We refer to Chapter 5 for discussion of the concept of Knowability.

Let S =
∏

Si be a type. Let E = Ei be an episode in the cartoon associated to
the short Gelfand-Tsetlin pattern t ∈ S. If the episode is of Class II, let a0, · · · , ad
and L1, · · · , Ld+1 be as in Proposition 9. If the class is I, III or IV, we still define
the ai and Li analogously:

Class I ◦ L1 L2 · · · Lr ◦

◦
~~~~~

a0

||||
BBBB

{{{{
a1

CCCC

||||

{{{{

BBBB · · · ar

BBBB

||||
FFFF ◦

EEEEEE

L0 L1 L2 · · · Lr Lr+1

Class III L0 L1 L2 · · · Lr ◦

◦
@@@@@ a0

CCCC

BBBB

{{{{
a1

CCCC

||||

{{{{

BBBB · · · ar

BBBB

||||
FFFF ◦

EEEEEE

◦ L1 L2 · · · Lr Lr+1

Class IV ◦ L1 L2 · · · Lr Lr+1

◦
~~~~~

a0

{{{{
CCCC

||||
a1

BBBB

{{{{

||||

CCCC · · · ar

BBBB

||||

xxxx
◦

yyyyyy

L0 L1 L2 · · · Lr ◦

We say that t is E-maximal if a0 = L0, · · · , ad = Ld, and E-minimal if a0 =
L1, · · · , ad = Ld+1. Not every local type Si (with E = Ei) contains an E-maximal or
E-minimal element. If it does, then Si consists of that single local pattern.
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Proposition 13 If ti is Ei-maximal then t′i is Ei-minimal, and

GEi∆(t′i) = q
γLEi

−γREiGEiΓ (ti).

Proof Let notations be as in Proposition 9, 10, 11 or 12, depending on the class
of E = Ei, and in particular L = LEi and R = REi . Each entry in the E-portion of
both Γt and ∆t′ is boxed except γL and γR, if they happen to lie inside E , which one
or both does unless E is of Class II; these are neither boxed nor circled. We have,
therefore

GEiΓ (ti) = g(s−γL)
∏

g(µi)g(νi)×
{
h(γL) Class I or IV
1 Class II or III

×
{
h(γR) Class I or III
1 Class II or IV

and GEi∆(t′) is the same, except that g(s− γL) is replaced by g(s− γR). By Proposi-
tion 7 we may assume as usual that n|γL and n|γR. It follows that qγL−γRg(s−γL) =
g(s− γR), and the statement is proved. �

Proposition 14 (Knowability Lemma) Let E be an episode in the cartoon as-
sociated to the short Gelfand-Tsetlin pattern t, and let L = LE and R = RE as in
Tables 11.1 and 11.2. Let s, µi and νi be as in Proposition 9, 10, 11 or 12, depending
on the class of E. Assume that n - s. Then either GΓ(t) = G∆(t′) = 0, or t is
E-maximal.

The term “Knowability Lemma” should be understood as follows. It asserts that
one of the following cases applies:

• Maximality: t is E-maximal, and Si consists of the single local pattern. In this
case (11.4) follows from Proposition 13.

• Knowability: n|s in which case all the Gauss sums that appear in all the
patterns of the resotope appear in knowable combinations – g(s) by itself or
g(µi)g(νi) where µi + νi = s.

• In all other cases where n - s we have and GΓ(t) = G∆(t′) = 0 for all patterns
so (11.4) is obvious.

Knowability (as explained in Chapter 5) per se is not important for the proof
that Statement C implies Statement B, but the precise statement in Proposition 14,
particularly the fact that we may assume that n|s, will be important. Theorems 11
and 12 below validate the term “knowability” by explicitly evaluating the sums that
arise when n|s.
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Proof We will discuss the cases where E is Class II or Class I, leaving the remaining
two cases to the reader.

First assume that E is Class II. Let notations be as in Proposition 9. By Propo-
sition 7 we may assume that n|γL and n|γR. We will assume that GΓ(t) 6= 0 and
show that s− γL, µi and νi are all boxed. A similar argument would give the same
conclusion assuming G∆(t′) 6= 0. Since h(x) = 0 when n - x, if such x appears in Γt

it is either boxed or circled. In particular s− γL is either boxed or circled.

We will argue that s − γL is not circled. By the Circling Lemma (Lemma 7),
µ1 = s − γL, ν1 = γL, and ν1 is also circled. Now n - µ1 = s − γL, so µ1 is either
circled or boxed, and it cannot be boxed, because this would imply that ν1 is both
circled and boxed, which is impossible since GΓ(t) 6= 0. Thus µ1 = s− γL is circled,
and we may repeat the argument, showing that s − γL = µ1 = µ2 = . . . so that
ν1 = ν2 = . . ., and that all entries are circled. When we reach the end of the top
row, µd is circled, which implies that µd = 0, and so s = γL, which is a contradiction
since we assumed that n - s.

This proves that s− γL is boxed. Now we argue by contradiction that the µi and
νi are also boxed. If not, let i > 0 be chosen so that ν1, · · · , νi−1 are boxed (and
therefore, so are µ1, · · · , µi−1) but νi is not boxed. We note that νi cannot be circled,
because if νi is circled, then µi−1 (or s if i = 0) is both circled and boxed, which is
a contradiction. Thus νi is neither boxed nor circled and so n|νi. Since νi + µi = s
and n - s, we have n - µi and so µi is either boxed or circled. It cannot be boxed
since this would imply that νi is also boxed, and our assumption is that it is not.
Thus µi is circled. By the Circling Lemma, µi = µi+1, and so n - µi+1 which is thus
either boxed or circled. It cannot be circled, since if it is, then νi+1 is both circled
(since µi is circled) and boxed (since µi+1 is boxed), and we know that if a bottom
row entry is both boxed and circled, then t is not strict and GΓ(t) = 0, which is a
contradiction. Thus µi+1 is circled. Repeating this argument, µi = µi+1 = · · · are
all circled, and when we get to the end, µd is circled, so by the Circling Lemma,
µi = µd = γR, which is a contradiction since γR is divisible by n, but µi is not. This
contradiction shows that s− γL and the µi, νi are all boxed, and it follows from the
definitions that t is E-maximal.

We now discuss the variant of this argument for the case that E is of Class I,
leaving the two other cases to the reader. Let notations be as in Proposition 10.
Again we assume that GΓ(t) 6= 0, so whenever x appears in Γt with n - x it is either
boxed or circled. Due to its location in the cartoon, there is no way that s− γL can
be circled, so it is boxed.

Now we argue by contradiction that ν1, · · · , νd and hence µ1, · · · , µd are all boxed.
If not, let i > 0 be chosen so that ν1, · · · , νi−1 are boxed (and therefore, so are
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µ1, · · · , µi−1) but νi is not boxed. The same argument as in the Class II case shows
that n|νi so n - µi and that µi is circled, and moreover that µi = µi+1 = · · · = µd and
that these are all circled. But now this is a contradiction since due to its location in
the cartoon, µd cannot be circled. �



Chapter 13

The Reduction to Statement D

We now switch to the language of resotopes, as defined in Chapter 5. We remind the
reader that we may assume γLE and γRE are multiples of n for every totally resonant
episode.

Proposition 15 Statement D is equivalent to Statement C. Moreover, Statement D
is true if n - s.

Proof The case of a totally resonant short Gelfand-Tsetlin pattern t is a special case
of Proposition 9, and the point is that Γt is a Γ-accordion a, and Proposition 9 shows
that ∆t′ is the ∆-accordion a′. In this case γL = γR = 0. Moreover as t runs through
its totally resonant prototype, a runs through the Γ-resotope As(c0, · · · , cd) with
ci = Li−Li+1, so Statement D boils down to Statement C. The fact that Statement D
is true when n - s follows from the Knowability Lemma and Proposition 13. �

We turn next to the proof that Statement D implies Statement B. What we will
show is that for each of the four types of resonant episodes, Statement D implies
(11.4); then Statement B will follow from Proposition 8. We fix an episode E = Ei,
and will denote L = Li, R = Ri. By Proposition 7 we may assume that n|γL and
n|γR. Moreover by the Knowability Lemma (Proposition 14) we may assume n|s,
where s and other notations are as in Proposition 9, 10, 11 or 12, depending on the
class of E .

Proposition 16 Let E be a Class II episode, and let notations be as in Proposition 9.
If

a =

{
ŝ µ̂1 · · · µ̂d

ν̂1 · · · ν̂d

}
90



91

where s = ŝ + γR + γL, µi = µ̂i + γR and νi = ν̂i + γL, then a lies in the resotope
A = Aŝ(c0, · · · , cd) with ci = Li − Li+1; let σ denote the signature of a in A. Then
t 7−→ aσ induces a bijection from the local type Si to A. Assume furthermore that
n|γL and n|γR. Then

qγLGEΓ(t) = q(d+1)(γR+γL)GΓ(aσ), qγRGE∆(t′) = q(d+1)(γR+γL)G∆(a′σ). (13.1)

Proof With notations as in Proposition 9, the inequalities Li > ai > Li+1 that ai
must satisfy can be written (with µ̂0 = ŝ):

Li − Li+1 > µ̂i−1 − µ̂i > 0,

which are the same as the conditions that aσ lies in A = As(c0, · · · , cd), with ci =
Li − Li+1. Each entry in aσ is boxed or circled if and only if the corresponding
entry in Γt is, and similarly, every entry in a′σ is boxed or circled if and only if the
corresponding entry in the (left-to-right) mirror image of ∆t′ is. Using the assumption
that n|γR and n|γL and Proposition 5 we can pull a factor of qγR from the factor of
GEΓ(t) corresponding to s− γL = ŝ+ γR, which is

g(ŝ+ γR) if s− γL is boxed;
qŝ+γR if s− γL is circled;
h(ŝ+ γR) otherwise,

leaving just the corresponding contribution in GΓ(aσ); and similarly we may pull out
d factors of qγR from the contributions of µi = µ̂i + γR, and d factors of qγL from
the contributions of νi = ν̂i + γL. What remains is just GΓ(aσ). This gives the first
identity in (13.1), and the second one is proved similarly. �

Corollary. Statement D implies (11.4) for Class II episodes.

Although this reduction was straightforward for Class I, each of the remaining
classes involves some nuances. In every case we will argue by comparing qγLGΓ(t) to
GΓ(aσ), where aσ is the accordion associated with the totally resonant pattern

L0 L1 L2 · · · Ld Ld+1

a0

BBBB

CCCC

||||
a1

BBBB

{{{{

||||

CCCC · · · ad

BBBB

{{{{

wwww

L1 L2 · · · Ld

(13.2)

Here Li and ai are as in Proposition 9, 10, 11 or 12. We have moved L0 and Ld
from the bottom row to the top row as needed, and discarded the rest of the top and
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bottom rows. The notations s, µi and νi are already in use Proposition 9, 10, 11 or
12, so we will denote

a =

{
t ψ1 · · · ψd
φ1 · · · φd

}
. (13.3)

We see that aσ runs throughAt(c0, · · · , cd) by Proposition 16, with ci = Li−Li+1. We
will compare GΓ(t) and G∆(t′) with GΓ(aσ) and G∆(a′σ) respectively. A complication
is that while corresponding entries of Γt and aσ are boxed together, the circlings may
not quite match; the argument will justify moving circles from one entry in GΓ(t) to
another. Specifically, if either γL or γR is within E and is circled, the circle needs to
be moved to another location. This is justified by the following observation.

Lemma 9 (Moving Lemma) Suppose that x and y both appear in the E part of
Γt, and that y is circled, but x is neither circled nor boxed. Suppose that both x and
y are both positive and x ≡ y modulo n. Then we may move the circle from y to x
without changing the value of GEΓ(t).

Proof Before moving the circle, the contribution of the two entries is qyh(x); after
moving the circle, the contribution is qxh(y). These are equal by Proposition 5. (The
positivity of x is needed since h(0) is undefined.) �

In each case we will discuss GΓ(t) carefully leaving G∆(t′) more or less to the
reader. The case where E is of Class II has already been handled in Proposition 16.

Class I episodes

We assume that the E-portion of t has the form:

◦ L1 L2 · · · Ld ◦

◦
~~~~~

a0

||||
BBBB

{{{{
a1

CCCC

||||

{{{{

BBBB · · · ad

CCCC

||||
GGGG ◦

EEEEEE

L0 L1 L2 · · · Ld Ld+1

(13.4)

We will compare GΓ(t) with GΓ(aσ), where a is the accordion (13.3) derived from the
pattern in (13.2), and σ is its signature. Thus we move L0 and Ld+1 to the top row,
which does not affect the inequalities that the ai satisfy, and discard the rest of the
pattern to obtain the totally resonant pattern (13.2), then compute its accordion.
Otherwise, let Γt, and ∆t′ be as in Proposition 10, and let s, µi and νi be as defined
there.
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Proposition 17 Assume E is a Class I episode and that n|s, γL, γR. As t runs
through its local type, aσ runs through At(c0, · · · , cd) with ci = Li − Li+1, and

qγLGEΓ(t) = h(γL)h(γR)q(d+1)(2s−γL−γR)GΓ(aσ),

qγRGE∆(t′) = h(γL)h(γR)q(d+1)(2s−γL−γR)G∆(a′σ).

Proof Using (13.4) and (13.2), we have

t =
d∑
j=0

(aj − Lj+1) = γR − (s− γL), ψi =
d∑
j=i

(aj − Lj+1) = γR − νi,

and φi + ψi = t. If γL is circled, we will move the circle to s− γL. To justify the use
of the Moving Lemma (Lemma 9) we check that γL and s−γL are both positive and
congruent to zero modulo n. Positivity of γL follows since γL > µd, and µd > 0 since
if µd = 0 then it is circled, which it cannot be due to its location in the cartoon. To
see that s−γL > 0, if it is zero then both s−γL and γL are circled, which implies that
L1 = a1 = L2, but L1 > L2. Both s− γL and γL are multiples of n by assumption.

If γR is circled, we will move the circle to µd. To see that this is justified, we must
check that γR and µd are positive and multiples of n. We are assuming n|γR, and it
is positive since γR > s − γL which cannot be zero; if it were, it would be circled,
which it cannot be due to its position in the cartoon. Also by the Circling Lemma,
since γR is circled it equals νd; thus µd = s − νd = s − γR ≡ 0 modulo n. And µd
cannot be zero since it is not circled, due to its location in the cartoon.

With these circling modifications, γL and γR are neither circled nor boxed, hence
produce factors in GEΓ(t) of h(γL) and h(γR). The remaining factors in GEΓ(t) can
be handled as follows. Let F (x) = qx if x is a boxed entry in Γt or aσ, g(x) if it is
circled, and h(x) if it is neither boxed nor circled. We have

qγLF (s− γL) = q2s−γL−γRF (t),

F (µi) = qs−γRF (ψi),

F (νi) = qs−γLF (φi),

and multiplying these identities together gives the stated identity for qγLGEΓ(t).
(There are two entries h(γL) and h(γR) that have to be taken out.) The ∆′ preac-
cordion is handled similarly. �
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Class III episodes

Now we assume that the E-portion of t has the form:

L0 L1 L2 · · · Ld ◦

◦
@@@@@ a0

CCCC

BBBB

{{{{
a1

CCCC

||||

{{{{

BBBB · · · ad

CCCC

||||
GGGG ◦

EEEEEE

◦ L1 L2 · · · Lr Ld+1

(13.5)

Proposition 18 Assume E is a Class III episode and that n|s, γL, γR. If a0 = L1,
a1 = L2, · · · , ad = Ld+1 then the local type consists of a single pattern t, for which
(11.4) is satisfied. Assume that this is not the case. Then as t runs through its local
type, aσ runs through At(c0, · · · , cd) with ci = Li − Li+1, and

qγLGEΓ(t) = q(d+1)(s+γL−γR)h(γR)GΓ(aσ), qγRGE∆(t′) = q(d+1)(s+γL−γR)h(γR)G∆(a′σ).

Proof If a0 = L1, a1 = L2, · · · , ad = Ld+1 then the local type consists of a single
element t. We will handle this case separately. For this t it is easy to see that all
entries except µd are circled in Γt, while in ∆t′ all entries except s− γR are circled.
But by the Circling Lemma s − γL = µ1 = · · · = µd and µd > 0 since it cannot be
circled due to its location in the cartoon. Thus we may move the circle from s− γL
to µd and then compare GEΓ(t) and GE∆(t′) to see directly that (11.4) is true.

We exclude this case and assume that at least one of the inequalities ai > Li+1

is strict. Using (13.3) and (13.5) we have t = γR − γL, φi = γR − γL, ψi = νi − γL
and ψi = µi + γR− s, where γR, γL, s, µi and νi are as in Proposition 11, and σ is the
signature of a in A. If γL is circled then we move the circle from γL to µd in Γt. This
is justified as in the Class I case, except that the justification we gave there for the
claim that γR > 0 is no longer valid. It follows now from our assumption that one of
the inequalities ai > Li+1 is strict. After moving the circle from γL to µd in Γt, each
factor s−γL, µi, νi is circled or boxed in the (circling-modified) Γt if and only if the
corresponding factor t, ψi or φi is circled or boxed in aσ. Moreover s+ γL − γR ≡ 0
modulo n so we can pull out a factor of qs+γL−γR from the contributions of s−γL and
each pair µi, νi, to qγLGEΓ(t), and what remains is h(γR)GΓ(aσ). A similar treatment
gives the other identity. �
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Class IV episodes

Now we assume that the E-portion of t has the form:

◦ L1 L2 · · · Lr Ld+1

◦
~~~~~

a0

{{{{
CCCC

||||
a1

BBBB

{{{{

||||

CCCC · · · ad

BBBB

{{{{

wwww
◦

yyyyyy

L0 L1 L2 · · · Ld ◦

(13.6)

If a0 = L1, a1 = L2, · · · , ad = Ld+1 then the local type consists of a single element t.
In this case γL is circled in both Γt and ∆t′ and we don’t try to move it. We have

qγLGEΓ(t) = h(s)qγL
d∏
i=1

qµi
d∏
i=1

qνi = h(s)qγLqds = qγRGE∆(t′).

We exclude this case and assume that at least one of the inequalities ai > Li+1 is
strict. Using (13.3) and (13.6) we have t = γL−γR, ψi = µi−γR and φi = νi+γL−s.

Proposition 19 Assume E is a Class IV episode and that n|s, γL, γR. As t runs
through its local type, aσ runs through At(c0, · · · , cd) with ci = Li − Li+1, and

qγLGEΓ(t) = h(γL)q(d+1)(γR−γL+s)GΓ(aσ), qγRGE∆(t′) = h(γL)q(d+1)(γR−γL+s)G∆(a′σ).

Proof If γL is circled, we must move the circle from γL to s− γL. This is justified
the same way as in the Class I case, except that the positivity of γL must be justified
differently. In this case, it follows from our assumption that one of the inequalities
ai > Li+1 is strict. Now we can pull out a factor of qs+γR−γL from the contributions
of s−γL and eacch pair µi, νi, and the statement follows as in our previous cases. �

Theorem 9 Statement D (or, equivalently, Statement C) implies Statement B.

Proof The equivalence of Statements D and C is the Corollary to Proposition 16.
By Proposition 8 we must show (11.4) for every episode E . By Proposition 7 we may
assume that n|γL and n|γR. Moreover by the Knowability Lemma (Proposition 14)
we may assume n|s because if n - s then Proposition 13 is applicable. We may then
apply Proposition 16, 17, 18 or 19 depending on the class of E . �



Chapter 14

Statement E implies Statement D

We fix a nodal signature. Let B(η) = {i|ηi = �}. Let CPη(c0, · · · , cd) ∈ ZΓ be the
following “cut and paste” virtual resotope

CPη(c0, · · · , cd) =
∑

T⊆B(η)

(−1)|T |As(cT0 , · · · , cTd ), (14.1)

where

cTi =

{
ci if i ∈ T ,
∞ if i 6∈ T .

We recall that CPη(c0, · · · , cd) is the set of Γ-accordions

a =

{
s µ1 · · · µd

ν1 · · · νd

}
that satisfy the inequalities (5.21), with the convention that µ0 = s and µd+1 = 0.
Geometrically, this set is a simplex, and we will show that it is the support of
CPη(c0, · · · , cd), though the latter virtual resotope is a superposition of resotopes
whose supports include elements that are outside of CPη(c0, · · · , cd); it will be shown
that the alternating sum causes such terms to cancel.

Finally, if a ∈ CPη(c0, · · · , cd) let θ(a, η) be the signature obtained from η by
changing ηi to ∗ when the inequality

µi − µi+1 >

{
ci if ηi = �,
0 if ηi = e,

is strict. Note that these are the inequalities defining a ∈ CPη(c0, · · · , cd). Strictly
speaking a and η do not quite determine θ(a, η) because it also depends on the ci.
We omit these data since they are fixed, while a and η will vary.
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Proposition 20 The support of CPη(c0, · · · , cd) is the simplex CPη(c0, · · · , cd). Sup-
pose that a ∈ CPη(c0, · · · , cd). If τ is any signature, then the coefficient of aτ in
CPη(c0, · · · , cd) is zero unless τ is obtained from θ(a, η) by changing some �’s to ∗.
If it is so obtained, the coefficient is (−1)ε, where ε is the number of �’s in τ .

Proof Suppose the Γ-accordion a does not satisfy (5.21). We will show that it does
not appear in the support of CPη(c0, · · · , cd). By assumption µi−µi+1 < ci for some
i ∈ B(η). We group the subsets of B(η) into pairs T, T ′ where T = T ′ ∪ {i}. It is
clear that a occurs in As(cT0 , · · · , cTd ) if and only if it occurs in As(cT

′
0 , · · · , cT

′

d ), and
with the same signature. Since these have opposite signs, their contributions cancel.
This proves that the support of CPη(c0, · · · , cd) is contained in the simplex C. The
opposite inclusion will be clear from the precise description of the coefficients, which
is our next step to prove.

We note that θ(a, η) = θ0 · · · θd where

θi =


� if µi − µi+1 = ci,e if µi − µi+1 = 0,
∗ otherwise.

We emphasize that if θi = � then i ∈ B(η), while if θi = e then i 6∈ B(η). (The
case θi = ∗ can arise whether or not i ∈ B(η).)

Suppose that a ∈ CPη(c0, · · · , cd). In order for aτ to have a nonzero coefficient,
it must appear as the coefficient of a in As(cT0 , · · · , cTd ) for some subset T of B(η).
We will prove that if τ is the signature of a in this resotope we have

τi =


e if µi − µi+1 = 0, in which case i 6∈ B(η);
� if i ∈ T ;
∗ otherwise.

(14.2)

First, if i ∈ T then cTi = ci so µi − µi+1 6 ci, for we have already stipulated (by
assuming a ∈ CPη(c0, · · · , cd)) that µi − µi+1 > ci. Therefore µi − µi+1 = ci when
i ∈ T , and so τi = � when i ∈ T . And if i 6∈ T , the signature of τ is definitely not
� since cTi =∞; if i ∈ B(η)− T it also cannot be e since µi − µi+1 > ci > 0. This
proves (14.2).

It is clear from (14.2) that τ is obtained from θ(a) by changing some �’s to ∗’s,
and which ones are changed determines T . This point is important since it shows
that (unlike the case where a 6∈ CPη(c0, · · · , cd)) a given aτ can only appear in only
one term in (14.1), so there cannot be any cancellation. If τ is obtained from θ(a) by
changing some �’s to ∗’s then it does appear in As(cT0 , · · · , cTd ) for a unique T and
so aτ appears in CPη(c0, · · · , cd) with a nonzero coefficient. The sign with which it
appears is (−1)|T |, and T we have noted is the set of i for which τi = �. �
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Theorem 10 Statement E implies Statement D.

Proof Let a ∈ CPη(c0, · · · , cd) and let σ = θ(a, η). What we must show is
that (5.22) implies (5.19). We extend the function GΓ from the set of decorated
Γ-accordions to the free abelian group ZΓ by linearity. Also the involution aη 7−→ a′η
on decorated accordions induces an isomorphism ZΓ −→ Z∆ that we will denote
A 7−→ A′.

Then (5.19) can be written GΓ(A) = G∆(A′). By the principle of inclusion-
exclusion (Stanley [40], page 64), we have

As(c0, · · · , cd) =
∑

T⊆B(η)

CPηT (cT0 , · · · , cTd ),

Where if T is a subset of B(η) then ηT is the signature obtained by changing ηi
from � to e for all i ∈ T . This means that if we show GΓ(C) = G∆(C ′) when
C = CPη(c0, · · · , cd) then (5.19) will follow. The left-hand side in this identity is a
sum of GΓ(aτ ) with a in CPη(c0, · · · , cd), and the coefficient of aτ in this sum is the
same as its coefficient in ΛΓ(a, σ) by Proposition 20. �



Chapter 15

Evaluation of ΛΓ and Λ∆, and
Statement G

Let η be a nodal signature, and let σ be a subsignature. Let

a =

{
s α1 α2 · · · αd

β1 β2 · · · βd

}
be an accordion belonging to the open facet Sσ of CPη(c0, · · · , cd). Assuming that
n|s we will evaluate ΛΓ(a, σ).

We will denote

V (a, b) = (q − 1)aq(d+1)s−b, V (a) = V (a, a).

Let

εΓ(σ) = εΓ =

{
1 if σ0 = �,
0 otherwise,

KΓ(σ) = KΓ = {i|1 6 i 6 d, σi = �, σi−1 6= e}, kΓ = |KΓ|,
NΓ(σ) = NΓ = {i|1 6 i 6 d, σi = �, σi−1 = e}, nΓ = |NΓ|,

and

CΓ(σ) = CΓ = {i|1 6 i 6 d, σ0, σ1, · · · , σi−1 not all e and either i ∈ NΓ or σi = ∗}.
(15.1)

Let cΓ = |CΓ|, and let tΓ be the number of i with 1 6 i 6 d and σi 6= ∗. Given a set
of indices Σ = {i1, · · · , ik} ⊆ {1, 2, · · · , d}, let

δn(i1, · · · , ik) = δn(Σ) = δn(Σ; a) =

{
1 if n divides αi1 , · · · , αik ,
0 otherwise.

(15.2)
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Let

χΓ(a, σ) = χΓ =
∏

i∈CΓ(σ)

δn(i).

Finally, let

aΓ(σ) = aΓ = 2(d− tΓ + nΓ) +


−1 if σ0 = e
0 if σ0 = �
1 if σ0 = ∗

+

{
1 if σd = e
0 if σd 6= e

}
.

Proposition 21 Assume that n|s. Given a Γ-accordion

a =

{
s α1 α2 · · · αd

β1 β2 · · · βd

}
and an associated signature σ ⊆ σT not containing the substring e,�, then

GΓ(a, σ) = (−1)εΓχΓ · V (aΓ, aΓ + dΓ), (15.3)

where

dΓ =

 ∑
1 6 i 6 d
σi = �

(1 + δn(i))

+

{
1 if σ0 = �
0 if σ0 6= �

}
.

Recall that any subsignature σ containing the string e� has GΓ(a, σ) = 0. We
will abuse notation and rewrite the definition of GΓ(a, σ) as

GΓ(a, σ) = GΓ(aσ) =
∏
x∈a

fσ(x),

where

fσ(x) =


g(x) if x is boxed in aσ (but not circled),
qx if x is circled (but not boxed),
h(x) if x is neither boxed nor circled,
0 if x is both boxed and circled.

This is an abuse of notation, since fσ is not a function; it depends not only on the
numerical value x but also its location in the decorated accordion aσ. However this
should cause no confusion.
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Proof Using the signature σ to determine the rules for boxing and circling in a we
see that if σ0 = �, then fσ(s) = g(s) = (−1) · qs−1. The (−1) here accounts for the
(−1)εΓ in (15.3). If σi = � for i > 0, we have

fσσ(αi)fσ(βi) = g(αi)g(βi) =

{
qs−1 if n - αi,
qs−2 if n - αi.

If σ0 = e, then s = α1, β1 = 0, and fσ(s) = qs. If σi = e, 0 < i < d, then αi = αi+1

and βi = βi+1 so that while the circling in the accordion strictly speaking occurs at
αi and βi+1, we may equivalently consider it to occur at αi and βi for bookkeeping
purposes and

fσ(αi)fσ(βi+1) = fσ(αi)fσ(βi) = qs.

And if σd = e, then αd = 0 and βd = s, so that

fσ(αd)fσ(βd) = h(s) = (q − 1)qs−1.

Finally if σ0 = ∗, then fσ(s) = (q − 1)qs−1. If σi = ∗, 1 6 i 6 d then

fσ(αi)fσ(βi) = h(αi)h(βi) =

{
(q − 1)2qs−2 if n - αi,
0 if n - αi.

Now note that the assumption that σ does not contain the string e,� implies that
nΓ = 0, simplifying the definitions of χΓ and aΓ above. The case of σi = � is seen
to account for the dΓ defined above, the σi = ∗ account for both the χΓ and the aΓ.
However, one does need to count somewhat carefully at the ends of the accordion
according to the above cases. In particular, we see that σ0 = e implies α1 = s, so
that if j is the first index with σj 6= e, then σj = ∗ by assumption. But then αj = s
and the divisibility condition n|αj is automatic, hence redundant and omitted from
the definition. �

Lemma 10 Given a signature σ which does not contain the sequence e� and dΓ(σ)
as defined in Proposition 21, we may write dΓ = kΓ + εΓ +

∑
i∈KΓ(σ) δn(i). Then for

any m with 0 6 m < dΓ(
dΓ

m

)
= kΓ +

(
εΓ

m

)
+

∑
i∈KΓ(σ)

δn(i)

(
kΓ + εΓ

m− 1

)
+

· · ·+
∑

{i1,...,il}⊆KΓ(σ)

δn(i1, . . . , il)

(
kΓ + εΓ

m− l

)
+ · · ·

where we understand each of the binomial coefficients to be 0 if the lower entry is
either negative or larger than the upper entry.
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Proof The result follows from repeated application of the identity(
c+ δn(i)

m

)
=

(
c

m

)
+ δn(i)

(
c

m− 1

)
,

valid for any constants c and m and index i, While dΓ contains divisibility conditions
and hence depends on a, kΓ + εΓ is an absolute constant depending only on the
signature σ. �

Theorem 11 Fix a nodal signature η, and assume that n|s. Given an accordion
a ∈ Sσ with subsigature σ = (σ0, σ1, . . . , σd) ⊂ η,

ΛΓ(a, σ) = (−1)nΓ+εΓχΓ

kΓ∑
x=0

∑
Σ ⊆ KΓ(σ)
|Σ| = x

δn(Σ)(−1)xV (aΓ + x, aΓ + kΓ), (15.4)

where the inner sum ranges over all possible subsets of cardinality x in KΓ.

Before giving the proof, let’s do an example. Let

σ = (�, ∗, e,�, ∗,�, ∗) ⊆ η = (�, e, e,�,�,�, e)

then one can read off the following data from the signature:

nΓ = 1, εΓ = 1, χΓ = δn(1, 3, 4, 6), tΓ = 3, KΓ = {5}, kΓ = 1, aΓ = 8

so
ΛΓ(σ) = δn(1, 3, 4, 6) (V (8, 9)− δn(5)V (9, 9))

Proof We may express

V (a, a+ b) =
b∑

u=0

(−1)u
(
b

u

)
V (a+ u, a+ u) (15.5)

from the binomial theorem, given the definition V (a, b) = (q − 1)aq(d+1)s−b.
From the definition we have

ΛΓ(a, σ) = GΓ(a, σ)−
∑
σ(1)

GΓ(a, σ(1)) + . . .+ (−1)i
∑
σ(i)

GΓ(a, σ(i)) + . . . ,
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where the sums run over σ(i) ⊆ σ obtained from σ by replacing exactly i occurences
of � by ∗. We will apply Proposition 21 to evaluate these terms, then simplify.

If the sequence e� appears within σ, then we call signature Γ-non-strict , as any
corresponding short pattern T with σ ⊆ σT is non-strict, and by definition GΓ(T, σ) =
0. Thus the alternating sum for ΛΓ will only contain non-zero contributions from
subsignatures when all such �’s occurring as part of a e� string in σ have been
removed (i.e. changed to an ∗). Upon doing this, the signature will no longer possess
any subwords of the form e�, and we may again apply the above formula for GΓ to
these subsignatures. This is reflected in the definition of aΓ and in the statement of
the Theorem.

We first assume that σ0 6= � and that e� does not occur within σ. Then

GΓ(a, σ) = χΓV (aΓ, aΓ + dΓ) = χΓ

dΓ∑
u=0

(−1)u
(
dΓ

u

)
V (aΓ + u)

= χΓ

dΓ∑
u=0

(−1)uV (aΓ + u)

kΓ∑
l=0

∑
{i1,...,il}:σij=�

(
kΓ

u− l

)
δn(i1, . . . , il)

= χΓ

kΓ∑
l=0

∑
{i1,...,il}:σij=�

δn(i1, . . . , il)

dΓ∑
u=l

(−1)u
(

kΓ

u− l

)
V (aΓ + u)

where we have used Lemmas 21 and 10, resp., in the first two steps, and in the last
step have simply interchanged the order of summation.

By similar calculation (still assuming that σ0 6= � for simplicity of exposition)
we have

∑
σ(m)⊆σ

GΓ(a, σ(m)) = χΓ

∑
{i1,...,im}:σij=�

δn(i1, . . . , im)

kΓ−m∑
l=0

∑
{i′1,...,i′l}:σi′j

6=σij

δn(i1, . . . , il)

×
dΓ−2m∑
u=l

(−1)u
(
kΓ −m
u− l

)
V (aΓ + 2m+ u)

where we can write the upper bound on the sum over u as an absolute constant,
since either the divisibility conditions are satisfied and the upper bound (equal to
dΓ(σ(m))) is indeed dΓ(σ) − 2m or else the term is 0. Simplifying by combining the
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two sums with divisibility conditions, we have∑
σ(m)⊆σ

GΓ(a, σ(m)) = χΓ

kΓ−m∑
l=0

∑
{i1,...,im+l}:σij=�

(
m+ l

m

)
δn(i1, . . . , im+l)

(−1)l
dΓ−2m−l∑
v=0

(−1)v
(
kΓ −m

v

)
V (aΓ + 2m+ l + v)

Hence

ΛΓ(a, σ) = χΓ

kΓ∑
m=0

(−1)m
kΓ−m∑
l=0

∑
{i1,...,im+l}:σij=�

(
m+ l

m

)
δn(i1, . . . , im+l)

(−1)l
dΓ−2m−l∑
v=0

(−1)v
(
kΓ −m

v

)
V (aΓ + 2m+ l + v)

= χΓ

kΓ∑
m=0

kΓ∑
x=m

∑
{i1,...,ix}:σij=�

(
x

m

)
δn(i1, . . . , ix)(−1)x

dΓ−x−m∑
v=0

(−1)v
(
kΓ −m

v

)
V (aΓ +m+ x+ v)

= χΓ

kΓ∑
x=0

∑
{i1,...,ix}:σij=�

δn(i1, . . . , ix)(−1)x

x∑
m=0

(
x

m

) dΓ−x−m∑
v=0

(−1)v
(
kΓ −m

v

)
V (aΓ +m+ x+ v) (15.6)

where in the first step we changed the sum over l to a sum over x = m + l and
interchanged the order of summation in the second step. Now let w = m + v, so
(15.6) equals

x∑
m=0

(−1)m
dΓ−x∑
w=m

(−1)w
(
x

m

)(
kΓ −m
w −m

)
V (aΓ + x+ w) =

dΓ−x∑
w=0

(−1)wV (aΓ + x+ w)
w∑

m=0

(−1)m
(
x

m

)(
kΓ −m
w −m

)
(15.7)

But
w∑

m=0

(−1)m
(
x

m

)(
kΓ −m
w −m

)
=

(
kΓ − x
w

)
(15.8)



105

so combining (15.6) and (15.7) and applying (15.8)

ΛΓ(a, σ) =

χΓ

kΓ∑
m=0

(−1)m
∑

{i1,...,im+l}:σij=�

δn(i1, · · · , ix)(−1)x
dΓ−x∑
w=0

(−1)w
(
kΓ − x
w

)
V (aΓ + x+ w)

The cases where σ0 = � or where e� appears in the signature follow by a straight-
forward generalization. �

We turn now to the evaluation of Λ∆(a′, σ), where σ is unchanged and

a′ =

{
β1 β2 · · · βd s

α1 α2 · · · αd

}
.

Let

ε∆(σ) = ε∆ =

{
1 if σd = �,
0 otherwise,

K∆ = {0 < i 6 d | σi−1 = �, σi 6= e} , k∆(σ) = k∆ = |K∆| ,
N∆ = {0 < i 6 d | σi−1 = �, σi = e} , n∆(σ) = n∆ = |N∆| ,
C∆ = {1 6 i 6 d |σi, σi+1, · · · , σd not all e and either σi−1 = ∗ or i ∈ N∆},

χ∆(a, σ) = χ∆ =
∏

i∈C∆(σ)

δn(i), t∆ = |{0 6 i < d | σi = ηi}|

a∆(σ) = a∆ = 2(d− (t∆ − n∆)) +


−1 if σd = e
0 if σd = �
1 if σd = ∗

+

{
1 if σ0 = e
0 if σ0 6= e

}
.

We give δn(i1, · · · , in) the same meaning as before: it is δn(i1, · · · , ik; a). But since the
top row of a′ is in terms of the β’s, it is worth noting that it can also be described
as 1 if n divides βi1 , · · · , βik and 0 otherwise. Indeed, n|s so n|αi if and only if
n|βi = s− αi.

Theorem 12 With notation as above we have

Λ∆(a′, σ) =

(−1)n∆+ε∆χ∆

k∆∑
x=0

∑
Σ ⊆ K∆

|Σ| = x

δn(Σ)(−1)xV (a∆ + x, a∆ + k∆).

where (as defined above) the inner sums range over subsets of K∆.
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Proof We can reuse our previous work by noting that

Λ∆(a′, σ) = ΛΓ(ã, σ̃),

where

ã =

{
s βd βd−1 · · · β1

αd αd−1 · · · α1

}
, σ̃ = σdσd−1 · · ·σ0.

Roughly speaking we can just take the mirror image of our previous formula. But
there is one point of caution: in going from a to ã we reflected σ in the range 0 to d,
while we reflected α in the range 1 to d (and changed it to β, which has no effect on
δ). This means the C∆(σ), if it is to be the set of locations where the congruences are
taken in evaluating δ, is not the mirror image of CΓ(ã) in the range 0 to d, but the
shift of that mirror image to the right by 1, which makes C∆(σ), like CΓ(σ), a subset
of the range from 1 to d. There are corresponding adjustments in the definitions of
K∆ and N∆. �

Let AΓ(σ) denote the set of Γ-admissible sets for σ, and we let A∆(σ) denote
the set of ∆-admissible sets. Let Π be an f -packet (as defined in Chapter 5 before
Statement F). By Theorems 11 and 12 we may reformulate Statement F in the
following way.

Statement G. With notation as in Chapter 15, we have∑
σ

(−1)nΓ(σ)+εΓ(σ)
∑

0 6 x 6 kΓ(σ)
Σ ∈ AΓ(σ)

|Σ− CΓ(σ)| = x

(−1)xV (aΓ + x, aΓ + kΓ) δn(Σ, a) =

∑
σ

(−1)n∆(σ)+ε∆(σ)
∑

0 6 x 6 kΓ(σ)
Σ ∈ AΓ(σ)

|Σ− CΓ(σ)| = x

(−1)xV (a∆ + x, a∆ + k∆) δn(Σ, a) (15.9)

The outer sum is over f -subsignatures σ of η, since in (5.23) each such signature
appears exactly once on each side. We recall that the packet Π in Statement F
intersects each open f -facet Sσ in a unique element a, and so a is determined by
σ. We have restored a to the notation δn(Σ; a) from which it was suppressed in
Theorems 11 and 12, because the dependence of these terms on a – or, equivalently,
on σ – will now become our most important issue.



Chapter 16

Concurrence

This chapter contains purely combinatorial results that are needed for the proof.
The motivation of these results comes from the appearance of divisibility conditions
through the factor δn(Σ; a) defined in (15.2) that appears in Theorems 11 and 12.
We refer to the discussion of Statement G in Chapter 5 for the context of the results
of this Chapter.

Let 0 6 f 6 d. In Chapter 5 we defined bijections φσ,τ : Sσ −→ Sτ between the
open f -facets, and a related equivalence relation, whose classes we call f -packets.
According to Statement F, the sum of ΛΓ(a, σ) over an f -packet is equal to the cor-
responding sum of Λ∆(a′, σ). Moreover in Theorems 11 and 12, we have rewritten
ΛΓ and Λ∆ as sums over ordered subsets of KΓ and K∆. In order to prove State-
ment F, we will proceed by identifying terms in the resulting double sum that can
be matched, and that is the aim of the results of this chapter.

Definition 1 (Concurrence) Let σ and τ be subsignatures of η that have the same
number of ∗’s. Fix two subsets Σ = {j1, · · · , jl} and Σ′ = {j′1, . . . , j′l} of {1, 2, · · · , d}
of equal cardinality, and arranged in ascending order:

0 6 j1 < j2 < · · · < jl 6 d, 0 6 j′1 < j′2 < · · · < j′l 6 d.

We say that the pairs (σ,Σ) and (τ,Σ′) concur if the following conditions are satisfied.
We require that for 1 6 m 6 l the two sets

{t | jm 6 t 6 d, σt = ∗}, {t | j′m 6 t 6 d, τt = ∗} (16.1)

have the same cardinality, and that ηi = e for

min(jm, j
′
m) 6 i < max(jm, j

′
m). (16.2)
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Concurrence is an equivalence relation.

Example 1 Let η = (η0, η1, . . . , η5) = ( e,�, e, e,�,�). The pairs

((∗,�, ∗, e, ∗,�), {2, 4, 5}); (( e, ∗, ∗, ∗,�,�), {2, 3, 5})

concur. However

((∗,�, ∗, e, ∗,�), {2, 4, 5}); (( e, ∗, ∗, ∗,�,�), {2, 4, 5})

do not, as the number of ∗’s to the right of σ4, τ4 differ.

Proposition 22 Suppose that the pairs (σ,Σ) and (τ,Σ′) concur. Then if φσ,τ (a) =
b, where

a =

{
s α1 · · · αd

β1 · · · βd

}
, b =

{
s µ1 · · · µd

ν1 · · · νd

}
,

we have αjm = µj′m (1 6 m 6 l).

This implies that
δn(Σ; a) = δn(Σ′; b),

which can be used to compare the contributions of these ordered subsets to ΛΓ(a, σ)
and Λ∆(a′, σ) with the corresponding contributions to ΛΓ(b, τ) and Λ∆(b′, τ) in the
formulas of Theorems 11 and 12.

Proof It is sufficient to check this when a is a vertex of Sσ. Indeed, both αjm and
µj′m are affine-linear functions of α1, · · · , αd, so if they are the same when a = ak is
a vertex, they will be the same for convex combinations of the vertices, that is, for
all elements of Sσ. Because ak is a vertex of Sσ, σk = ∗; if σk is the r-th ∗ in σ,
then by definition φσ,τ (a) = al where τl is the r-th ∗ in τ . This is a consequence of
the definition of φσ,τ . Now our assumption on the cardinality of the two sets (16.1)
implies that k 6 jm if and only if l 6 j′m.

Now we prove that αjm = µj′m . There are now two cases, depending on whether
jm 6 k (and so j′m 6 l) or not. First suppose that jm 6 k and j′m 6 l. Then
we have αi − αi+1 = c′i for all i except k and µi = µi+1 = c′i for all i except l,
and α0 = s = µ0. This means that αi = µi when i 6 min(k, l), a fortiori when
i 6 min(jm, j

′
m). Suppose for definiteness that jm 6 j′m, so min(jm, j

′
m) = jm. Thus

we have proved that αjm = µjm . Since by hypothesis ηjm = ηjm+1 = · · · = ηj′m−1 = e
we also have µjm = µjm+1 = · · ·µj′m and herefore αjm = µj′m . The case where jm > j′m
is similar, and the case where jm 6 k and j′m 6 l is settled.
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Next suppose that jm > k and so j′m > l. Then αi − αi+1 = c′i for all i except
k and µi = µi+1 = c′i for all i except l, and αd+1 = 0 = µd+1, we get αi = µi for
i > max(k, l), a fortiori for i > max(jm, j

′
m). Suppose for definiteness that jm 6 j′m,

so that max(jm, j
′
m) = j′m. We have prove that αj′m = µj′m . Our hypothesis that

ηjm = ηjm+1 = · · · = ηj′m−1 = e implies that αjm = αjm+1 = · · ·αj′m , and so we get
αjm = µj′m . The case jm > j′m is again similar. �

We now introduce certain operations on signatures that give rise to concurrences.

Definition 2 (Γ- and ∆-swaps) Let σ and τ be subsignatures of η. We say that
τ is obtained from σ by a Γ-swap at i− 1, i if

σj = τj for all j 6= i− 1, i, σi−1 = ∗, σi = �, τi−1 = e, τi = ∗,

and by a ∆-swap at i− 1, i if

σj = τj for all j 6= i− 1, i, σi−1 = �, σi = ∗, τi−1 = ∗, τi = e.
Definition 3 (Γ- and ∆-admissibility) We say that a subset Σ = {j1, j2, · · · , jm}
of {1, 2, 3, · · · , d} is Γ-admissible for σ if

CΓ(σ) ⊂ Σ ⊂ CΓ(σ) ∪ KΓ(σ),

and similarly it is ∆-admissible if C∆(σ) ⊂ Σ ⊂ C∆(σ) ∪ K∆(σ).

Proposition 23 (Swapped data concur) (a) Suppose τ is obtained from a Γ-
swap at i − 1, i. Assume that i 6∈ Σ. Let 0 < j1 < j2 < · · · < jl 6 d be a sequence
such that jm 6= i for all m. Let

j′m =

{
jm if jm 6= i− 1;
i if jm = i− 1.

Then (σ,Σ) and (τ,Σ′) concur, where Σ = {j1, · · · , jm} and Σ′ = {j′1, · · · , j′m}.
Moreover Σ is Γ-admissible for σ if and only if Σ′ is Γ-admissible for τ .

(b) Suppose that τ is obtained from a ∆-swap at i− 1, i. Assume that i 6∈ Σ. Let
0 < j1 < j2 < · · · < jl 6 d be a sequence such that jm 6= i for all m. Let

j′m =

{
jm if jm 6= i+ 1;
i if jm = i+ 1.

Then (σ,Σ) and (τ,Σ′) concur, where Σ = {j1, · · · , jm} and Σ′ = {j′1, · · · , j′m}.
Moreover Σ is ∆-admissible for σ if and only if Σ′ is ∆-admissible for τ .
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Proof This is straightforward to check from the definitions of concurrence and
admissibility. One point merits further discussion. Suppose we are in case (a) for
definiteness. If Σ is Γ-admissible, then according to the definition (15.1), i − 1 ∈
CΓ(σ) ⊆ Σ if σ0, . . . , σi−2 are not all e. In this case, i ∈ CΓ(τ) ⊆ Σ′. If instead,
σ0 = · · · = σi−2 = e, then i−1 6∈ Σ but then under the Γ-swap, τ0 = · · · = τi−1 = e
and so i 6∈ Σ′. �

If the hypotheses of Proposition 23 are satisfied we say that (τ,Σ′) is obtained
from (σ,Σ) by a Γ-swap (or ∆-swap).

Let us define an equivalence relation on the set of pairs (σ,Σ), where σ is a
subsignature of η and Σ is a Γ-admissible subset of {1, 2, · · · , d}.

Definition 4 (Γ- and ∆-packs) We write (σ,Σ) ∼Γ (τ,Σ) if (τ,Σ) can be obtained
by a sequence of Γ-swaps or inverse Γ-swaps. We call an equivalence class a Γ-pack;
and ∆-packs are defined similarly.

Lemma 11 Each Γ-pack or ∆-pack contains a unique element with maximal number
of e’s. Within the pack, this unique element (σ,Σ) is characterized as follows.

Γ-pack: Whenever ηi−1ηi = e� and σi−1σi = ∗� we have i ∈ Σ,

∆-pack: Whenever ηi−1ηi = � e and σi−1σi = �∗ we have i ∈ Σ.

Proof If ηi−1ηi = e� and σi−1σi = ∗� then a Γ-swap is possible at i− 1, i if and
only if i 6∈ Σ. Indeed, the fact that Σ is Γ-admissible for σ means that i − 1 ∈ Σ.
This assertion therefore follows from Proposition 23.

Clearly the element maximizing the number of e’s is obtained by making all
possible swaps. The statements are now clear for the Γ-pack, and for the ∆ pack
they are similar. �

Definition 5 (Origins) We call the unique element with the greatest number ofe’s the origin of the pack. We say that (σ,Σ) is a Γ-origin if it is the origin of its
Γ-pack, and ∆-origins are defined the same way.

As we have explained, our goal is to exhibit a bijection ψ between the Γ-packs
and the ∆-packs. It will be sufficient to exhibit a bijection between their origins.
Let (σ,Σ) be the origin of a Γ-pack; we will denote ψ(σ,Σ) = (σ′,Σ′). We can
define σ′ immediately. To obtain σ′, we break η (which involves only �’s and e’s)
into maximal strings of the form e · · · e and � · · ·�, and we prescribe σ′ on these
ranges.
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• ( e’s in σ reflect across the midpoint of the string of e’s in η) Let
ηh, . . . , ηk be a maximal consecutive string of e’s in η (so ηh−1, ηk+1 6= e). If
h 6 i 6 k then σ′i = σh+k−i.

• (Distinguished �’s in σ slide one index leftward) Let σh . . . σk be a
maximal consecutive string of �’s in σ (so σh−1, σk+1 6= �). Let h 6 i 6 k be
the smallest element of Σ in this range, or if none exists, let i = k+ 1. Then if
ηh−1 = � and σh−1 = ∗ then ψ(σ) = σ′ has σ′h−1 = · · ·σ′i−2 = �, σ′i−1 = ∗, and
σ′i = · · · = σ′k = �. If either ηh−1 = e or σh−1 6= ∗, then ψ leaves the string of
�’s in σ unchanged.

The last rule merits further explanation. Since σ is a subsignature of η, the maximal
chain σh · · · σk of boxes in σ is contained in a (usually longer) maximal chain of boxes
ηlηl+1 · · · ηm within η; thus l 6 h and m > k and the range from l to m is thus broken
up into smaller ranges of which σh . . . σk = � · · ·� is one. We assume that σh−1 = ∗
and that ηh−1 = �. In this case we will modify σh · · ·σk. But if the condition that
σh−1 = ∗ and that ηh−1 = � is not met, we leave it unchanged – and the condition
will be met if and only if h > l. Then with i as in the second rule above, we make
the following shift:{

σh−1 σh · · · σi−1 · · · σk
∗ � · · · � · · · �

}
−→

{
σ′h−1 σ′h · · · σ′i−1 · · · σ′k
� � · · · ∗ · · · �

}
. (16.3)

It is useful to divide up the nodal signature η into blocks of consecutive �’s alternat-
ing with blocks of consecutive e’s (where a block might consist of just one of these
characters), e.g.

η = (η0, η1, . . . , η7) = (�, e, e, �,�,�︸ ︷︷ ︸
block of �’s

, e, e, ).
Formally, a �-block is a maximal consecutive set B = {h, h + 1, · · · , k} such that
ηi are all �’s, and e-blocks are defined similarly. The map ψ can be understood
according to what it does to the indices of σ contained within each of these blocks
(and no two indices from different blocks interact under ψ). In particular, the number
of ∗’s in σ contained within a block of η is preserved under ψ. We use this fact
repeatedly in the proofs, as it often implies that it is enough to work locally within
a block of �’s or e’s.

We have not yet described what ψ does to Σ. The next result will make this
possible. Define

Pσ(u) = |{j > u | σj = ∗}| ,
Qσ(u) = |{j > u | σj = �}| .
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If u, v ∈ {1, 2, · · · , d} then we say that the pair (u, v) is equalized for σ and σ′ if

Pσ(u) = Pσ′(v), Qσ(u) = Qσ′(v). (16.4)

Lemma 12 Let σ, σ′ be signatures with ψ(σ′) = σ.
(i) If 1 6 u 6 d and ηu 6= ηu−1 then (u, u) is equalized.
(ii) Suppose that B is a e-block and that u ∈ B such that σu = ∗. Assume that

σj 6= e for some j < u. Then there exists 0 < v ∈ B such that σ′v = ∗ and (u, v) is
equalized.

(iii) Suppose that B is a e-block and that v ∈ B such that σ′v = ∗ but σ′v−1 6= e.
Then there exists 0 < u ∈ B such that (u, v) is equalized, σu = ∗ and σj 6= e for
some j < u.

(iv) Given i as in the second rule for ψ on signatures, the pair (i, i) is equalized.

The condition in (ii) and (iii) that σu = ∗ and σj 6= e for some j < u means that
u ∈ CΓ(σ).

Proof Part (i) follows from the fact that u is at the left edge of a block when
ηu 6= ηu−1. Indeed, if B is a �- or e-block then σ and σ′ have the same number
of ∗’s and �’s in B. Since u is at the left edge of a block, then the accumulated
numbers of ∗ and � in that block and those to the right are the same for σ and σ′

and so (u, u) is equalized.
To prove (ii), observe that the number of ∗ in the e-block B = {h, h+ 1, · · · , k}

are the same, and (k + 1, k + 1) are equalized (or else k = d), so counting from the
right, if σu is the r-th ∗ within the block, we can take σ′v to be the r-th ∗ for σ′ in
the block, and we have equalization. The hypothesis that σu 6= e for some j < u
guarantees that either B is not the first block, or that σu is not the leftmost ∗ in the
block, so v > 0.

To prove (iii), we argue the same way, and the only thing to be checked is that
j > 0 and that σj 6= e for some j < u. This follows from the assumption that
σ′v−1 6= e, since if σ′v−1 = � then B is not the first block, while if σ′v−1 = ∗ then σ′v
is not the first ∗ in B for σ′, hence also not the first ∗ in B for σ.

For (iv), the �-block containing i can be broken up into segments of the form
∗� · · ·� as in the left-hand side of (16.3) and possibly an initial string consisting
entirely of �’s. According to the second rule for ψ on signatures, the image of each
such segment under ψ also contains exactly one ∗ (excluding the possible initial string
of �’s without ∗’s) and the same number of �’s. As i occurs to the right of both the
∗ in σ and σ′ in the respective segments as depicted in (16.3), it is thus clear that
(i, i) is equalized. �
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Proposition 24 (Concurrence of origins) Let (σ,Σ) be the origin of a Γ-pack,
and let σ′ = ψ(σ). Given any j ∈ Σ we can associate a corresponding index j′ ∈ Σ′

as follows. There exists a unique 1 6 t = t(j) 6 d such that (j, t) are equalized,
and such that σ′t 6= e. Define j′ = ψ(j) so that j′ − 1 is the largest index < t(j)
such that σ′j′−1 6= e. Then the Σ′ = {ψ(j)|j ∈ Σ} is ∆-admissible for σ′, and in
fact (σ′,Σ′) is a ∆-origin. Moreover the pairs (σ,Σ′) and (σ′,Σ′) concur. The map
ψ : (σ,Σ) 7−→ (σ′,Σ′) is a bijection from the set of Γ-origins to the set of ∆-origins.

Before proving this, we give several examples.

1. If η = ( e, e, e, e, e, e,�),

ψ(( e, e, ∗, e, ∗, ∗, ∗), {4, 5, 6}) 7→ ((∗, ∗, e, ∗, e, e, ∗), {1, 2, 4})
Indeed, ψ reflects all entries in the initial block of 6 e’s in η. In the block
consisting of a single � at the end of η, σ contains no �’s and so σ′ agrees with
σ on this block. The reader will check that that t(6) = 4, t(5) = 2, and t(4) = 1.
Thus Σ′ is as defined in the Proposition. To check that Σ is Γ-admissible for σ,
note that CΓ(σ) = {4, 5, 6} and KΓ(σ) = ∅ so indeed Σ is to be of form CΓ(σ)∪Φ
where Φ is a (possibly empty) subset of KΓ(σ). Moreover, we wanted to ensure
that Σ′ is of the form Σ′ = C∆(σ′) ∪ Φ′ where Φ′ ⊆ K∆(σ′). Referring back to
the definitions of these sets in (15.9) and (15.9), we see that C∆(σ′) = {1, 2, 4}
so we satisfy the necessary condition. (For the record, K∆(σ′) = ∅ in this case.)
Finally, no Γ-swaps or ∆-swaps are possible so (σ,Σ) is a Γ-origin and (σ′,Σ′) is
a ∆-origin.

2. If η = (�,�, e, e,�,�, e,�, e),

ψ((�, ∗, e, e,�,�, ∗, ∗, e), {1, 4, 5, 6, 7}) 7→

((�, ∗, e, e,�,�, ∗, ∗, e), {1, 2, 5, 6, 7})
Note that there is no change in the signature from σ to σ′ as no�’s can move left in
the strings of�’s contained in η, and reflection in strings of e’s leaves these strings
unchanged. The index sets are more interesting. From the definitions, we compute
that CΓ(σ) = {1, 4, 6, 7}, KΓ(σ) = {5}, C∆(σ′) = {2, 7}, and K∆(σ′) = {1, 5, 6}.
This illustrates that these sets may have very different cardinalities. We see that
the sets Σ and Σ′ are admissible.

3. If η = ( e,�, e,�,�,�,�, e),

ψ(( e,�, e, ∗,�,�,�, ∗), {3, 6, 7}) 7→ (( e,�, e,�,�, ∗,�, ∗), {2, 6, 7})



114 CHAPTER 16. CONCURRENCE

Here, the blocks of circles are all of length 1, so ∗’s and e’s in σ within these
blocks do not change under ψ in σ′. We have σ2 = �, but 2 ∈ NΓ(σ) ⊆ Σ
so this � remains fixed in σ′. In the block of 4 �’s, we see σ contains 3 �’s.
The smallest index from this string which is in Σ is 6, corresponding to the last
�. So the first two �’s move left, and the third remains fixed. Again, from the
definitions, we compute that CΓ(σ) = {3, 7}, KΓ(σ) = {4, 5, 6}, C∆(σ′) = {2, 6},
and K∆(σ′) = {4, 5, 7}, so Σ and Σ′ are admissible.

Proof The first thing to check is that if j ∈ Σ we may find v such that (j, v) are
equalized. (If j 6∈ Σ this may not be true.) There may be several possible v’s, if
σ′ has e’s in the vicinity, and t will be the smallest. So the existence of v is all
that needs to be proved – the condition that σ′t 6= e has the effect of selecting the
smallest, so that t will be uniquely determined.

If B is a e-block, then the existence of v is guaranteed by Lemma 12. If B is a
�-block, then B can be broken into segments in which σ and σ′ are as follows. There
is an initial segment (possibly empty) of �’s that is common to both σ and σ′, and
the remaining segments look like this:{

σl σl+1 σl+1 · · · σm−1 σm
∗ � � · · · � �

}
ψ−→
{
σ′l σ′l+1 · · · σ′m−2 σ′m−1 σ′m
� � · · · � � ∗

}
.

We claim that the only possible element of Σ in {l, l + 1, · · · ,m} is l. The reason
is that if there was an element i of Σ in the range {l + 1, · · · ,m} the prescription
for σ′ would move the ∗ to i − 1, and this is not the case. Now (m + 1,m + 1) are
equalized (or m = d) and it follows that (l, l) are equalized. So we have the case
j = l, and then we can take v = l also. It is easy to see that if j lies in the initial
segment (if nonempty) that consists entirely of �’s that we may take u = j in this
case also.

This proves that t satisfying (16.4) exists.
We will make use of the following observation.

If ηl′−1ηl′ = e� and σ′j′−1 = ∗ for some j′ 6 l′ then l′ ∈ Σ and t(l′) = l′. (16.5)

To prove this, note that if σl′ = ∗ or if σl′ = � and σl′−1 = e then l′ ∈ CΓ(σ) ⊆ Σ.
The fact that σi 6= e for some i < l′, needed here for the definition of CΓ(σ), may
be deduced from the fact that σ′j′−1 6= e since it means that the e-block containing
j′ either is not the first block, or else contains some ∗’s for σ′ and hence also for σ.
Since ηl′−1ηl′ = e� this leaves only the case σl′−1σl′ = ∗�, and in this case l′ ∈ Σ
follows from the fact that σ is a Γ-origin by Lemma 13. Now (l′, l′) is equalized by
Lemma 12 (i), and so t(l′) = l′. This proves (16.5).
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Now we need to check that Σ′ = {j′1, j′2, · · · } is ∆-admissible, that is, C∆(σ′) ⊆
Σ′ ⊆ C∆(σ′) ∪ K∆(σ′). That Σ′ ⊆ C∆(σ′) ∪ K∆(σ′) is almost immediate, as the set
C∆(σ′) ∪ K∆(σ′) contains every index j′ with σ′j′−1 = � or ∗, so long as σ′i′ 6= e for
some i′ > j′. Since each element ψ(j) = j′ ∈ Σ′ with j ∈ Σ has σ′j′−1 = � or ∗, we
need only check that σ′i′ 6= e for some i′ > j′. This is clear since j ∈ CΓ(σ) ∪ KΓ(σ)
so Pσ(j) or Qσ(j) is positive, and hence Pσ′(t) or Qσ′(t) is positive, and j′ 6 t.

We next show that Σ′ contains C∆(σ′). Thus to each j′ ∈ C∆(σ′) we must find
j ∈ Σ such that ψ(j) = j′.

First assume that σ′j′ = e. By definition of C∆(σ′) we have σ′j′−1 6= e. Also by
definition of C∆(σ′) there will be some l′ > j′ such that σ′l′ 6= e. Let l′ be the smallest
such value. Suppose that ηl′ = e. Then σ′l′ = ∗. Since l′ is the smallest value > j′

such that σ′l′ 6= e we have σ′i = e and hence η′i = e for j′ 6 i < l′ and so the entire
range j′ 6 i 6 l′ is contained within the same e-block B. By Lemma 12 (iii) there
exists j ∈ B such that σj = ∗ and j, j′ are equalized, and moreover, σi 6= e for some
i < j. Thus j ∈ CΓ(σ) so j ∈ Σ and t(j) = j′, so ψ(j) = j′ (because σ′j′−1 6= e).
Thus we may assume that ηl′ = �. We note that ηl′−1 = e since σ′l′−1 = e. Thus
l′ ∈ Σ′ and t(l′) = l′ by (16.5). Since σ′j′ = σ′j′−1 = . . . = σ′l′−1 = e but σ′j′−1 6= e
we have ψ(l′) = j′. This finishes the case σ′j′ = e.

Next suppose that σ′j′ 6= e. Then σ′j′−1 = ∗ since j′ ∈ C∆(σ′). If ηj′ = e then
σ′j′ must be ∗. The assumption that j′ ∈ C∆(σ′) then implies that σ′j′−1 = ∗ also and
so Lemma 12 (iii) implies that t(j) = j′ for some j in the same e-block as j′, with
j ∈ CΓ(σ) ⊆ Σ. Then since σ′j′−1 6= e we have ψ(j) = j′. Thus we may assume
that ηj′ = �. In this case we will show that j′ ∈ Σ and ψ(j′) = j′ If ηj′−1ηj′ = ��
then since σ′j′−1 = ∗ it follows from the description of σ′ in �-blocks (see (16.3))
that j′ ∈ Σ, and by Lemma 12 (iii), (j′, j′) is equalized, so t(j′) = j′ and so since
σ′j′−1 = ∗ it follows that ψ(j′) = j′. On the other hand if ηj′−1ηj′ = e� then we still
have j′ ∈ Σ by (16.5), and since σ′j′−1 = ∗ we have ψ(j′) = j′. This completes the
proof that Σ′ contains C∆(σ′).

Now we know that Σ′ is ∆-admissible for σ′. Next, we show that (σ′,Σ′) is a
∆-origin. We must show that if ηj′−1ηj′ = � e and σ′j′−1σ

′
j′ = �∗ then j′ ∈ Σ′. It

follows from Lemma 12 that there exists j in the same e-block as j′ such that σj = ∗
and j ∈ CΓ(σ), and (j, j′) are equalized. Then t(j) = j′ and since σj′−1 6= e we have
ψ(j) = j′. Thus j′ ∈ Σ′.

Next we observe that (σ,Σ) and (σ′,Σ′) concur. To see this, observe first that if
j ∈ Σ and j′ = ψ(j) ∈ Σ′, then (j, j′) is equalized. This implies that the two sets
(16.1) have the same cardinality (with τ = σ′). Moreover, if j is in a e-block, then
j′ is in the same block, while if j is in a �-block then j′ = j with the exception that
if j is the left-most element of a �-block, then j′ can lie in the e-block to the left.
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These considerations show that ηi = e when (16.2) is satisfied. Therefore σ and σ′

concur.
We see that ψ maps Γ-origins to ∆-origins. To establish that it is a bijection

between Γ-origins and ∆-origins, we first note show the map ψ from Γ-origins to
∆-origins is injective. Indeed, we can reconstruct σ and Σ from σ′ and Σ′ as follows.
On e-blocks, the reconstruction is straightforward – the signature is just reversed
on each ∆-block, and the elements of Σ within a ∆-block are just the values where
σj = ∗, except that if σi = e for all i < j then j is omitted from σ. On �-blocks,
the reconstruction of Σ must preceed the reconstruction of σ. It follows from the
preceding discussion that on the intersection of Σ with a �-block, ψ is the identity
map except that if the very first element of the block is in Σ, ψ can move it into the
preceding e-block. Thus if j ∈ {1, 2, · · · , d} and ηj = � we can tell if j is in Σ as
follows. If j not the first element on its block then j ∈ Σ if and only if j ∈ Σ′. If j
is the first element, then j ∈ Σ if and only if j ∈ Σ′ or (from the definition of CΓ)
if σj−1 = e – and we recall that the signature is already known on e-blocks. Once
Σ is known on �-blocks, σ can be reconstructed by reversing the process that gave
us σ′.

Since the map ψ is injective, we need only check that the number of ∆-origins
equals the number of Γ-origins. We extend ψ to a larger set by including η as part
of the data: let ΩΓ be the set of all triples (η, σ,Σ) such that η is a nodal signature,
σ a subsignature, and Σ a Γ-origin for σ; and similarly we define Ω∆. Then ψ gives
an injection ΩΓ −→ Ω∆. It will follow that ψ is a bijection if we show that the
two sets have the same cardinality. A naive bijection between the two sets can be
exhibited as follows. Let (η, σ,Σ) be given. Define (η̃, σ̃, Σ̃) by η̃i = ηd−i, σ̃i = σd−i,
and Σ̃ = {d+ 1− j|j ∈ Σ}. Note that η and σ are reversed in the range from 0 to d,
while Σ is reversed in the range from 1 to d. Then (σ̃, Σ̃) is a ∆-origin if and only if
(σ,Σ) is a Γ-origin, and so |ΩΓ| = |Ω∆|. �



Chapter 17

Proof of Statement G

In Chapter 15 we reduced the proof to Statement G, given at the end of that Chapter,
and we now have the tools to prove it.

Lemma 13 The cardinality of each Γ-pack or ∆-pack is a power of 2.

Proof In a Γ-swap ∗� is replaced by e∗ in the signature. Since both signatures
are subsignatures of η, this means that η has e� at this location. From this it is
clear that if a Γ-swap is possible at i − 1, i then no swap is possible at i − 2, i − 1
or i, i + 1, and so the swaps are independent. Thus the cardinality of the pack is a
power of 2. �

Given an origin (σ,Σ) for a Γ-equivalence class, define pΓ(σ,Σ) = k where 2k is
the cardinality of the Γ-pack to which the representative (σ,Σ) belongs. We may
similarly define p∆ for ∆-packs.

Proposition 25 Let (σ,Σ) be an origin for a Γ-equivalence class. Then pΓ(σ,Σ),
as defined above, can be given explicitly by

pΓ(σ,Σ) =
∣∣ {i ∈ {1, 2, · · · , d} | (σi−1, σi) = ( e, ∗), ηi = �}

∣∣. (17.1)

Proof Recall that elements of a Γ-pack differ by a series of Γ-swaps from (τ, T ) to
(σ,Σ), which change τi−1, τi = ∗,� to σi−1, σi = e, ∗ provided i 6∈ T . Hence pΓ(σ,Σ)
is clearly at most the number of indices satisfying the condition on the right-hand
side of (17.1).

Given an origin (σ,Σ), let τ ⊆ η be any subsignature possessing an (∗,�) at
(τi−1, τi) where σ has a ( e, ∗) at (σi−1, σi). Let T be the set of indices obtained from
Σ by replacing each such i ∈ Σ by i − 1 (and leaving all other indices unchanged).
We claim that (τ, T ) ∼Γ (σ,Σ). By our discussion above, it suffices to show that
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i 6∈ T . Indeed, by assumption, (σi, σi+1) 6= ( e, ∗) so i + 1 is not changed to i from
Σ to T according to our rule. Moreover, i ∈ Σ is sent to i − 1 ∈ T . Hence (17.1)
follows. �

Lemma 14 Let EΓ be a Γ-pack with origin (σ,Σ). Let Σ = CΓ(σ)∪Φ with Φ ⊆ KΓ(σ)
and let x = |Φ|. Then ∑

(σ,Σ)∈EΓ

(−1)ε V (aΓ(σ) + x, aΓ(σ) + kΓ(σ)) =

(−1)εV (aΓ(σ) + x+ pΓ(σ,Σ), aΓ(σ) + kΓ(σ) + pΓ(σ,Σ)),

where ε = ε(σ) is the number of e in σ and ε is the number of e in σ.

Proof It is easy to see that a Γ-swap does not change aΓ(σ), while it decreases
kΓ(σ) by 1. Thus repeatedly applying the identity

V (a, b)− V (a, b+ 1) = V (a+ 1, b+ 1)

gives this result. �

Lemma 15 Let E∆ be a ∆-pack with origin (σ,Σ). Let Σ = C∆(σ) ∪ Φ with Φ ⊆
KΓ(σ) and let x = |Φ|. Then∑

(σ,Σ)∈E∆

(−1)ε V (a∆(σ) + x, a∆(σ) + k∆(σ)) =

(−1)εV (a∆(σ) + x+ p∆(σ,Σ), a∆(σ) + k∆(σ) + p∆(σ,Σ)),

where ε = ε(σ) is the number of e in σ and ε is the number of e in σ.

Proof Similar to the proof of Lemma 14. �

Theorem 13 Let ψ be the bijection on equivalence classes given above, let (σ,Σ)
be a Γ-origin and let ψ(σ,Σ) = (σ′,Σ′) be the corresponding ∆-origin. Write Σ =
CΓ(σ) ∪ Φ with Φ ⊆ KΓ(σ) and similarly, Σ′ = C∆(σ′) ∪ Φ′ with Φ′ ⊆ K∆(σ′). Then

V (aΓ(σ) + |Φ|+ pΓ(σ,Σ), aΓ(σ) + kΓ(σ) + pΓ(σ,Σ)) =

V (a∆(σ′) + |Φ′|+ p∆(σ′,Σ′), a∆(σ′) + k∆(σ′) + p∆(σ′,Σ′)). (17.2)
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Proof First we will prove the equality of the second components

aΓ(σ) + kΓ(σ) + pΓ(σ,Σ) = a∆(σ′) + k∆(σ′) + p∆(σ′,Σ′). (17.3)

Consider the left-hand side of (17.3). The quantities kΓ(σ) and aΓ(σ) are defined
in Chapter 15 before Proposition 21, where the latter is further defined in terms of
nΓ(σ) and tΓ(σ). Hence, the left-hand side of (17.3) is given by

2(d− (tΓ − nΓ)) +


−1 σ0 = e
0 σ0 = �
1 σ0 = ∗

+

{
1 σd = e
0 σd 6= e

}
+
∣∣{i ∈ [1, d] | σi = �, σi−1 6= e} ∣∣+

∣∣ {i ∈ [1, d] | (σi−1, σi) = ( e, ∗), ηi = �}
∣∣,

where [a, b] denotes {x ∈ Z | a 6 x 6 b}. Now

2d− 2tΓ +


−1 σ0 = e
0 σ0 = �
1 σ0 = ∗

 = 2d+ 1− 2BC(σ) +

{
1 σ0 = �
0 σ0 6= �

}

where BC(σ) = |{i ∈ [0, d] | σi 6= ∗}| is the total number of boxes and circles in
σ. Also the quantity 2nΓ contributes a 2 for each i ∈ [1, d] with (σi−1, σi) = ( e,�).
We may regard this 2 as contributing 1 for each � preceded by a e and 1 for eache followed by a �. From this it follows that

2nΓ +
∣∣ {i ∈ [1, d] | σi = �, σi−1 6= e} ∣∣+

∣∣ {i ∈ [1, d] | (σi−1, σi) = ( e, ∗), ηi = �}
∣∣

=
∣∣{i ∈ [1, d] | σi = �

} ∣∣+
∣∣ {i ∈ [0, d− 1] | σi = e, ηi+1 = �}

∣∣.
Combining terms, we see that the left hand side of (17.3) is the sum of the two terms

2d+ 1− 2BC(σ) +
∣∣ {i ∈ [0, d] | σi = �}

∣∣ (17.4)

and ∣∣ {i ∈ [0, d− 1] | σi = e, ηi+1 = �}
∣∣+

{
1 σd = e
0 σd 6= e

}
. (17.5)

Similarly, the right hand side of (17.3) is the sum of the two terms

2d+ 1− 2BC(σ′) +
∣∣ {i ∈ [0, d] | σ′i = �}

∣∣ (17.6)

and ∣∣ {i ∈ [1, d] | σ′i = e, ηi−1 = �}
∣∣+

{
1 σ′0 = e
0 σ′0 6= e

}
. (17.7)
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Now, since the map ψ preserves the number of boxes and the number of circles in
the signature, we have

BC(σ) = BC(σ′)

and ∣∣ {i ∈ [0, d] | σi = �}
∣∣ =

∣∣ {i ∈ [0, d] | σ′i = �}
∣∣.

Hence the quantities (17.4) and (17.6) are equal. The quantity (17.5) counts the
number of i ∈ [0, d] such that σi = e, ηi+1 6= e (this includes the possibility that
i = d and ηi+1 is not defined). But ψ reflects the entries of σ lying over strings ofe’s in η. After doing so, each such i reflects to a e in σ′ that is preceeded by a �
(or is initial) in η. These are exactly the indices counted by (17.7). Hence they are
equal.

This completes the proof of (17.3). To finish the proof of the theorem, we must
show that

aΓ(σ) + |Φ|+ pΓ(σ,Σ) = a∆(σ′) + |Φ′|+ p∆(σ′,Σ′).

By the construction of the bijection ψ, we have

cΓ(σ) + |Φ| = c∆(σ′) + |Φ′|,

since these count the number of divisibility conditions, and this number is necessarily
constant when the bijection obtains. In view of (17.3), it thus suffices to establish

cΓ(σ) + kΓ(σ) = c∆(σ′) + k∆(σ′). (17.8)

The case ηi = σi = e for all 0 6 i 6 d is trivial and we exclude it henceforth.
The quantity cΓ(σ) + kΓ(σ) counts the number of i ∈ [1, d] such that σi = �

or σi = ∗ but σ0, . . . , σi−1 are not all e. We claim that (excluding the trivial case
above)

cΓ(σ) + kΓ(σ) =
∣∣ {i ∈ [0, d] | σi = � or σi = ∗}

∣∣− 1. (17.9)

To check this, there are two cases. First, suppose σ0 = � or σ0 = ∗. Then the index
0 is counted in the first term on the right hand side of (17.9) even though it is not
in the range 1 6 i 6 d, but this is accounted for by subtracting 1 there. The indices
i ∈ [1, d] with σi = � or σi = ∗ are counted on both sides. Hence (17.9) holds. The
other possibility is η0 = σ0 = ©. The index i = 0 is not counted in the first term
on the right hand side of (17.9). However, σ begins with a ©, and the first index
i0 such that σi0 6= © is counted in the first term on the right hand side of (17.9).
Subtracting 1 there makes up for the exclusion of the index i0 on the left hand side
as it corresponds to a � or ∗ preceeded by a nonempty initial string of ©’s. The
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remaining indices i > i0 such that σi = � or σi = ∗ are counted on both sides. Hence
(17.9) is also true in this case.

Similarly, we have (again excluding the case that all σ′i =©)

c∆(σ′) + k∆(σ′) = |{i ∈ [0, d] | σ′i = � or σ′i = ∗}| − 1.

But since the map ψ preserves the number of boxes and the number of stars in the
signature, we conclude that (17.8) holds, and the Theorem is proved. �
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126 NOTATION

Notation

F an algebraic number field 1
µn n-th roots of unity 1
S a finite set of places of F 1
oS ring of S integers 1
FS

∏
v∈S Fv 1

( , )S S-Hilbert (norm residue) symbol 1
Ψ auxiliary function in ZΨ 1
M vector space of auxiliary functions Ψ 2
ZΨ Weyl group multiple Dirichlet Series 2
H Coefficients of ZΨ 2(
c
d

)
power residue symbol 2

αi simple roots 2
p a fixed prime of oS 3
T Gelfand-Tsetlin pattern 3
kΓ, k∆ integer vectors of weight functions 4
HΓ, H∆ two particular definitions for H 4
Γ(T), ∆(T) decorated integer arrays 4
?>=<89:;4 , 7 decorated integers 5

ψ additive character of FS/oS 5
g(m, c) Gauss sum

∑
a mod c

(
a
c

)
ψ
(
am
c

)
5

g(a) g(pa−1, pa) 5
h(a) g(pa, pa) 5
q residue field cardinality 5
GΓ(T), G∆(T) products of Gauss sums 6
qi Schützenberger involution 7
ti reflection of (r + 1− i)-th row 7
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Λ Zr+1, the weight lattice 9
λ a weight, often dominant 9
Bλ crystal graph with highest weight λ 9
m(µ, λ) multiplicity of µ in highest weight module for λ 9
wt : Bλ → Λ weight function 9
αi simple roots 9
ei, fi Kashiwara operators 9
Sch : Bλ → Bλ Schützenberger involution 10
ψλ, φλ : Bλ → B−w0λ involutions 10
w0 long Weyl group element 10
rev mirror image array 11
φi, εi number of times fi or ei applies 13
Ω a reduced word 13

v

[
b1 · · · bN
Ω1 · · · ΩN

]
v′ path from v to v′ 14

vhigh highest weight vector 14
vlow lowest weight vector 14
BZLΩ(v) string vector of v with respect to long word Ω 14
ΩΓ the word (1, 2, 1, 3, 2, 1, · · · ) 14
ΩΓ the word (r, r − 1, r, r − 2, r − 1, r, · · · ) 14
GΓ(v), G∆(v) products of Gauss sums 20
sλ Schur polynomial 23
GT (λ), GTλ Gelfand-Tsetlin patterns with top row λ 23
σi simple reflections 32
t short Gelfand-Tsetlin pattern 34
t′ involute of t 34
S short pattern prototype 35
Γt, ∆t preaccordions 35
GΓ(t), G∆(t′) products of Gauss sums 37
E episode 38
a accordion 39
a′ involute accordion 40e,�, ast signature-runes 41
aσ a decorated accordion 42
GΓ(aσ), G∆(a′σ) products of Gauss sums 42
A, AΓ

s (c0, · · · , cd) Γ-resotope 42
A′ ∆-resotope (involute of A 42
ZΓ free abelian group on the decorated accordions 42
CPη(c0, · · · , cd) cut and paste simplex of Γ-accordions 45
sgn(τ) (−1)ε, ε = number of � 45
ΛΓ(a, σ) alternating sum of GΓ 45
Sσ open simplex 47
Sσ closed simplex 47
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φσ,τ : Sσ → Sτ a bijection 47
δn(Σ; a) mod n characteristic function 47
GΩ(v) product of Gauss sums 52
ωΓ (1, 2, 3, · · · , r − 1, r, r − 1, · · · , 3, 2, 1) 53
ω∆ (r, r − 1, r − 2, · · · , 3, 2, 1, 2, 3 · · · , r) 53
Θ substrate 59
Θ0,Θ1,Θ2 rows of substrate 59
ΘB Θ1 ∪Θ2 60
Ei consecutive episodes 60
φ : {1, 2, · · · , 2d+ 1} → ΘB Γ-indexing 64
γ1, · · · , γ2d+1 Γ-indexing 64
ψ : {1, 2, · · · , 2d+ 1} → ΘB ∆′-indexing 64
δ′1, · · · , δ′2d+1 ∆′-indexing 64
T,B,R, t, b types of panel 66
?1, ?2, ?3, ?4, ?5, ?6 see Table 9.1 67
γ̃i qγi , h(γi) or g(γi) 72
kE prescribed row sum for an episode 75
S type 75
LE , RE even values left and right of E 75
Si local type 78
E1, · · · , EN episodes of the cartoon 78
ŝ, ν̂i, µ̂i shifted values of s, νi, µi 80
L,R LE , RE 85
B(η) {i|ηi = �} 94
CPη(c0, · · · , cd) cut and paste virtual resotope 94
cTi ci if i ∈ T , ∞ otherwise 94
θ(a, η) change ηi to ∗ depending on inequalities 94
θ0 · · · θd θ(a, η) 95
V (a, b) (q − 1)a q(d+1)s−b 97
V (a) V (a, a) 97
εΓ(σ),KΓ(σ),NΓ(σ)CΓ(σ), cΓ, tΓ various statistics 97
δn(i1, · · · , in)(Σ) characteristic function of n-divisibility 97
χΓ(a, σ), aΓ(σ) various statistics 98
GΓ product of Gauss sums 98
fσ(x) Gauss sum 98
ε∆(σ),K∆(σ),N∆(σ), 103
χ∆(a, σ), t∆, a∆(σ) various statistics 103
ψ bijection between packs (see Proposition 24) 108
Pσ(u) |{j > u | σj = ∗}| 109
Qσ(u) |{j > u | σj = �}| 109
pΓ(σ,Σ) base 2 log of pack cardinality 115
BC(σ) number of �, e 117
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Index

accordion, 29, 30
as lattice point in Euclidean space,

31
crystal interpretation, 47
nonstrict, 29

admissibility
Γ- and ∆-, 95

belongs to prototype, 24
block
�- and e-, 97, 98

bond
moving, 50

bond-marked cartoon, 50, 51, 60
indexing and, 61
resonances and, 55

box-circle duality, 18
boxing, 3, 4, 7, 15, 17, 24

canonical indexings, 54, 60, 69
cartoon, 27, 48, 49

bond-marked, 50, 51, 60
indexing and bond-marked, 61
involution and, 49
preaccordions and, 49
resonances and bond-marked, 55
simple, 55, 60

circling, 3, 4, 7, 15, 17, 24
circling compatibility condition, 30
Class I, II, III and IV, 55
compatible signature, 30, 31, 34
concur, 93
concurrence, 37, 93

equivalence relation, 94
operations on signatures and, 95

condition

circling compatibility, 30
crystal, 7

standard, 10
crystal base, 7
crystal graph, 7
cut-and-paste simplex, 34

decoration, 3, 15, 17, 24, 29–31, 41, 44
distinguished edge, 50

episode, 27, 49, 54, 55
classes of, 55, 56
indexing and, 54

equalized pair, 98–100

facet, 35, 36, 85, 92
closed, 35

Gauss sum, 4
Gelfand-Tsetlin pattern, 3

nonstrict, 4, 5
short, 23–29, 31, 48, 50, 60, 76
short, involution on, 24, 26
short, resonant, 27–29, 31, 48, 50,

60, 76
strict, 3–5

indexing, 53, 55, 59–61, 64, 70
canonical, 54, 60, 69

involution, 5, 22
cartoon and, 49
Schützenberger, 5, 22, 23, 26, 38,

41

knowability, 28, 36, 73, 74
Knowability Lemma, 28, 30, 73, 74, 76,

81
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left-hand rule, 3, 4, 25
local pattern, 67, 74
local type, 67, 68, 73, 74, 77, 79–81
locally strict, 67
long Weyl group element, iii, 8
long word, iii

maximal
E-, 73, 74

middle bottom, 23
middle row, 23
minimal
E-, 73, 74

nonstrict accordion, 29
nonstrict pattern, 5
nonstrict signature, 89

origin
Γ- and ∆-, 96, 99, 102
concurrence of, 99

origin of pack, 96, 99, 102

pack
Γ- and ∆-, 96, 99, 102, 103
origin, 96, 99, 102

packet, 22, 26, 27, 32, 35, 36, 93
f -, 35, 92, 93

packs
Γ- and ∆-, 37

panel
classes of, 56
type of, 64

panels, 55
types of, 55, 56, 69

path, 11
pattern

local, 67, 74
stable, 28, 62
superstrict, 60

totally resonant, 27, 28, 31, 48, 52,
76–78

type, 67, 68, 73, 74, 77, 79–81
Pieri’s rule, 8
preaccordion, 24, 28–30

Γ-, ∆, 28
crystal interpretation, 42, 47

prototype, 24, 26, 27, 64
belongs to, 24
resonant, 27
totally resonant, 27, 28, 31, 48, 52,

76–78

resonance, 27–29, 31, 47, 48, 50, 54, 60,
76

critical, 60
noncritical, 60

resotope, 31–33, 76, 83
Γ- and ∆-, 31
virtual, 82

right-hand rule, 3, 4, 25
row

bottom, 23
middle, 23
top, 23

row sums, 39

Schutzenberger, 5, 22, 23, 26, 38, 41
short end, 42, 44, 45, 47
short Gelfand-Tsetlin pattern

substrate and, 49
short pattern, 23, 24, 26–29, 31, 48, 50,

60, 76
involution, 24, 26
resonant, 27–29, 31, 48, 50, 60, 76

signature, 30–34, 76, 82, 83
Γ-nonstrict, 89
compatible, 30, 31, 34
decoration encoded by, 30
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nodal, 34, 35, 82, 85
signatures

operations on, 95
simple cartoon, 55, 60
simplex, 32–36, 82, 83

cut-and-paste, 34
Snake Lemma, 28, 53
snakes, 28, 53, 54, 56, 70–72

canonical indexings and, 54, 69
taxonomy, 56

stable, 26, 28
stable pattern, 62
string

i-string, 15, 16, 18
subsignature, 34, 36, 85

f -, 36
facets and, 36

substrate, 48, 49
short Gelfand-Tsetlin pattern and,

49
superstrict, 60
support, 33, 82, 83
swap

Γ- and ∆-, 95, 96

top row, 23
totally resonant pattern, 27, 28, 31, 48,

52, 76–78
totally resonant prototype, 27, 28, 31,

48, 52, 76–78
type, 24, 27, 64–69, 73

older terminology, 24
type of panel, 64

weight, 7
dominant, 7

weight function, 7
Weyl group multiple Dirichlet series, ii,

1

word, iv, 11, 12
long, 11
reduced, 11, 12


