
Spectral Theory and the Trace Formula(Expanded Text)by Daniel BumpWe give an account of a portion of the spectral theory �nSL2(R), particularly theSelberg trace formula, emphasizing ideas from representation theory. The last section isof a di�erent nature, intended to show a simple application of the trace formula to alifting problem.I would like to thank Yonatan Gutman and the referee for extensive and very helpfulcomments on an earlier draft. Preparation of this report was supported in part by NSFgrant DMS-9970841.1 The spectral problemThe group G=SL2(R) acts on H= fx+ i y jy > 0g:� a bc d �: z� a z+ bc z+ d: (1)The stabilizer of i is K =SO(2) so H< G/K. The noneuclidean Laplacian�=� y2� @2@x2 + @2@y2�: (2)is a G-invariant di�erential operator. Let � be a discrete cocompact subgroup of G =SL2(R). Then X = �nH is a compact Riemann surface. The question at hand is todescribe the spectrum of � on X.We may sometimes consider the upper half-plane H to be embedded in the Riemannsphere R = C [ f1g. The boundary of H is then R [ f1g. A geodesic in H for thenoneuclidean hyperbolic geometry on H is a circle perpendicular to the boundary at thetwo points of intersection. As a special case, a vertical line is a geodesic.Proposition 1. The group � has a fundamental domain F on H whose boundary con-sists of pairs of geodesic arcs �i and 
i(�i), with 
i 2 �. When the boundary is traversedcounterclockwise the congruent arcs �i and 
i(�i) are traversed in opposite directions.Proof. (Sketch) Choose a point P 2 H which is not �xed by any element of � except� I. Let F be the set of points which are nearer P than to 
(P ) in the noneuclideanmetric for any 
 2 �. Let N = f
1; � ; 
ng be the set elements of � such that 
i(F) isadjacent to F .At �rst we assume no 
i2= 1. Evidently each 
i�1 2N , so N has an even number 2hof elements. We arrange it so that the 
i so that 
i+h = 
i�1 (1 6 i 6 h). Let �i be theintersection of the geodesic consisting of the set of points which are equidistant from Pand 
i�1(P ) with the closure of F . Then 
i(�i) = �i+h and �1;� ; �h satisfy our require-ments. 1



If some 
i2= 1 then the arc �i is self-congruent by 
i and its midpoint is �xed by 
i.So we split such arcs in two at their midpoints and we are done. �The Laplacian � acts on C1(�nH).Proposition 2. � is symmetric and positive with respect to the invariant metricy�2d x^ d y.Proof. Symmetry means thath�f ; gi� hf ;�gi=0; f ; g 2C1(�nH):Taking a fundamental domain F as in Proposition 1, this equalsZF �f� @2g�@x2 + @2g�@y2�� g� @2f@x2 + @2f@y2��d x^ d y= ZF d!where != f @g�@x d y� f @g�@y dx� g @f@x d y+ g@f@y d x:By Stoke's theorem, this is equal to the integral of ! around the boundary of F . ByProposition 1, the contributions of the boundary arcs cancel in pairs.Positivity means that h�f ; f i> 0 with equality only if f is constant. We compute"���� @f@x����2+ ����@f@y����2+� @f2@x2 + @f2@y2�f #dx^ d y= d�f� @f@x d y� @f@y d x��:By Stoke's theorem we thus haveh�f ; f i>�Z@F f� @f@x d y� @f@y dx�; (3)with equality only if @f/@x = @f/@y = 0 identically, that is, if f is constant. Using theCauchy-Riemann equations and the chain rule if one may check that if x + i y and u +i v are related by a holomorphic mapping, such as a linear fractional transformation then(@f/@x)d y � (@f/@y)d x = (@f/@u)d v � (@f/@v)d u. It follows that the contributions ofcongruent boundary arcs cancel and (3) is zero. �We will see later that � extends to a self-adjoint unbounded operator on L =L2(�nH; y�2d x ^ d y). This means that there is a dense subspace D of L containingC1(�nH) such that � extends to D, and that if v 2L is such that u!hv;�ui is contin-uous on D, then v 2D and h�v; ui= hv;�ui.Since � is a self-adjoint operator it has a nice spectral theory, which we want todevelop. We will accomplish this by introducing integral operators which commute with�. We will show that these operators are of trace class, and we will prove the Selbergtrace formula for them.Finally we will consider the more di�cult case where � has a cusp. In this case thereare both discrete and continuous spectra, and the theory of Eisenstein series is an essen-tial feature.
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2 Rings of integral operatorsThe group G acts on functions f :G!C by the right regular action (�(g)f)(x) = f(x g).Since we will soon be discussing di�erential operators let us at �rst restrict ourselves tof 2C1(G); however f can be any locally integrable function in this notation.Because H is canonically identi�ed with the homogeneous space G/K, any function fon H may be regarded as a function on G which is right invariant by K. The relevanceof the regular representation of G to functions on H may not be immediately clear,because the property of right K invariance is not preserved under right translation.However, there is a relevance which we now explain.The Lie algebra of G consists of the vector space g of 2 � 2 real matrices of tracezero. It acts on smooth functions f on G by:Xf(g)= dd t f(g etX)jt=0; X 2 g:This is a Lie algebra representation. This means that [X; Y ] = X Y � Y X (X Y =matrix multiplication) has the same e�ect as X � Y � Y � X (X � Y = composition ofoperators). This representation of g is the di�erential form of the regular representation.The universal enveloping algebra U(g) is the associative R-algebra generated by gmodulo the relations [X;Y ]� (X �Y �Y �X)=0(X � Y = multiplication in U(g)). Any Lie algebra representation extends uniquely to arepresentation of U(g). In particular the regular representation of g extends to a repre-sentation of U(g). Thus U(g) is realized as a ring of di�erential operators on C1(G).If D is an element of the center of U(g) then it commutes with the regular represen-tation. This is intuitively reasonable and proved in Bump [5], Proposition 2.2.4. In par-ticular, if f is �xed under �(K), then so is Df . Therefore D acts on C1(H).A particular element of the center of U(g) is the Laplace-Beltrami or Casimir ele-ment � 4�=H �H +2R �L+2L �R; (4)R=� 0 10 0 �; L=� 0 01 0 �; H =� 1 00 � 1 �:In fact, C[�] is the center of U(g). We have used the same letter � that we previouslyused for the noneuclidean Laplacian, for when this element of U(g) is interpreted as adi�erential operator on H they are the same. See Bump [5], Proposition 2.2.5.Let H be the convolution ring of smooth, compactly supported functions on G. LetH� be the subring of K-bi-invariant functions. These are rings without unit. We call H�the spherical Hecke algebra but caution the reader that there are other natural andclosely related rings which have also been called this. The ring H is noncommutative,but:Theorem 3. The ring H� is commutative.
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Proof. Matrix transposition preserves K so it induces an involution � on H� such that�(� �  ) = �( ) � �(�), where (�f)(g) = f(gt). Every double coset in KnG/K has a diag-onal representative. So � is the identity map. �This theorem of Gelfand has a representation theoretic meaning. If (�; V ) is a repre-sentation of G on a Banach space we will denote by V K the vector subspace of K-�xedvectors. The algebra H acts on V by�(�)v=ZG �(g)�(g)vd g; �2H; v 2V :Here R G d g is the Haar integral. If � 2 H� then �(�)v 2 V K. In particular V K is amodule for H�.Since K is compact, any irreducible representation � of K is �nite-dimensional. The�-isotypic part V (�) of V is the direct sum of all K-invariant subspaces isomorphic to �as K-modules. A representation (�; V ) of G is called admissible if V (�) is �nite-dimen-sional for every �. In particular, if � is the trivial representation V (�) = V K so V K mustbe �nite-dimensional.Theorem 4. If (�; V ) is an irreducible admissible representation of G then V K is atmost one-dimensional.Proof. Since H� is commutative, its �nite-dimensional irreducible modules are one-dimensional. Thus it is su�cient to show that V K (if nonzero) is an irreducible modulefor H�. Suppose L � V K is a closed nonzero H�-invariant subspace. If v 2 V K we willshow that v 2L.Let � > 0 be given. Since V is irreducible and L is nonzero, the closure of �(H)L isV and so there exists � 2 H, w 2 L such that �(�)w = v1, where jv1 � v j < �. Let v2 =R K �(k)v1d k. Then v2 is K-�xed and since v is K-�xed,jv2� v j= ���� ZK �(k)(v1� v)d k����6ZK j�(k)(v1� v)jd k=ZK jv1� v jd k < �:(We normalize the Haar measure so K has volume 1.) Since w is K-�xed,�(k)�(�)�(k 0)w=�(k)v1for all k; k 02K. Integrating over k and k 0, we thus get �(�0)w= v2 where�0(g)=ZK�K �(k g k 0)d kd k 0:Now �0 2 H� and since L is H�-invariant this implies that v2 2 L. We can thereforeapproximate v arbitrarily closely by elements of L, and since L � V K is �nite-dimen-sional, hence closed, this implies that v 2L. �More generally, if (�; V ) is a representation of G and k 2 Z we will denote by V (k)the subspace of v 2K satisfying�(��)v= eik�v; ��=� cos(�) sin(�)� sin(�) cos(�) �2K:

4 Section 2



(This is the �-isotypic subspace where � is the character eik� of K.) If (�; V ) is irre-ducible, then since � I 2K is central, it acts by a scalar ( � 1)� where � = 0 or 1. Evi-dently the parity of k must be the same as � for V (k) to be nonzero. We will call � evenif �=0, and odd if �=1.Proposition 5. If (�; V ) is an irreducible admissible representation of G then V (k) isat most one-dimensional.Proof. (Sketch) This may be proved along the same lines as Theorem 4. Because K =SO(2) is commutative, it may be seen that the convolution ring of smooth, compactlysupported functions which satisfy f(��g�� 0) = eik(�+� 0)f(g) is commutative. SeeBump [5], Proposition 2.2.8. �We note that while Theorem 4 generalizes directly to arbitrary reductive Lie groups,Proposition 5 does not. Thus if (�; V ) is an irreducible admissible representation of areductive Lie group, the multiplicity of the trivial representation of its maximal compactsubgroup is at most one; the other irreducible representations of the maximal compacteach occur with �nite multiplicity (this is admissibility), but not necessarily multiplicityone. Actually irreducible representations are automatically admissible, though this factis not needed in the theory of automorphic forms, where admissibility of automorphicrepresentations can be proved directly.If (�; V ) is an irreducible representation of G, we will denote by V�n the direct sumof the V (k). This is the space of K-�nite vectors. It is not invariant under the action ofG, but it is invariant under the actions of the Lie algebra g of G and of K. It is there-fore a (g;K)-module. See Bump [5], p. 200 for a discussion of this concept.When �= � is the right regular representation, we have�(�)f(x)= ZG �(g)f(x g)d g:This formula make sense for any locally integrable function f on G. The operator �(�)is convolution with the function g! �(g�1). These integral operators are important forus because they commute with �, yet they are easier to study than �. We note thatL2(�nG) is invariant under �(�), and if � 2H� then �(�) preserves the property of rightinvariance by K, so it can be regarded as an integral operator on L2(�nH).Let �2H, and let K�(x; y)=X
2� �(x�1
y): (5)At �rst we regard (x; y) as an element of G�G. If x and y are restricted to a compactset C, then �(x�1g y) vanishes for g o� a compact set C 0. Therefore only �nitely many
 contribute. It follows that (5) is convergent and de�nes a smooth function of x and y.A change of variables shows that K�(x; y) is invariant if either x or y is changed onthe left by an element of 
, so we may regard this kernel as de�ned on either G � G oron �nG��nG, and it is a continuous function. If �2H� then K� may even be regardedas a function on X �X. (Recall that X =�nH.)
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Proposition 6. We have(�(�)f)(x)=Z�nG K�(x; y)f(y)d y: (6)Proof. The left side equalsZG �(y)f(x y)d y= ZG �(x�1y)f(y)d y=X
2� Z�nG �(x�1
y)f(y)d y;where we have used f(
y)= f(y). Interchanging sum and integral gives (6). �If H is a Hilbert space, an operator T : H ! H is compact if T maps bounded setsinto compact sets.Theorem 7. �(�) is a compact operator on L2(�nG).See Bump [5], Section II.3, particularly Theorem 2.3.2 and Proposition 2.3.1 for fullerdetails.Proof. The kernel K� is continuous on the compact space (�nG) � (�nG), so it is cer-tainly in L2((�nG) � (�nG)). The well-known theorem of Hilbert and Schmidt assertsthat if Z is any locally compact Borel measure space such that L2(Z) is a separableHilbert space then integral operator(T f)(x)=ZZ K(x; y)f(y)d ywith the kernel K 2L2(Z �Z) is compact. �If �(g�1)= �(g) (7)then K�(x; y)=K�(y; x), so �(�) is self-adjoint.Theorem 8. Let T be a compact self-adjoint operator on a separable Hilbert space H.Then H has an orthonormal basis �i (i = 1; 2; 3; � ) of eigenvectors of T, so that T�i =�i�i. The eigenvalues �i! 0 as i!1.Proof. This is the Spectral Theorem for compact operators. See Bump [5], The-orem 2.3.1. �Thus if (7) is true then �(�) is a self-adjoint compact operator whose nonzero eigen-values �i! 0. The Hilbert-Schmidt property implies more: P j�ij2 <1. Later we willsee that more is true: P j�ij < 1. This means that �(�) is trace class. This fact isimportant because of the Selberg trace formula.Theorem 9. L2(X) has a basis consisting of eigenvectors of �.
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Proof. The operators �(�) with � satisfying (7) are a commuting family of self-adjointcompact operators so they can be simultaneously diagonalized. By the spectral theoremthe nonzero eigenspaces are �nite-dimensional; there is no nonzero vector on which theoperators �(�) are all zero, since � can be chosen to be positive, of mass one and con-centrated near the identity in which case �(�)f approximates f . Therefore the simulta-neous eigenspaces of H� are �nite-dimensional.Let V be such an eigenspace. Since � commutes with the �(�), it preserves V , andsince it is symmetric it induces a self-adjoint transformation on V . Choose anorthonormal basis for each such V consisting of eigenvectors of � and put these togetherfor all V . �Closely related to Theorem 9 is a representation-theoretic statement about L2(�nG).The regular representation � is a unitary representation on this space.Lemma 10. Let H be a closed nonzero G-invariant subspace of L2(�nG). Then H con-tains an irreducible subspace.Proof. (Langlands) Since H is G-invariant, each �(�) induces an endomorphism ofH. We show �rst that the restriction of �(�) to H is nonzero for suitable � satisfying(7). If 0 � � 2 H then for g near the identity �(g)� is near �. Thus if we take � satis-fying (7) such that � > 0, R G �(g)d g = 1 and such that the support of � is nonzerothen �(�)� is near � so �(�) is nonzero on H, and �(�) is self-adjoint.Let L �H be the eigenspace of a nonzero eigenvalue of �(�). It is �nite-dimensionalby Theorem 8. Let L0 be a nonzero subspace minimal with respect to property of beingthe intersection of L with a nonzero closed invariant subspace of H. Let V be thesmallest closed invariant subspace of H such that L\ V =L0. We show V is irreducible.If not, let V1 be a proper, nonzero closed invariant subspace and let V2 be its orthogonalcomplement, so V = V1 � V2. Let 0 � f 2 L0. Write f = f1 + f2 with fi 2 Vi. Since 0 =�(�)f � �f = (�(�)f1 � �f1) + (�(�)f2 � �f2) and �(�)fi � �fi 2 Vi we have �(�)fi ��fi= 0. Thus fi 2 L \ Vi. By the minimality of L0, L0= L \ Vi for some i, say L0= L \V1. Now the minimality of V is contradicted. �Theorem 11. L2(�nG) decomposes as a direct sum of closed, irreducible subspaces.Each a�ords an irreducible admissible representation of G.Proof. By Zorn's Lemma, let S be a maximal set of orthogonal closed irreducible sub-spaces. Let H =LV 2S V . If H is proper, applying Lemma 10 to its orthogonal comple-ment contradicts the maximality of S. We leave admissibility to the reader. �Each of these closed irreducible subspaces has at most one K-�xed vector by The-orem 4.Theorem 11 may be thought of as a more satisfactory extension of Theorem 9.Indeed, if � is an eigenfunction of � occurring in L2(�nH) then its right translates spanan irreducible subspace of L2(�nG). Conversely, � acts by a scalar on each irreduciblesubspace. If that subspace happens to have a K-�xed vector in it, that vector will beone of the basis elements in Theorem 9.
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There will, however, be some irreducible subspaces of L2(�nG) which have no K-�xed vectors. These can be constructed from holomorphic modular forms as follows. Letf : �nH!C be a holomorphic function satisfyingf� a z+ bc z+ d�=(c z+ d)k f(z); � a bc d �2�:If k is su�ciently large, such f will always exist, as may be shown from the Riemann-Roch theorem. Regarded as a function on G, the function f is right invariant by K, butit is not left invariant by �, so it is not a function on �nG. However we may modify it,sacri�cing the right invariance by K to obtain true left invariance by �. De�neF� a bc d �=(c i+ d)�k f� a i+ bc i+ d�:Then F (
g) = F (g) for 
 2 �, while F (g��) = eik�F (g). The irreducible representationspanned by F has not K-�xed vector. This is the weight k holomorphic discrete seriesrepresentation.The representation-theoretic approach has another generalization, its extension toautomorphic forms on adele groups. Assume that �= SL2(Z). Let A be the adele ring ofQ. The inclusion of SL2(R)!GL2(A) at the in�nite place induces a homeomorphism�nG!GL2(Q)ZAnGL2(A)/Qp Kp;where ZA is the center of GL2(A) and Kp=GL2(Zp) is a maximal compact subgroup ofGL2(Qp). Thus functions on �nG may be reinterpreted as functions onGL2(Q)ZAnGL2(A), and in particular we may embedL2(�nG)!L2(GL2(Q)ZAnGL2(A)):Now the study of L2(GL2(Q)ZAnGL2(A)) may be carried out along exactly the samelines as we've applied above. The class of integral operators is larger now, however. Inaddition to the ring H, we have its p-adic analogs, which are rings of Hecke operators.To see this, �x a prime p. Let Hp be the convolution ring of smooth (i.e. locally con-stant) compactly supported functions on GL2(Qp). This ring is not commutative, butthe subring Hp� of functions which are Kp bi-invariant is commutative. (Compare The-orem 3.) For example, the characteristic function of Kp� p 00 1 �Kp is an element of thisring, and this is the adelization of classical Hecke operator Tp which picks o� the p-thFourier coe�cient of a Hecke eigenform. We will return to this point of view in the �nalsection when we study such operators using the trace formula.3 Green's functions and the spectral resolventReferences for this section are Hejhal [19], Section 6 and Bump [5], Chapter 2 Section 3.We are interested in functions f on H with the following
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Property S The function f is left invariant by K =SO(2), possibly singular at K's �xedpoint at i, and is an eigenfunction of the Laplacian.We will see that for each eigenvalue � of � there are two linearly independent suchfunctions, one of which (the Green's function) has nice behavior at the boundary, theother of which (the spherical function) is continuous at i. Each has its uses. Since H <G/K, these may be regarded as functions on KnG/K (possibly unde�ned on K) whichare eigenfunctions of the Laplace Beltrami operator.We can map the upper half plane into the unit disk D by the Cayley transform z �w = (z � i)/(z + i). Let r = jw j. Then since f as in Property S is left invariant by K,f(z) depends only on r. Denote f(z) = W (r). Thus a function f with Property S isdetermined by the function W on (0; 1) such thatW (r)= f y1/2 y�1/2 !;where r = (y � 1)/(y + 1) 2 (0; 1). The eigenvalue property amounts to the di�erentialequation W 00(r)+ 1rW 0(r)+ 4�(1� r2)2W (r)=0: (8)This di�erential equation has regular singular points at (0; 1) and there are two solutionsof interest. One is nicely behaved at 0, the other at 1. (We assume familiarity with reg-ular singular points of second order linear di�erential equations, particularly the indicialequation, for which see Whittaker and Watson [45], Section 10.3.) In this section we willbe concerned with the solution which has nice behavior on the boundary, that is, at r =1; the other one will occupy the next section.Let � be a negative real number. At r=1 the roots of the indicial equation of (8) forthe singularity at r = 1 are 12(1 � 1� 4�p ). With � < 0 exactly one root � = 12(1 +1� 4�)p is positive, so there is a unique (up to multiple) solution g� to (8) which van-ishes near the boundary. We can use it to study the resolvent of the Laplacian.Lemma 12. If � is a negative real number, then g�(r) has a logarithmic singularity atr = 0. Near r = 1 we have g�(r) � c(1 � r)� where � = 12(1 + 1� 4�p ) > 1, and c is anonzero constant.Proof. The roots of the indicial equation at r= 0 are 0 with multiplicity 2, so one solu-tion has a logarithmic singularity, another is analytic. If g� does not have the loga-rithmic singularity, then g�(r) is real and analytic on [ � 1; 1] hence has a maximum orminimum. At such a point g�0 (r)= 0 and since �< 0, equation (8) implies that g� and g�00have the same sign, impossible at the maximum or minimum because g�(� 1) = g�(1) =0. This proves the existence of the logarithmic singularity at r = 0. The behavior at r =1 is clear from the de�nition of g�. �Let g�(z; �)= g������ z� �z � �������:
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z; � 2H. This is a Green's function.Theorem 13. Let � be a negative real number. Then� � y2� @2@x2 + @2@y2����g�(z; �)= 0;g�(z; �) is singular on the diagonal z= �;g�(z; �)! 0 as y! 0;g�(z; �)= g�(� ; z);g�(h(z); h(�))= g�(z; �); h2SL2(R): (9)Proof. The �rst property boils down to (8), the second property comes fromLemma 12, the third follows from the boundary behavior of g�, and the last two proper-ties follow since j(z � �)/(z � �)j is unchanged if z and � are interchanged, or if an ele-ment of SL2(R) is applied to both. See Bump [5], Proposition 2.3.4 on p. 181 for fullerdetails. �Since g� has a logarithmic singularity at 0 it can be normalized so g�(r)� 12� log(r) isbounded as r! 0. It follows that g�0 (r)� 12�r is analytic near r=0.Theorem 14. Let � be a negative real number. If f 2Cc1(H) then (writing � = �+ i�)ZH g�(z; �)� � �2� @2@�2 + @2@�2����f(�) d� ^ d��2 = f(z) (�= �+ i�):Proof. See Bump [5], Proposition 2.3.4 on p. 181 for fuller details. We review the proofquickly. Let w= (z � �)/(z � �) = u+ i v 2D. Let F :D!C be de�ned by F (w) = f(z).In the w coordinates we must proveZD g�(jw j)� �� @2@u2 + @2@v2�� 4�(1� jw j2)2 �F (w)d u^ d v=F (0):Let Br be the disk of radius r, and let R < 1 be large enough that the support of F iscontained in BR. The left side equalslim�!0ZBR�B� g�(jw j)� �� @2@u2 + @2@v2�� 4�(1� jw j2)2 �F (w)du^ d v:Using Stoke's theorem as in Proposition 2, this islim�!0ZBR�B� F (w)� �� @2@u2 + @2@v2�� 4�(1� jw j2)2 �g�(jw j)d u^ d v +lim�!0ZC� F (w)� @g�(jw j)@u d v� @g�(jw j)@v d u� �lim�!0ZC� g�(jw j)� @F (w)@u d v� @F (w)@v du�;
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where C� is the path circling the origin counterclockwise around the circle with radius �.(There would also be terms integrating around CR, but these are zero because they lieoutside the support of F .)The �rst term vanishes by Theorem 13. The last term vanishes because the length ofthe arc shrinks faster than g� blows up (logarithmically).To evaluate the middle term let w= r ei�. By the chain rule,@g�(jw j)@u d v� @g�(jw j)@v d u= r g�0 (r)d�:We obtain lim�!0Z02� F (�ei�)d��g�0 (�)=F (0);since g�0 (�)� 1/(2��) as �! 0. �Proposition 15. Let � be a negative real number. The seriesG�(z; �)= X
2f�1gn� g�(z; 
(�))= X
2f�1gn� g�(
(z); �):is absolutely convergent provided z and � are not �-equivalent.Proof. Let Br be a ball of radius r with center at the origin. If r < 1 then Br � D.With � �xed we use the Cayley transform z	 C�(z) = (z � �)/(z � ��) to transfer g� tothe unit disk. The volume of Br in the hyperbolic metric on D is 4�r2/(1 � r2), so thenumber of 
 2 � with (
z � �)/(
z � ��) 2 Br is asymptotically cr2/(1 � r2), where c =4�/V , with V the volume of the fundamental domain of C��C��1.Near r = 1, it follows from Lemma 12 that g�(r) � (1 � r)� where � > 1. Thus theconvergence of the series amounts to the convergence ofZ01 g�(r) ddr r2(1� r2) dr or Z01 (1� r)� ddr r2(1� r2) dr <1: �G�(z; �) is the automorphic Green's function. We will see that it is an integral kernel forthe resolvent of the Laplacian.Theorem 16. G� is de�ned and real analytic for all values of (z; �) except where � =
(z) for some 
 2�. We have� � y2� @2@x2 + @2@y2����G�(z; �)= 0;G�(h(z); h(�))=G�(z; �); h2G;G�(z; �)=G�(
(z); �)=G�(z; 
(�)); 
 2�;G�(z; �)=G�(� ; z);
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and G�(z; �)� e2� logjz � � j near z = �, where e is the order of the isotropy subgroup of �in �. For f 2C1(�nH)Z�nH G�(z; �)� � �2� @2@�2 + @2@�2����f(�) d� ^ d��2 = f(z) (� = �+ i�): (10)See Bump [5] Proposition 2.3.5 and Hejhal [19], Proposition 6.5 on p. 33.Proof. Most of these properties follow from the corresponding properties of g�. Weprove (10). We will need a function F 2 Cc1(H) such that f(z) =P
2� F (
z). To con-struct F , let u be a function on H which is smooth, nonnegative, and has compact sup-port containing a fundamental domain of �. Then for all z, the function P
2� u(
z) ispositive, and for z restricted to a compact set this sum is �nite. It is thus a smooth,positive valued function and we can divide by it. NowF (z)= u(z)f(z)P
2� u(
z)has the required property.Substituting this and the de�nition of G� and using (9) givesX
;�2� Z�nH g�(�(z); 
(�))� � �2� @2@�2 + @2@�2����F (
(�)) d� ^ d��2 :One of the summations may be collapsed with the integration to giveX
2� ZH g�(�(z); �)� � �2� @2@�2 + @2@�2����F (�) d� ^ d��2 =X� F (�(z))= f(z):This completes the proof. �Let � < 0. As is easily checked, the logarithmic singularity along the diagonal is notsu�cient to cause divergence of the integralZ�nH Z�nH jG�(z; �)j2dx^ d yy2 d� ^ d��2 <1:Thus the corresponding integral operator, which we shall denote R(�; �), is Hilbert-Schmidt.Theorem 17. (i) The eigenvalues �i of � on L2(�nH) tend to 1, and satisfy P�i�2<1. (We exclude the eigenvalue �0= 0 corresponding to the constant function fromthis summation.)(ii) The Laplacian � has an extension to a self-adjoint operator on the Hilbert spaceL2(�nH).(iii) If �< 0 then the compact operator R(�;�) is a bounded inverse to ���I.We express (iii) by saying that R(�;�)=(���I)�1 is the resolvent of �.
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Proof. Let �< 0 be an arbitrary negative real number. By Theorem 9, let �i be a basisof H = L2(�nH) consisting of eigenvectors of �, with corresponding eigenvalues �i. Itfollows from (10) that �i is also an eigenfunction of R(�;�) with eigenvalue (�i � �)�1.Since R(�;�) is Hilbert-Schmidt, Pi (�i��)�2<1, whence Pi �i�2<1.We prove (ii). Let D� be the linear subspace of L2(�nH) consisting of elements ofthe form P ai�i such that P �i2jaij2<1; on this space, de�ne��X ai�i�=X �iai�i:Since the �i tend to in�nity, and in particular are bounded away from zero, it is nothard to check that this operator is closed and in fact self-adjoint. This proves (ii).We have already checked that if R(�; �)�i = (�i � �)�1�i. Since the �i are anorthonormal basis of H, this implies (iii). �We arrange the eigenvalues of � in ascending order:�0=0<�16�26�36� :The eigenvalue �0 corresponds to the constant function and has multiplicity exactly one.Eigenvalues in the range (0; 14) are called exceptional eigenvalues. They are qualitativelydi�erent. For example, the spherical functions corresponding to exceptional eigenvaluesare nontempered � they grow faster than spherical functions corresponding to � > 14 .(See Section 4). Exceptional eigenvalues correspond to zeros of the Selberg zeta functionon the real line between 0 and 1. By contrast zeros corresponding to � > 14 satisfy theRiemann hypothesis. (See Section 7.) Randol [36] proved that for some X, exceptionaleigenvalues do occur. On the other hand, Selberg [40] conjectured that exceptionaleigenvalues do not occur in the cuspidal spectrum of congruence subgroups of SL2(Z),and it would follow from this that they do not occur in the spectrum of compact quo-tients �nH associated to quaternion division algebras.4 Spherical functionsAs we pointed out, Property S reduces to a second order di�erential equation which hastwo independent solutions. One solution, having nice behavior at the boundary, is theGreen's function. Another, having nice behavior at i, is the so-called spherical function.The substance of Lemma 12 is that these two solutions are not the same. In this sectionwe will study the spherical function.De�nition 18. Let � be a complex number. We call a function � on SL2(R) a �-spher-ical function if it is smooth, K-bi-invariant, and ��=��.Here � is the Laplace-Beltrami operator. Before we show that such a function existsand is unique up to constant multiple, let us explain brie�y how such a function �ts intothe representation theory.
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Suppose that (�; V ) is an irreducible representation of G. Let (�̂ ; V̂ ) be its contra-gredient. Thus there exists an invariant bilinear pairing h; i:V � V̂ !C.By Theorem 4, if V K and V̂ K are nonzero, they are one-dimensional, and we willassume this. (Actually if one is nonzero the other is too.) Let v� 2 V K and v̂� 2 V̂ K benonzero K-�xed vectors. The function�(g)= h�(g)v�; v̂�iis evidently K-bi-invariant. Moreover, Regarding � as an element of the center of theuniversal enveloping algebra U(g), it acts by a scalar � on V . and � inherits this prop-erty. So it is a spherical function.Without reference to this construction, we now show that spherical functions existand are unique.Theorem 19. (i) Let � 2C. Then there is a unique smooth K-bi-invariant function !�on SL2(R) such that �!�= �!� and !�(1) = 1. (ii) If f :G!C is any smooth functionsuch that �f =�f, thenZK�K f(k g k 0)d kd k 0= f(1)!�(g): (11)(iii) If f is right K-invariant and �f =�f, thenZK f(h k g)d k= f(h)!�(g): (12)Proof. To satisfy �!=�! we needW (r)=! y1/2 y�1/2 !; r= y� 1y+1to satisfy (8). As we have seen, this di�erential equation has a regular singular point atthe origin, and one solution is bounded there, whereas the other has a logarithmic singu-larity. Hence !�, if it exists, is unique.To show that such a function exists, let f be any continuous function on G which isan eigenfunction of �. The left hand side of (11) is a K-bi-invariant function which isan eigenfunction of �. If f(1) = 1, this will satisfy (i), proving existence. For examplewe can take f = fs where �= s(1� s) andfs  y1/2 �y�1/2 !k!= ys; y > 0; k2K: (13)Now that the existence and uniqueness of ! are established, we note that the left sidesof both (11) and (12) are smooth K-bi-invariant eigenfunctions of �, hence constantmultiples of !�. In both cases, the constant may be evaluated by taking g = 1. Thisproves both (ii) and (iii). �
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Theorem 20. Suppose that f is a smooth function on G which is right invariant by Kand such that �f =�f. Then for �2H� we have�(�)f = ��(�)f (14)where ��(�)=ZG �(g)!�(g)d g: (15)Proof. By Theorem 19, we haveZK f(h k g)d k= f(h)!�(g): (16)We note that �(�)f is an average of right translates of f , and right translation com-mutes with left translation. Hence we may apply �(�) to both sides of (16) to obtainZK (�(�)f)(hk g)d k= f(h)(�(�)!�)(g):We take g=1 in this identity. Since �(�)f is right K-invariant, the integrand on the leftside becomes constant when g = 1 and so the left side becomes just (�(�)f)(h). On theother hand (�(�)!�)(1) equals the integral (15), so �(�)f(h)= ��(�)f(h). �Theorem 21. If �1 and �22H�, then��(�1 � �2)= ��(�1)��(�2):Proof. This follows from Theorem 20 on applying �(�) to any eigenfunction f , forexample fs as in (13). �Thus the function ��: H�! C is a character of H�. We return to the point of viewintroduced at the beginning of the section to explain the meaning of �(�) in terms ofrepresentations. First, we recall the construction and parametrization of a class of irre-ducible representations of SL2(R), the principal series.Let s be a complex number. Let Ps+ be the set of functions f :G!C such thatf  y1/2 x y�1/2y�1/2 !g!=(� 1)�sgn(y)ysf(g); (17)where � = 0, and such that the restriction of f to K is square integrable. Similarly letPs� be the space of functions satisfying (17) with � = 1. G acts on these spaces by righttranslation. Let ��s�; Ps�� be these representations. The representation �s� is irreducibleexcept in the case where 2s is an integer and 2s is even for �s+, odd for �s�. We call �s+and �s� the odd and even principal series of representations, respectively.Suppose that re(s)> 12 . An intertwining integral M(s):Ps�!P1�s� is given by(M(s)f)(g)= Z�11 f�� � 11 �� 1 x1 �g�d x: (18)
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It may be checked that the integral is absolutely convergent. Now M(s) extends by ana-lytic continuation to an intertwining map for all s such that 2s is not an integer con-gruent to � mod 2. Actually we only claim that it extends to an in�nitesimal equiva-lence, that, is, an isomorphism of the underlying (g; K) module, but it is a true isomor-phism in the important special case re(s)= 12 . Thus �1/2+it� < �1/2�it� .Let k� � modulo 2. Letfs;k  y1/2 xy�1/2 !��!= sgn(y)�yseik�: (19)This is a K-�nite vector in Ps� where � is ( � 1)�. Let f~1�s;k = M(s)fs;k. One maycompute f~k;1�s=(� i)k �p �(s)��s� 12���s+ k2 ���s� k2 � fk;1�s: (20)See Bump [5], Proposition 2.6.3.The representation �1/2+it� is unitary if t is real. These representations are called theunitary principal series representations. Also �s+ is unitary if s is a real number between0 and 1. These are the complementary series representations. They correspond to excep-tional eigenvalues of the Laplacian in the automorphic spectrum. There are a few otherirreducible representations, namely the discrete series (related to holomorphic modularforms) and the trivial representations. But only the even principal series �s+ have K-�xed vectors. All of these facts are proved in Bump [5], Chapter 2.The K-�xed vector in Ps+ is precisely the function fs in (13). Now if � 2 H� thensince � is K-bi-invariant, the operator �+(�) maps all of Ps+ onto the unique K-�xedvector fs. Thus the trace of the rank one operator �s+(�) is just its eigenvalue on thisvector fs, so tr �s+(�)= ��(�): (21)5 The Plancherel formulaLet �2H�. De�neg(u)= eu/2 Z�11 �  eu/2 e�u/2 !� 1 x1 �!d x; (22)and let h(t)=Z g(u)eiutd t (23)be its Fourier transform.Theorem 22. The functions g and h are even, and g is compactly supported. If �= 14 +t2, then ��(�)=h(t): (24)
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Proof. Let fs be as in (13) with s = 12 + i t so that � = 14 + t2 = s(1 � s). By The-orem 19, ZK fs(k g)d k=!�(g);and ��(�)=ZG ZK �(g)fs(g k)d kd g:Interchanging the order of integration and making the variable change g! g k�1, since �is right k invariant, we obtain ��(�)=ZG �(g)fs(g)d g:Now we use the coordinatesg= eu/2 e�u/2 !� 1 x1 ���; d g= 12� d ud xd�: (25)Noting that in these coordinates fs(g)= eu/2eiut, we obtain��(�)=Z11 g(u)eitud u;proving (24). We note that !�, and therefore the character ��(�) is unchanged if s !1� s, that is, if t!� t. Hence (24) implies that h is an even function. By Fourier inver-sion, so is g. �Theorem 23. (i) We have �(1)= 12� Z01 th(t)tanh(�t)d t:(ii) If �1; �2 are K-invariant and compactly supported thenZG �1(g)�2(g)d g= 12� Z01 th�1(t)h�2(t)tanh(�t)d t:Proofs may be found in Knapp [25], Chapter 11, Gelfand, Graev and Piatetski-Shapiro [14], Chapter 2 Section 6 and Varadarajan [41] Theorem 39 on p. 205. We willgive a proof (after some Lemmas) which uses no Lie theory. A portion of the argumentparallels Proposition 4.1 on p. 15 of Hejhal [18], and we have made our notation consis-tent with his, and with Selberg [38], (3.1).Theorem 23 (i) is the Fourier inversion formula on the noncommutative groupSL2(R). It is sometimes called the Plancherel formula because it implies (ii), which isthe true Plancherel formula. The measure 12� ttanh(�t)d t is called the Plancherel mea-sure on the even unitary principal series. (Since we have only considered � 2 H� we donot need the other irreducible unitary representations.) The Plancherel measure isclosely related to the intertwining integrals (18). Indeed, M(12 � i t) �M(12 + i t) is an G-equivariant endomorphism of the irreducible space P1/2+it+ , so by Schur's Lemma it is ascalar. One may check using (20) that the reciprocal of this scalar is 1� ttanh(�t). SeeKnapp and Stein [24].
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Lemma 24. Let �> y > 1. Then� � 1 x1 � y1/2 y�1/2 !!= � �1/2 ��1/2 !;where x=� y(�+ ��1� y� y�1)p :Proof. Identifying KnG/K with KnH, we want to �nd x such that the images �i andz= x+ i y of the two matrices in H are in the same SO(2) orbit. Mapping H to the unitdisk by the Cayley transform z! (z � i)/(z + i), their images must therefore be equidis-tant from the origin. That is,�� 1�+1 = ����z� iz+ i ����= a� 2ya+2yr ; a=x2+ y2+1:Applying the map t! (1 + t2)/(1 � t2) to both sides of this equation, � + ��1 = a/y.This equation can now be solved for x. �De�ne a function � on R+ by�(eu+ e�u� 2)= � eu/2 e�u/2 !: (26)Lemma 25. If U = eu+ e�u� 2, then g(u)=Q(U) whereQ(U)=ZU1 �(V )d VV �Up : (27)Proof. Let V = ev + e�v � 2. With y = eu, � = ev and x as in Lemma 24, think of x asfunction of V > U . Then d x = 12 eu(V � U)�1/2d V . We integrate V from U to in�nityand double the result to account for both positive and negative x. �Lemma 26. We have �(U)=� 1� ZU1 Q0(V )d VV �Up : (28)Proof. We'd like to di�erentiate under the integral sign in (27) but since the left end-point depends on U we must be careful. Integrate (27) by parts to obtainQ(U)=� 2 ZU1 �0(V ) V �Up d V :The integrand now vanishes at the left endpoint, so we may di�erentiate under the inte-gral sign, then integrate by parts again to obtainQ0(U)=ZU1 �0(V )V �Up d V =� 2 ZU1 �00(V ) V �Up d V :
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We substitute this into the right side of (28), then switch the order of integration:� 1� ZU1 Q0(V )dVV �Up = 2� ZU1 ZV1 W �VV �Ur �00(W )dW dV =2� ZU1 ZUW W �VV �Ur dV �00(W )dW: (29)To evaluate the inner integral, let V =U +(W �U)v. We haveZUW W �VV �Ur d V =(W �U ) Z01 1� vvr d v= �2(W �U)since R 01 v�1/2(1� v)1/2d v=B(12 ; 32)= �2 . Thus (29) equalsZU1 (U �W )�00(W )dW =� ZU1 �0(W )dW =�(U);where we have integrated twice by parts. �Proof of Theorem 23. Take U =0 and write Lemma 26 in the form�(1)=�(0)=� 1� Z01 g 0(u)dueu/2� e�u/2 : (30)Since g is even and g 0 is odd, we have the Fourier inversion formulag(u)= 1� Z01 h(t)e�itud t; g 0(u)= 1i� Z01 th(t)e�itud t;and we may change the limits in (30) to ( �1;1), dividing by 2, then interchange theorder of integration to obtain�(1)= 12� Z01 th(t) i� Z�11 e�iutdueu/2� e�u/2 d t:The inner integral passes through the pole at u=0 of the integrand and is interpreted asthe principal value. The Plancherel formula now follows fromZ�11 e�iutd ueu/2� e�u/2 =� i�tanh(�t); (31)which we may prove as follows. Since t > 0, the numerator e�iut is small for u in thelower half plane, and we may move the path of integration downwards. The left side of(31) � 2�i times the sum of the residues at u=� 2�i n of the integrand in the lower halfplane. The residue at u = 0 is only counted half since the path of integration passesthrough this point. We get� 2�i 12 +Xk=11 (� 1)ke�2�kt!=��itanh(�t)
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proving (i).To prove (ii) de�ne �20 (g) = �2(g�1). Since �2 is K-bi-invariant, and since the K-double cosets are stable under g! g�1 this equals �2(g). Now apply (i) to � = �1 � �20 ,then �(0) = h�1; �2i2. On the other hand h�(t) = h�1(t)h�2(t) by Theorem 21 so (ii) fol-lows. �Proposition 27. Let g be an even, compactly supported function on R. There exists�2H� such that ( 22) is true.Proof. Let Q: R+ ! C be de�ned by Q(eu + e�u � 2) = g(u). We claim that Q hasderivatives of all orders that are continuous on R+. The only issue is continuity at 0.Write U = eu+ e�u� 2. We �nd thatu=2log� 12( Up + U +4p )�= Up � U3/224 + 3U5/2640 �� :Since only odd powers of U1/2 appear, when we substitute u into the smooth, even func-tion g we obtain a function of v that has continuous derivatives of all orders at v = 0.We de�ne �:R+!C by (28) or, integrating by parts and substituting W =V �U ,�(U)= 2� Z01 Q00(W +U) Wp dW:We may di�erentiate under the integral sign arbitrarily many times, so � has contin-uous derivatives of all orders, even at U =0. Now u!�(eu+ e�u� 2) is a smooth, even,compactly supported function. We will show that this implies that there is a uniquesmooth, compactly supported K-bi-invariant � satisfying (26). Every double coset ofSO(2) has a representative of the form  eu/2 e�u/2 !. The only two such representativesare for values u and � u, and since � is even there is a uniquely determined functionsuch that (22) is true. The issue is to show that this function is smooth. Since it is con-stant on cosets of G/SO(2) < H, we can transfer it to the upper half plane by the mapG� H given by g	 g(i) and it is su�cient to show that the corresponding functionon H is smooth. Furthermore, we may then transfer the function to the unit disk by theCayley transform. If rei� are polar coordinates on the disk, then the resulting functiondepends only on r, and its value is�(eu+ e�u� 2)=�� 4r21� r2�; u= log� 1� r1+ r�:Since � is a compactly supported function on R+ with continous derivatives of allorders, rei�	 �� 4r21� r2 � de�nes a smooth compactly supported function on the disk.Thus proves that �2H�. �
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6 The Selberg trace formulaWe have already shown that the integral operators �(�) are Hilbert-Schmidt, hencecompact. More is true: they are trace class. A compact operator is trace class if it canbe factored as the composite of two Hilbert-Schmidt operators. If it is self-adjoint, andhas eigenvalues �i, it is easy to see that this is equivalent to P j�ij < 1. Lang's [27]contains much useful material about trace class operators.Let fi be an orthonormal basis of L2(�nH) consisting of eigenfunctions of �(�) whichare also eigenfunctions of �. Assuming that � 2 H� satis�es (7), let �i be the eigen-values of �(�) with respect to this basis. Making a Fourier expansion we haveK�(z;w)=X �ifi(z)fi(w): (32)Initially this expansion is only valid in L2(�nH � �nH), but we will now show that theright-hand side represents the kernel in the sense of uniform convergence.Lemma 28. (Dini's Theorem) Let fi be a sequence of functions on the compact setX such that Pi=11 jfi(x)j converges pointwise to a continuous function F (x). Then theseries Pi=1 fi(x) converges absolutely and uniformly.Proof. For each x 2 X there exists Nx such that F (x) �Pi=1n jfi(x)j < " of n > Nx.Since the sequence of functions gn(n)=F (x)�Xi=1n jfi(x)jare continuous and decrease monotonely to zero, there exists a neighborhood Ux of xsuch that gn(y) < " for all y 2 Ux and n > Nx. Since X is compact, it is covered by a�nite number of the sets Uxi, i=1;� ; r. Now take N =max (Nxi). We see that if n>Nthen gn(x)< " on X. This shows that the convergence of the series Pi=11 jfi(x)j is uni-form, so the series Pi fi(x) converges absolutely and uniformly. �Theorem 29. (Hilbert and Schmidt) Let f 2 C1(�nH), and let fi be anorthonormal basis of L2(�nH) consisting of eigenfunctions of �. Then the expansionf(z)=Xi=11 cifi(z); ci= hf ; fii (33)is absolutely and uniformly convergent. More precisely, let � be any negative number,and let " > 0, C > 0 be positive constants. Then there exists a constant N";C, indepen-dent of f such that�����f(z)�Xi=11 cifi(z)�����<" if hh; hi6C, n>N";C ; h=(���)f: (34)
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Proof. Let � be any negative number. We haveG�(z; �)=X (�i��)�1fi(z)fi(w);where �fi= �ifi. Indeed, if we expand G�(z; �) =P �ifi(z)fi(w), then the coe�cient �imay be evaluated by taking f = fi in (10); we �nd that �i=(�i��)�1. Let
(z)=Z�nH jG�(z; �)j2d� ^ d��2 ; � = �+ i� 2H;which is easily seen to be a continuous function on �nH. We haveXi j�i��j�2jfi(z)j2= 
(z): (35)This follows from the orthogonormality of the fi. Both sides are continuous and so byDini's theorem (Lemma 28) the convergence in (35) is uniform in z.By (10) we have f(z)=Z�nH G�(z; �)h(�) d� ^ d��2 ; (36)where h(�) = (�� �)f . If h=P aifi, then since h is continuous, it is square integrable,and Xi jaij2= hh; hi<1: (37)By (36) we have ci= ai(�i��)�1:Now by the Cauchy-Schwartz inequality and (35), (37) we haveXi jcifi(z)j=Xi jai(�i��)�1fi(z)j6 Xi j�i��j�2jfi(z)j2r � Xi jaij2r <1: (38)Since (35) is uniformly convergent, convergence of this series is also uniformly conver-gent. Since P cifi = f in L2(�nH), we have P cifi(z) = f(z) almost everywhere. Theuniform convergence of P jcifi(z)j implies the uniform convergence of P cifi(z). Asthe uniform limit of continuous functions, P cifi is continuous and so is f , and so Pcifi(z) = f(z) for all z. Finally, if h is allowed to vary with hh; hi < C, we may replacePi jaij2q by C in (38), and it is clear that N";C can be chosen to make (34) true. �Theorem 30. The expansion on the right-hand side of ( 32) converges absolutely anduniformly to K�.Proof. If w is �xed, then applying Theorem 29 to K�(z; w) shows that the convergenceis absolute and uniform in z. Moreover, taking � to be negative and applying � � � toK�(z; w) (in the z parameter) gives a continuous function on the compact set �nH ��nH that is bounded. We regard this as family of functions of z, indexed by w, that arebounded in the L1 norm and a fortiori in the L2 norm, so (34) shows that the conver-gence of (32) to K�(z; w) is actually uniform in both variables. �
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Theorem 31. If �2H� then �(�) is trace class.Proof. A linear combination of trace class operators is trace class. Hence it is su�cientto prove this with � replaced by 12��(g) + �(g�1)� and by 12i��(g) � �(g�1)�. We maythus assume that � satis�es (7) and so �(�) is self-adjoint. Let �i be its (nonzero) eigen-values. Let �i be the corresponding eigenvalues of �. Thus P �i�2<1.Applying � to K�(z; w) in the �rst variable gives a new kernel �zK�. We will showthat (�zK�)(z; w)=X �i�ifi(x)fi(y): (39)Formally this follows from (32) by termwise di�erentiation. However this must be justi-�ed � the uniform convergence of Theorem 30 would of course justify term-by-term inte-gration but not di�erentiation.Note that �zK�(z; w) is continuous hence has an expansion(�zK�)(z; w)=X �ifi(x)fi(y):Let �< 0. ConsiderZ�nH G�(z; �)[(��K�)(� ;w)��K�(� ;w)]d� ^ d��2 :On the one hand by (10) this is just (32). On the other hand, the term in squarebrackets is Pi (�i � ��i)fi(�)fi(w), and since the resolvent is compact, may apply itterm by term. Using R(�;�)fi = (�i � �)�1fi we get (�i + ��i)(�i � �)�1 = �i, so �i =�i�i proving (39).Since this function �zK(z; w) is continuous, it is Hilbert-Schmidt, and so we obtainthe bound X j�i�ij2<1: (40)Now P j�ij<1 follows from P j�ij�2<1 and (40) by Cauchy-Schwarz. �The trace tr T of a self-adjoint trace class operator T is by de�nition the sum of itseigenvalues.Theorem 32. If �2H� satis�es ( 7), and if �i are the eigenvalues of �(�), the tracetr�(�)=Z�nH K�(z; z) d x^ d yy2 : (41)Proof. This follows from orthonormality on integrating (32). �The Selberg trace formula is a more explicit formula for its trace. Let f
g denote aset of representatives for the conjugacy classes of �. Let Z�(
) denote the centralizer in� of 
.
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Theorem 33. We havetr �(�)=Xf
g ZZ�(
)nG �(g�1
g)d g: (42)Proof. We rewrite the right side of (41) asX
2� ZG �(g�1
g)d g=Xf
g X�2Z�n� ZG ��g�1��1
� g�d g:Combining the integral and the summation gives (42). �This is a primitive form of the trace formula. To make this more explicit, we muststudy more explicitly the orbital integrals on the right side. An element 1 � 
 2 � ishyperbolic if its eigenvalues are real, elliptic if complex of absolute value 1. � is hyper-bolic if each 1 � 
 2 � is hyperbolic. For example, let X be a compact Riemann surfaceof genus > 2. Its universal cover is H and �= �1(X) acts with quotient X. These exam-ples are precisely the hyperbolic groups.We assume now that � is a hyperbolic group. If 1� 
 2 � de�ne N =N(
) by askingthat 
 be conjugate to  N1/2 N�1/2 !: (43)for some N . Let N0=N0(
) be such that N01/2 N0�1/2 !is conjugate to a generator of Z�(
). We may obviously assume that N and N0 are > 1.We note that ZG(
) is conjugate to the diagonal subgroup. Its image in X is a closedgeodesic. So the numbers N(
) are thus the lengths of closed geodesics, and the num-bers N0(
) are the lengths of prime geodesics.Theorem 34. With g the function in ( 22),ZZ�(
)nG �(g�1
g)d g= logN0N1/2�N�1/2 g(logN): (44)Proof. We may assume that 
 equals (43). Using Iwasawa coordinates (25) the integralis Z0log N0 d u Z�11 � � 1 �x1 � N1/2 N�1/2 !� 1 x1 �!dx =log (N0)j Z�11 �  N1/2 N�1/2 !� 1 (1�N�1)x1 �!dxand a change of variables proves (44). �
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Theorem 35. Let g be a smooth, even, compactly supported function and let h be itsFourier transform, de�ned by ( 23). If 14 + ti2 are the eigenvalues of � on �nH, and iflog(N) runs through the lengths of closed geodesics of �, where for each N we let N0 bethe length of the corresponding prime geodesic, we haveX h(ti)= vol(�nH)4� Z�11 th(t)tanh(�t)d t +XN logN0N1/2�N�1/2 g(logN): (45)This is the Selberg trace formula. See Selberg [38] and [39].Proof. We choose � as in Proposition 27. By Theorem 20 and Theorem 22, the h(ti)are the eigenvalues of �(�) on the eigenfunctions of the Laplacian, so the left side of(45) is the trace of �(�). By Theorem 23 and Theorem 34, the right side of (45) is thesum of the orbital integrals. Thus the identity follows from Theorem 33. �7 The Selberg zeta functionIn order to get useful applications the class of functions g and h in the trace formulamust be expanded.Theorem 36. The trace formula Theorem 35 remains true provided h is an even func-tion analytic in the strip im(z) 6 12 + �, such that h(r) = O(1 + jr j)�2�� in this strip.This assumption implies that the Fourier transform g(u)=O(e�(12+�)juj).Proof. See Hejhal [18], Chapter 1 Section 7 for the proof by an approximation argu-ment that Theorem 35 implies this stronger statement. �Theorem 37. (Weyl's law) . The number of j with tj6x is asymptotically14� vol(�nH)x2:This must be mentioned as the �rst signi�cant application of the trace formula. Notingthat �j= 14 + tj2, this means that the number of �j6x is asymptotically 14� vol(�nH)x.Proof. (Sketch) Brie�y, taking h(t) = e�t2T , the hyperbolic contributions in The-orem 35 are of smaller magnitude and the �rst term in (45) predominates. One obtainsP e��jT < 14�T vol(�nH), and Weyl's law follows from a Tauberian theorem. SeeHejhal [18], Chapter 2 Section 2. �The trace formula may be regarded as a duality between the length spectrum of �nH(that is, the set of lengths N of closed geodesics) and the numbers ti such that 14 + ti2 arethe eigenvalues of the Laplacian. A similar duality, which we next discuss, pertainsbetween the set of prime numbers and the zeros of the Riemann zeta function.
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Theorem 38. Let g be compactly supported, smooth and even, and leth(t)= Z�11 eitug(u)d u:Let 12 + i ti denote the zeros of � in the cricital strip. Thenh�� i2��X h(ti)+h� i2�=� 12� Z�11 h(t)�0� 1+ 2i t4 ��� 1+ 2i t4 � d t+ g(0)log(�)+ 2X log(p)pnp g(log(pn)): (46)Since h is assumed even h( � i/2) = h(i/2). However there are good reasons for writingthe formula this way. (See Remark 4 below.) Special cases (�explicit formulae�) werefound by Riemann, von Mangoldt, Hadamard, de la Vallee Poussin, and Ingham. Theseare discussed in Ingham [21]. Weil [43] formalized the duality.Proof. To prove this, let �(s) =�R(s)�(s), where �R(s) = ��s/2�� s2 �. The function h(t)is entire and we write h(t)=H(12 + i t), H(s)=h(� i(s� 1/2)). Consider, for � > 012�i Z1+��i11+�+i1 � 0(s)�(s) H(s)d s:Moving the path of integration to re(s) = � � and using the functional equation �(s) =�(1� s), we obtain the negative of this integral plus the sum of the residues; so1�i Z1+��i11+�+i1 � 0(s)�(s) H(s)d s=X h(ti)�h� i2��h�� i2�:We have � 0/� = �R0 /�R + � 0/�, and the integral over �R can be moved left to re(s) = 12 .We have1�i Z12�i112+i1 �R0 (s)�R(s) h�� i(s� 12)�d s=� g(0) log(�)+ 12� Z�11 h(t) �0� 1+ 2i t4 ��� 1+ 2i t4 � d t:On the other hand, we have � � 0(s)/�(s) =P �(n)n�s where �(pk) = log(p), p prime,while �(n)=0 if n is not a prime power. We have12�i Z2�i12+i1 H(s)n�sd s= g(log(n))np ;and assembling the pieces we get (46). �

26 Section 7



Remark 1. Moving the line of integration requires knowing that a path from 2 + i T to� 1 + i T can be found for arbitrarily large T where � 0/� is not too large. This can beaccomplished by choosing the path to lie about half way between a pair of zeros that arenot too close together. See Ingham [21], Theorem 26 on p. 71, where he proves that onecan always �nd t near T such that �/� 0 is O(log2(T )) on the line from 2+ i t to � 1+ i t.Remark 2. In practice the condition that g be compactly supported is too strong. It issu�cient that g and h be as in Theorem 36.Remark 3. If H is not too big in the left half plane we have12� Z�11 h(t)�0� 1+2i t4 ��� 1+2i t4 � d t= 12�i Z12�i112+i1 H(s)�0� s2 ��� s2 � d s=2Xn=01 H(� 2n);where the sum is over the residues at the poles of �(s/2).Remark 4. Let X be a nonsingular complete curve of genus g over the �nite �eld k =Fq. If P is a prime divisor of degree d(P ) we denote N(P ) = qd(P ). The zeta function ofX is Y (1�N (P )�s)�1= Qj=12g (1��jq�s)�1(1� q�s)(1� q1�s) ;where �i are the eigenvalues of the Frobenius map in H1(X; Ql), for any prime l � p.The Riemann hypothesis is that j�j j= qp . We write �j = q 12+i�j. Let g(n):Z!C be asequence which is even and nonzero for only �nitely many n, and leth(t)=Xn g(n)eitnlog(q):Thus h is entire, even, and periodic with period 2�/log(q). Thenh�� i2��X h(�j)+h� i2�=� (2g� 2)g(0)+XP Xm=11 d(P )g(md(P ))qmd(P )p :This function �eld analog of Theorem 38 may be proved by considering12�i Z22+2�it/log(q) �Z 0(s)Z(s) + (g� 1)log(q)�H(s)d s;where h(t) = H(12 + i t). It may be regarded as an application of the Lefschetz-Grothendieck �xed point formula applied to a correspondence on X, and the three con-tributions h(� i/2), P h(�j) and h(i/2) are the traces of the correspondence applied toH0(X), H1(X) and H2(X). See Patterson [35], Chapter 5 and the �rst part ofConnes [9].
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The analogy between the Selberg trace formula and the explicit formulae has beenthe source of much speculation. Whether this analogy is misleading or not remains to beseen. One major di�erence between the explicit formulae and the Selberg trace formulais that in the trace formula, P h(ti) appears with a positive sign, while in (46), itappears with a negative sign. As Connes [9] points out, this di�erence may be very sig-ni�cant.One tangible fruit of the analogy is Selberg's discovery of a zeta function which bearsa relationship to the trace formula similar to that of the Riemann zeta function to theexplicit formulae. With notation as in the previous section, Selberg consideredZ(s)= YfN0g Yk=01 (1�N0�s�k);where log(N0) runs through the lengths of prime geodesics.Theorem 39. Z(s) has analytic continuation to all s, with zeros at the negative inte-gers and at 12 � i tk, where 14 + tk2 are the eigenvalues of the Laplacian on �nH.Proof and discussion. To motivate the introduction of the Selberg zeta function, wewould like to take g(u)= e�juj(s�1/2)in the trace formula. Unfortunately we cannot use this function, but if we could, thegeometric side of the trace formula would be the logarithmic derivative of Z(s):Lemma 40. XfNg log(N0)N�(s�1/2)N1/2�N�1/2 = Z 0(s)Z(s) :Proof. Writing N =N0mXfN0g Xm=11 log(N0)N0�m(s�1/2)N0m/2�N0�m/2 = XfN0g Xm=11 log(N0)N0�ms1�N0�m :Substituting (1�N0�m)�1=Pk=01 N0�ks and interchanging the order of summation, thisequals XfN0g log(N0)N0�(s+k)1�N0�(s+k) = Z 0(s)Z(s) :This completes the proof. �Although we cannot use g(u)= e�juj(s�1/2), we may useg(u)= e�juj(s�1/2)2s� 1 � e�juj(��1/2)2�� 1 ;
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where s and � are distinct. This device of subtraction eliminates the discontinuity in g 0at u= 0. We will hold � �xed and vary s. Initially, they are both assumed to have largereal part. The Fourier transform h(t)= R �11 g(u)eitud u ish(t)= 1(s� 12)2+ t2 � 1(�� 12)2+ t2 :Next we prove, assuming that s and � have real part > 12 , thatZ�11 h(t)ttanh(�t)d t=2Xk=01 � 1s+ k � 1�+ k �: (47)To prove this, use the partial fraction decompositiont(s� 12)2+ t2 = 12i" 1(s� 12)� i t � 1(s� 12)+ i t #:The left side of (47) equals12i Z�11 " 1(s� 12)� i t � 1(�� 12)� i t #tanh(�t)d t� 12i Z�11 " 1(s� 12)+ i t � 1(�� 12)+ i t #tanh(�t)d t:Since tanh is odd, the two contributions are equal, and the �rst integral may be evalu-ated by moving the path of integration up into the upper half-plane, where the onlypoles are at the poles i(k+ 12) of tanh(�t), k=0; 1; 2;� . The residue of tanh(�t) at thesepoints is ��1, and we obtain (47).We now use the Selberg Trace Formula. We note that the volume of the fundamentaldomain is 4�(g� 1). So for these functions g and h we get:12s� 1Z 0(s)Z(s) � 12�� 1Z 0(�)Z(�) =� (2g� 2)Xk=01 � 1s+ k � 1�+ k �+X" 1(s� 12)2+ ti2 � 1(�� 12)2+ ti2 #:Fixing � and varying s, the right side has meromorphic continuation to all s. Multi-plying by 2s� 1 see that the poles of Z 0/Z are simple and have integer residues. HenceZ(s)= exp Z1s Z 0(s)Z(s) d shas analytic continuation to all s.8 CuspsThere are discontinuous subgroups � of G = SL2(R) such that �nH is noncompact buthas �nite volume. A well-known example is �= SL2(Z).
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We recall that SL2(C) acts on the Riemann sphere R = P1(C) = C [ f1g by linearfractional equations, extending (1) to complex matrices. Now R contains both the upperhalf plane H and the unit disk D= fz 2Cjjz j< 1g. We can map H to the unit disk D bythe Cayley transform C= 12ip � 1 � i1 i �: z	 z� iz+ i :We have CSL2(R)C�1= SU(1; 1)=�� a b� b� a� �jjaj2+ jbj2=1�:Thus if � is a discontinuous group of SL2(R) acting on H such that �nH has �nite vol-umen, then �D= C�C�1 a discontinuous group of SU(1; 1) acting on D such that �DnDhas �nite volume. The advantage of working with �D in the following discussion is thatD is bounded, so we can draw better pictures showing the behavior of the boundary.If �nH or equivalently �DnD is noncompact, we can still �nd a fundamental domainF for such a group whose boundary arcs are pairs of congruent geodesics, as in Proposi-tion 1, by the same method. As in Proposition 1, if one traverses the boundary in acounterclockwise direction, the congruent boundary arcs are always traversed in oppositedirections.We will call such a domain polygonal . With the removal of the assumption that �nHis compact, there is an important di�erence. Now the fundamental domain can go downto the boundary in one or more places. Let us call the point of the boundary of H or Dwhere the fundamental domain F of � or �D touches it a cusp of F .
P

Figure 1. Noncompact fundamental domains in D. Left: in�nite volume. Right: �nite volumewith one cusp (at the point P .)Figure 1 shows two polygonal domains inside of D bounded by noneuclidean poly-gons, whose boundaries are geodesic arcs as in Proposition 1. It is easy to see that thedomain on the left has in�nite volume, so only the type of boundary behavior in thesecond �gure is permitted for groups where �nH (or, equivalently �DnD) has �nitevolume. If F is a fundamental domain for �, then of course FD = CF is a fundamentaldomain for �D. We will consider these two groups and fundamental domains as equiva-lent, but our pictures will usually draw D and FD.Proposition 41. We may choose the fundamental domain F so that if P and Q are dis-tinct cusps of F, then there is no element 
 2� such that 
(P )=Q.
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Proof. (sketch) We suppose that there is such an element 
. Then we may modify thefundamental domain by cutting o� a piece N of F near Q and replacing it with
�1(N ). This procedure is illustrated in Figure 2.
P

Q = γ(P )

N

γ
−1

N

P

Figure 2. Left: a fundamental domain containing two congruent boundary points. Right: fun-damental domain for the same group after moving a boundary piece from the vicinity of Q upto P .It may be con�rmed that this procedure does not a�ect the fact that the boundaryconsists of congruent geodesic arcs that are traversed in opposite directions when theboundary is navigated counterclockwise.The diagram in Figure 2 suggests that we may perform this operation in such a wayas to produce a connected fundamental domain. This is true, though we have not provedit yet � one might have to move the piece 
�1N around a bit more. Suppose that wehave �missed� and obtained a disconnected fundamental domain as in Figure 3.

N

α1

α2

α3 α4

P

Figure 3.
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We have labeled the four arcs through P in order as �1, �2, �3 and �4. Theboundary arcs occur in congruent pairs, so �1 must be congruent to another arc, whichmust obviously pass through a cusp. Since we have already arranged that P is not con-gruent to any other cusp of F , we see that �1 must be congruent to another arc throughP , that is, to �2, �3 or �4. It cannot be �3 that it is congruent to, since we recall that ifthe boundary is traversed in a clockwise direction, congruent arcs are traversed oppo-sitely. Thus there is an element of � that can move �1 to �2 or �4. In either case, thisoperation will reduce the �gap� and repeating the process if necessary will eventuallyproduce a connected fundamental domain. �We will henceforth assume that the fundamental domain is chosen in this way.We classify an element g � 1 of SL2(R) as hyperbolic, parabolic or elliptic dependingon how many �xed points they have in R. If there are two �xed points on the boundaryR [ f1g, then g is hyperbolic; if there is a single �xed point on the boundary, g isparabolic; and if there are a pair of complex conjugate �xed points, one each in the inte-rior of H and H� then g is elliptic. We have a similar classi�cation of elements of SU(1;1) in terms of the �xed points in D and its boundary; thus g 2 SL2(R) will have thesame classi�cation as CgC�12SU(1; 1).Proposition 42. If g 2SL2(R) or SU(1; 1) then g is8<: hyperbolic if jtr(g)j> 2;parabolic if jtr(g)j=2;elliptic if jtr(g)j< 2:Proof. First suppose g =� a bc d �2 SL2(R). If z is a �xed point then z = az+ bcz+ d so z is aroot of cz2+(d� a)z � b=0:The discriminant of this quadratic is (d� a)2+ 4b c= (a+ d)2� 4. So there are two realroots if ja + dj > 2, one real root of ja + dj = 2 and two complex conjugate roots if ja +dj< 2. (This argument must be modi�ed slightly if c=0, when 1 is a �xed point.)If g 2 SU(1; 1), then g has the same classi�cation as C�1gC 2 SL2(R). Since conjuga-tion does not change the trace, the statement follows. �Proposition 43. Suppose that P is a point of the boundary of H (resp. D) that is acusp of F (resp. FD). Then � (resp. �D) contains a parabolic element �xing P.Proof. We will treat the case of a discontinuous group � acting on H. The case of thedisk is clearly equivalent.Let � and � be the two boundary arcs passing through P . Since the boundary arcsoccur in congruent pairs, there is some 
 2 � such that 
(�) is another boundary arc,and evidently 
(P ) is a cusp of �. Since F is chosen as in Proposition 41, 
(P ) =P andso 
(�)= �.
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We must show that 
 is parabolic. It has one �xed point on the boundary of H,namely P and so we must show that it has no other. Arguing by contradiction, let Q bea second boundary point such that 
(Q) = Q. Applying a linear fractional transforma-tion, we may assume that P = 1 and Q = 0. Thus 
(z) = az for some positive realnumber a. We may assume that a < 1, since if a > 1 we may interchange � and �, andhence replace 
 by 
�1. Now it is clear that the sequence of fundamental domains F ;
F ; 
2F ; � have accumulation points on the positive imaginary axis. This is a contra-diction, since � is a discontinuous group. �With Proposition 43 in mind, we may now give a more satisfactory de�nition of acusp. Let S � R [ 1 (resp. the unit circle) be the set of boundary a points of H(resp. D) such that 
(a) = a for some parabolic element. Clearly � (resp. �D) acts tran-sitively on S. We call an orbit of � on S a cusp. This is consistent with our previousterminology since, given Proposition 43, it is not hard to see that every cusp of a funda-mental domain that satis�es the conclusion of Proposition 41 must contain exactly onerepresentative from each orbit in S. So this notion of a cusp gives the same set of cuspsas our previous de�nition, but is intrinsic in the sense that it does not depend on thechoice of a fundamental domain.9 Fredholm equationsWe will deduce the meromorphic continuation of the Eisenstein series from the mero-morphic continuation of the resolvent of an operator. In this section we will prove astatement that is su�cient for our purposes.We begin by recalling the following property of compact operators.Theorem 44. (Fredholm Alternative) Let H be a Hilbert space, and let T :H� Hbe a compact operator. Let 0� � 2C. If T � �I is not invertible, then Tx= �x for somenonzero x2H.We will give a proof of this well-known fact in a special case, assuming that T is aself-adjoint operator of Hilbert-Schmidt type; this proof will give more information sinceit will also show that the resolvent (T � �I)�1 is a meromorphic function of �. Moreprecisely, (T � �I)�1� ��1I is a Hilbert-Schmidt operator that can be represented by akernel that is meromorphic as a function of �.Thus, let X be a locally compact Hausdor� space with a positive Borel measure, andlet K 2L2(X �X). We de�ne an operator T on H =L2(X) byTf(x)= ZX K(x; y)f(y)dx:The operator T is compact, and assuming K(x; y) =K(y; x) it is self-adjoint. The spec-tral theorem for compact operators guarantees that H has an orthonormal basis f�ig ofeigenvectors of T , and if T�i=�i�i thenK(x; y)=Xi �i�i(x)�i(y):
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The �i are real, �i� 0 as i� 1 andX �i2=ZX�X jK(x; y)j2dxdy <1: (48)De�ne another kernel K�(x; y) byK�(x; y)=K(x; y)+Xi �i2���i�i(x)�i(y):Note that the series is absolutely convergent by (48), so K� de�nes another Hilbert-Schmidt operator. It is a meromorphic function of �, with poles at the �i.Theorem 45. In this setting, let � be a nonzero complex number which is not amongthe �i. Then R�f(x)=���1f ���2 ZX K�(x; y)f(y)dxde�nes a bounded inverse of T ��I.Proof. If f is in the nullspace of T , then f is orthogonal to the �i and it follows thatR�f =� ��1f , so (T � �I)R�f =R�(T � �I)f = f . To prove the result, it is thus su�-cient to check that R��i=(�i��)�1�i. Indeed,R��i=� ���1���2��i+ �i2���i���i =��2(�i��)�1��(���i)��i(�i��)+�i2��i = (�i��)�1�i:The proof is now complete. �A Fredholm integral equation is one that may be writtenZX K(x; y)f(y)dy��f(x)=u(x);where f is the �unknown� and u is a given function. Since the left-hand side is (T ��I)f , we have proved that if K is a Hilbert-Schmidt kernel satisfying K(x; y) =K(y; x),and if � is not in the spectrum of T , then this equation has a unique solution R�u.10 Groups with one cuspIf the discontinuous subgroup � of G = SL2(R) is of co�nite volume but has cusps, thespectral theory is complicated by a continuous spectrum, coming from the Eisensteinseries. In this section we will consider the case where � has one cusp. We may assumethat � I 2 �, though of course it acts trivially on H. Without loss of generality, we mayassume that this cusp is at 1 and the stabilizer of 1 in � is�1=��� 1 n1 �jn2Z�:
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We will also denote G1=��� 1 x1 �jx2R�:For some positive real number T0, F will contain the setFT = fz=x+ iy 2F jy >T gfor all T > T0, and F �FT will be compact. We will also let G and GT be the preimagesof F and FT in G under the map g	 g(i); thus G is a fundamental domain for �nG.Finally, let HT = fz=x+ iy 2Hjy >T g; GT = fg 2Gjg(i)2HT g:Then FT (resp. GT) is a fundamental domain for �1nHT (resp. �1nGT).In contrast with Theorem 7, the operators �(�) are bounded but no longer compact.In order to obtain compact operators, we introduce truncation. Truncation was system-atically studied by Arthur, but for rank one groups it was already used by Selberg, andis used in his Göttingen lectures. If f is a locally integrable function on �nG, and if T isa su�ciently large real number, let f0 be its constant termf0(g)=Z�1nG1 f(ug)du=Z01 f�� 1 x1 �g�dx:Let us introduce the notation y(g)= im(g(i)):Thus y(g )= f1;0(g) in the notation (19). Let�T(g)=� 1 if y(g)>T ;0 otherwise: (49)Lemma 46. Suppose that T >T0 and that g2 G, 
 2�. Then�T(
g)=� 1 if y(g )>T and 
 2�1;0 otherwise:Proof. If y(
g) > T then for suitable 
1 2 �1 we have 
1
g 2 G. Since G is a funda-mental domain and g, 
1
g are both in it, this implies that 
1
=1, so 
 2�1. �Let �Tf(g)= f(g)� X
2�1n� �T(
g)f0(
g): (50)On the fundamental domain G, the truncation operator is easy to characterize: the con-stant term is subtracted above T . That is, we have�Tf(g)=� f(g) if g 2 G �GT ;f(g)� f0(g) if g 2 GT : (51)Indeed, this follows immediately from Lemma 46.The truncation operator has the following adjointness property.
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Proposition 47. Let f and h be two locally integrable functions on �nG. Then
�Tf ; h�= 
f ;�Th� (52)provided that the integrals de�ning the inner products hf ; hi and hf0; hi are absolutelyconvergent.Proof. We have 
�Tf ; h�=ZG f(g)h(g)dg�ZGT f0(g)h(g)dg;while 
f ;�Th�=ZG f(g)h(g)dg�ZGT f(g)h0(g)dg:It is thus enough to show thatZGT f0(g)h(g)dg=ZGT f(g)h0(g)dg:Indeed, we may writeZGT f0(g)h(g)dg=Z�1nGT f0(g)h(g)dg=Z�1nGT Z�1nG1 f(ug)h(g)dudg:Interchanging the order of integration and making the variable change g 	 u�1gproves (52). �Let �2Cc1(G) and let K�(g; h)=P �(g�1
h) as in (5). De�ne another kernel K��;Tby K��;T(g; h)=�gT�hTK�(g; h);where the meaning of the notation is as follows. We recall that K� is automorphic ineach variable separately. Thus we may apply the truncation operator to K� in both gand h.Theorem 48. Let � 2Cc1(G). Then ��;T(�) =�T � �(�) ��T is a compact operator onL2(�nG). We have, for f 2L2(�nG)��;T(�)f(g)= Z�nG K��;T(g; h)f(h)dh:The kernel K��;T(g; h) is of weakly rapid decay in the following sense. Let us denoteg=� 1 x1 � y1/2 y�1/2 !�g; h=� 1 u1 � v1/2 v�1/2 !�h;where �g and �h2 SO(2). There exist constants A and B, depending only on � such thatif g; h 2 G, with then K��;T(g; h) = 0 unless A < y(g)y(h)�1 < B. Moreover, if N > 0 isany constant, then there is a constant CN > 0 such thatjK��;T(g; h)j<CN y(g)�N
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as y(g)� 1 uniformly in h.Proof. By (6) we have��;T(�)f(g)= Z�nG �gTK�(g; h)�Tf(h)dh:Now by (52) we may move the truncation in h from f to ��TK�, whence (48).Our aim is to prove that the kernel K��;T is Hilbert-Schmidt, so that ��;T(�) is acompact operator.Let K�1(g; h)= X
2�1 �(g�1
h):The �rst step will be to show that there is a compact subset 
 of G �G such that(g; h)2 (G �G)�
 implies K�(g; h)=K�1(g; h): (53)Since supp(�) is compact, there exists a constant "> 0 such that if t < " then� � t1/2 t�1/2 !�0!=0for all �; �02 SO(2). There exists a constant c1> 0 such that if g 2 G then y= y(g)> c1.Moreover, there exists a constant constant U such that if 
 2 � � �1, and if g 2 G, h 2GU then y(
h)<c1". This means thatg�1
h=�g�1 t1/2 t�1/2 !�0where t= y�1y(
h)<", and so�(g�1
h)� 0; g2 G ; h2GU implies 
 2�1:Therefore if h 2 GU and g 2 G then K�(g; h) = K�1(g; h). Similarly, there exists a U 0such that if g 2 GU 0 and h2 G then K�(g; h)=K�1(g; h). We may therefore take 
 to bethe complement in G �G of (G �GU)[ (GU 0�G), which is compact, and (53) is proved.Next we show that if K =K� or K��;T then there are positive constants A < B suchthat for g; h2 G we have K(g; h)= 0 unlessK(g; h)� 0 implies A< y(g)y(h) <B: (54)Thus if g or h goes to the cusp at in�nity within the fundamental domain G, and (g; h)remains in the support of K, then g and h both go to the cusp, and at the same rate. Itis easy to see that if f is any locally integrable function on �nG then y(supp�Tf) �y(supp f); applying this fact to K in both variables shows that if (54) is true for K =K� then it is also true for K��;T with the same constants A and B.
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Thus to prove (54) we may assume that K = K�. Clearly it is enough to check thiso� the compact set 
, and so we may actually assume that K =K�1. When 
 2 �1 wehave g�1
h=�g�1 (y�1v)1/2 �(y�1v)�1 !�h�1where the value � is unimportant. It is easy to see that if this is to lie in a given com-pact subset of G, particularly supp(�), then y�1v is restricted to a compact subset ofR+�, which is the content of (54).Now to show that the kernel K��;T is Hilbert-Schmidt, it is su�cient to show that itis of rapid decay as y(g); y(h)� 1, because K��;T is obviously bounded on any com-pact subset of G � G. In view of (54), y(g); y(h) must go to 1 at about the same rate.If y(g) and y(h) are su�ciently large then, in view of (53) we haveK�(g; h)=X�2Z Fg;h(�x+u+ �)where Fg;h(�)= � �g�1 y�1/2 y1/2 !� 1 �1 � v1/2 v�1/2 !�h!:Now in GT , truncation in g subtracts the constant term producingX�2Z Fg;h(�x+u+ �)�Z01 X�2Z Fg;h(�x+u+ �+ t)dt =X�2Z Fg;h(�x+u+ �)�Z�11 Fg;h(�x+u+ t)dt:As a function of h, this function has no constant term since, it is easy to see, integratingu from 0 to 1 produces zero. Thus the second truncation in h does not change theresult, so K��;T(g; h)=X�2Z Fg;h(�x+u+ �)�Z�11 Fg;h(�x+u+ t)dt:Now by the Poisson summation formula we haveK��;T(g; h)=Xn� 0 Z�11 Fg;h(�x+u+ t)e�2�intdt:The n-th term in this sum isyp e2�in(u�x) Z�11 � �g�1� 1 t1 � (y�1v)1/2 �(y�1v)�1 !�h!e�2�i yp ntdt:As the Fourier transform of a smooth, compactly supported function, this is rapidlydecreasing as y� 1; that is, it is O(y�N) for all N ; the decay is uniform in �g, �h andy�1v, all of which are restricted to compact sets, remembering (54).It is now evident that ZG�G kK��;T(g; h)k2dg dh<1;
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so �T � �(�) ��T is a Hilbert-Schmidt operator. In particular, it is compact. �Let L02(�nG) be the subspace of �cusp forms� f 2L2(�nG) satisfyingZ01 f�� 1 x1 �g�d x=0 (55)almost everywhere. It is easy to see that this space is invariant under the action of G,and is �(�)-stable.Also let L02(�nH) be the right K-invariant elements of L02(�nG), which may beregarded as functions on H. It is not true that �(�) is a compact operator. However, itsrestriction to the space of cusp forms is compact.Theorem 49. (Gelfand, Graev and Piatetski-Shapiro) If �2H, the restriction of�(�) to L02(�nG) is a compact operator. Indeed, the restriction of �(�) to L02(�nG) coin-cides with �(�)�;T.Proof. This follows from Theorem 48 since the truncation operator �T clearly coincideswith the identity operator on the space of cusp forms. �If f is a function on ��G, then we say that f is of weakly rapid decay if for all N >0 there exists a constant CN such that f(g) < CN y(g)�N) for all g 2 G. If f is smooth,and if for all D 2 U(g) (regarded as a ring of di�erential operators on G) the functionDf is of weakly rapid decay, then we say that f is of rapid decay .Theorem 50. (i) L02(�nH) has a basis consisting of eigenfunctions of �.(ii) L02(�nG) decomposes as a direct sum of irreducible invariant subspaces.(iii) Any K-�nite element of an irreducible invariant subspace L02(�nH) is smooth and ofrapid decay.Proof. For parts (i) and (ii), the proofs Theorem 9 and Theorem 11 are easily adapted.For (iii), it is su�cient to show that if V � L02(�nG) is an irreducible subspace andf 2 V (k) then f is of rapid decay. We may �nd � 2 H satisfying �(��g��) =eik(�+�)�(g), and such that y! � y1/2 y�1/2 !is a positive function of mass 1 concentrated near y=1. Then �(�)f is near f , thereforenonzero, and it is in V (k), which is one-dimensional by Proposition 5, so it is propor-tional to f . Since �(�)f is the convolution of f with a smooth function, it is smooth asa function on G. It follows from the weakly rapid decay of the kernel K��;T(g; h) that�(�)f is of weakly rapid decay, and thus so is f . Moreover by Proposition 2.4.5 ofBump [5], the SO(2)-�nite vectors in V are smooth vectors, the space of SO(2)-�nitevectors is closed under the action of U(g). Thus or D 2 U(g) the function Df satis�esthe same assumptions as f , and is of weakly rapid decay, proving (iii). �
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As in the case of compact quotient, the Laplacian acts by scalars on each irreducibleone-dimensional subspace. The cuspidal spectrum behaves much as the entire spectrumin the compact case. On the other hand the orthogonal complement of L02(�nG) con-tains a continuous spectrum. The eigenfunctions of the Laplacian relevant to the spec-tral theorem � Eisenstein series � are themselves not square integrable.To understand how this can be, and to get some intuition as to the nature of thecontinuous spectrum, consider the following example. The group R acts on itself bytranslation, and the Laplacian � d2/dx2 is an invariant di�erential operator. It haseigenfunctions fa(x) = e2�iax with eigenvalues a2. Any L2 function has a Fourier expan-sion �(x)= Z�11 �̂(a)fa(x)d a;but fa is itself not L2. If T � R is measurable, the Fourier transforms of L2 functionssupported on T form an invariant subspace. There are no minimal invariant subspaces,so L2(R) doesn't decompose as a direct sum of irreducible representations.Proposition 51. The seriesE(z; s)= X
2�1n� ysjcz+ dj2s ; 
=� a bc d �converges absolutely if re(s)> 1 when z 2H.Proof. Let � be the real part of s. What we need to show is that if � > 1 thenX�1n� y�jcz+ dj2� <1: (56)We de�ne a measure �� on the upper half plane by ��= y��2d x^ d y. Let B be a smallneighborhood around z 2H. The Jacobian of the map z! 
(z), where 
=�a bc d�2SL2(R)is jc z+ dj�4. Hence the ��-volume of 
(B) is (approximately) jc z+ dj�2�vol(B).We may choose the representatives 
 2 �1n� so that the images 
(B) all lie withinthe rectangle 06 x6 1, 0< y 6 C for some constant C. (Actually this is not quite true.If one 
(B) happens to lie on the left or right edge of this region, cut it into two piecesalong this edge and move one piece by � 1 back into the region.) This rectangle has�nite volume, so P�1n� jc z+ dj�2�<1, which implies (56). �If g 2G, we will also denote E(g; s)=E(z; s) where z= g(i). ThusE(g; s)= X
2�1n� fs;0(
g): (57)We will eventually prove that this has meromorphic continuation to all s2C. More gen-erally, if fs is any SO(2)-�nite element of Ps+ we can de�neE(g; fs)= X
2�1n� fs(
g):
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As s varies, we may organize the functions fs into a family by requiring that the restric-tion of fs to SO(2) is independent of s. Since fs is to be SO(2)-�nite, this means thatfs is a �nite linear combination of the functions fs;k with k an even integer, that werede�ned by (19). When re(s) > 1, the series is analytic function of s, and in this gener-ality E(g; s; fs) is an analytic function of s. More generally still, we may introduce aunitary character �: �� C� such that �( � I) = ( � 1)" with " = 0 or 1; then let fs 2Ps� be a family of SO(2)-�nite vector, where we use Ps+ if " = 0 and Ps� if " = 1. Thenwe may consider E(g; fs; �)= �(
) X
2�1n� fs(
g);and in the same way one has meromorphic continuation as a function of s.The analytic continuation of the Eisenstein series is closely connected with the ana-lytic continuation of its constant termE0(g; fs; �)=Z01 E�� 1 t1 �g; fs; ��d t: (58)We recall that an intertwining operator M(s):Ps�!P1�s� de�ned by (18).Proposition 52. Assume re(s) > 1. There exists an analytic function c(s) independentof the choice of fs2Ps� which is bounded on vertical strips (to the right of 1) such thatE0(g; fs; �)= fs(g)+ c(s)M(s)fs: (59)Proof. Substitute the de�nition of E(g; fs; �) into (58). The coset �1 in �1n� con-tributes fs;k. The remaining terms contributeZ01 X
2�1n�/�1
� �1 X�2�1 �(
�)fs�
�� 1 x1 �g�dx= X
2�1n�/�1
� �1 �(
)Z�11 fs�
� 1 x1 �g�dx:If 
=� a bc d �� �1 then c= c(
)� 0 and
=� c�1 ac �� � 11 �� 1 d/c1 �;so the variable change x!x� d/c shows thatZ�11 fs�
� 1 x1 �g�d x= jcj�2sM(s)fs;k:Thus (59) is satis�ed wherec(s)= X
2�1n�/�1
� �1 �(
)jc(
)j�2s: (60)
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Since we are within the region of absolute convergence of the Eisenstein series thisDirichlet series is convergent if re(s) > 1, and (60) shows that it is an analytic functionbounded in vertical strips. �Example. Let us consider E(g; s)= X�1n� fs;0(
g)where � = SL(2; Z). Then in (60), the number of 
 with c(
) = c is �(c), where (in thisexample only) � denotes the Euler totient function. Thusc(s)=Xc=11 �(c)c�2s= �(2s� 1)�(2s) :The analytic continuation of c(s) can be proved directly, and so can the analytic contin-uation of the Eisenstein series. For example, let E�(z; s) = ��s�(s)�(2s)E(g; s) wherez= g(i)=x+ i y 2H and t > 0. Let�(t)= X(m;n)2Z2 e��jmz+nj2t/y:It follows from Euler's integral for the Gamma functionE�(z; s)= 12 Z01 (�(t)� 1)ts d tt :The Poisson summation formula implies that �(t)= t�1�(t�1). From this one getsE�(z; s)= 12 Z01 �(t)(ts+ t1�s) d tt � 12s � 12� 2s:This expression gives the analytic continuation and functional equation. Such methodsdo not work in general, which is why Selberg's proof of the analytic continuation of theEisenstein series for arbitrary � in 1953 was a breakthrough.The literature on the analytic continuation of Eisenstein series is quite extensive.Proofs may be found in Borel [4], Cohen and Sarnak [7], Colin de Verdier [8], Efrat [10],Elstrodt [11], Fadeev [12], Harish-Chandra [17], Hejhal [19] (Chapter 6 and Appendix F,with discussion of the literature on p. 225), Kubota [26], Jacquet [23], Langlands [30],Lax and Phillips [31], Moeglin and Waldspurger [32], Müller [33], Osborne andWarner [34], Venkov [42] and Wong [46]. The most general treatments are Langlands'historically important work [30] and the careful modern treatise of Moeglin and Wald-spurger [32].This body of literature all owes something to Selberg, who found three proofs, in1953, 1957 and 1967. Generally speaking, one shows the analytic continuation of theEisenstein series and its constant term simultaneously. The basic principle is that theresolvent of an operator has analytic continuation to the complement of its spectrum.Applied as for example in Kubota [26], Venkov [42] or Appendix IV of Langlands [30] tothe resolvent of �, this gives the analytic continuation of the Eisenstein series to theregion re(s)> 12 , s � (12 ; 1]. In this approach, similar to Selberg's earlier proofs, obtainingthe meromorphic continuation to the entire plane then presents some di�culties.
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Selberg and Bernstein realized independently that these di�culties could be avoidedby combining the resolvent principle with another one, the insight that if a system ofinhomogeneous linear equations having analytic coe�cients has a unique solution, thenthe solution has meromorphic continuation to wherever the coe�cients in the linearequations do. In this method of proof, the linear equations are integral equations ofFredholm type Bernstein's work in the 1980's came later than Selberg's 1967 proof,which was not published by Selberg but shown to Hejhal and to Cohen and Sarnak, andwhich in�uenced Efrat [10] and Wong [46]. Selberg's published comments on the idea ofusing Fredholm equations are in his introduction (written in 1988) to his 1955 Göttingenlectures [39].Despite Selberg's priority in the use of Fredholm equations to prove the analytic con-tinuation of Eisenstein series, Bernstein's rediscovery was been extremely important inclarifying the issues to the world at large. Moreover, Bernstein also simpli�ed the ana-lytic continuation of Eisenstein series in several variables, and in addition to the analyticcontinuation of Eisenstein series he gave other applications of the idea, such as to theanalytic continuation of the intertwining integrals M(s) and their p-adic analogs ([1],[2]), and his method has become an standard technique in the representation theory ofp-adic groups. Thus his work has been extremely in�uential.In this section we will prove the meromorphicity of E(z; s), or equivalently the func-tion E(g; s) de�ned by (57). Thus fs = fs;0 is the SO(2)-�xed vector in Ps+. The proofwe give is based on Jacquet [23]. Instead of using the resolvent of �, we will use theanalytic continuation of the resolvent of the compact operators ��;T(�) with �2Cc1(G),which is a Fredholm operator.In order that we may treat E(g; s) as a vector element of some function space, wewill write Es(g) = E(g; s) interchangeably. It does not live in L2(�nG), but it does livein the space of locally square-integrable functions Lloc2 (�nG). This is a space whosetopology is de�ned by the set of semi-norms given by the L2 norm on compact sets. It isa complete, locally convex space with this topology, in other words a Frechet space.In this section we will denote �̂(s)= �s(1�s)(�);where �� is the character of H� de�ned by (15).Proposition 53. If re(s)> 1 we have�(�)Es= �̂(s)Es: (61)Proof. By (14) we have �(�)fs;0= �s(1�s)(�)fs;0= �̂(s)fs;0(g)Since �(�) is an average of right translates of fs;0, this operator commutes with lefttranslation by 
. Therefore (�(�)fs;0)(
g)= �̂(s)fs;0(
g)for all 
 2�. Summing over 
 we obtain (61). �Lemma 54. Let �2H�. Then �(�) is self-adjoint if � is real-valued.
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Proof. If g 2 SL2(R), then g and g�1 lie in the same SO(2) double coset. Indeed, wecan write g=�d�0, where �; �02SO(2) and d is diagonal, andd=wd�1w�1; w=� � 11 �2SO(2):Thus if � is real-valued then �(g�1) = �(g), which implies that (7) is satis�ed, so � isself-adjoint. �Lemma 55. Let 
 be a compact region of C. Then there exists � 2 H� which is real-valued and such that �̂ is nonvanishing on 
. Moreover, if s= 12 + it2
 then unless t isreal or pure imaginary (so s is real) we may choose � so that �̂(s) is not real.Proof. From the Taylor expansion sin(x)/x= 1� 13!x2+ 15!x4�� we see that if " > 0 issu�ciently small, then sin("x)/("x) is nonvanishing on 
. Moreover, if s = 12 + it 2 
 isgiven such that t is not real or purely imaginary, then we can also choose " so thatsin("x)/("x) is not real at x= s.Now we let gi be a sequence of smooth, even, compactly supported functions thatconverge uniformly on R to the 1/2" times the characteristic function of the interval [�"; "]. By Proposition 27 there is a corresponding sequence of functions �i2H� related tothe gi by (22). By Theorem 22 we have�̂i� 12 + it�=Z�11 gi(u)eiutdu� 12" Z�"" eiutdu= 1"tsin("t)uniformly on 
. The statement is now clear. �Let us denote �(s)= c(s) �p ��s� 12 ��(s) ;so that by (20) with k=0 and (59) the constant termE0(g; s)= fs;0(g)+ �(s)f1�s;0(g): (62)Let EsT be the function EsT(g)= X�1n� �T(
g)fs;0(
g)where �T is de�ned as in (49).Lemma 56. If T >T0 and g 2G we haveEsT(g)=� fs(g) if g 2GT;0 otherwise: (63)The function EsT(g) is entire as a function of s and is square-integrable if re(s)< 12 . Wehave �TEs=Es�EsT � �(s)E1�sT : (64)
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Proof. The characterization (63) follows from Lemma 46, the fact that EsT is entire isclear, and the square-integrability when re(s) < 12 is easily checked. Now (64) followsfrom (51) and (62). �Proposition 57. If �2L02(�nH), and if re(s)> 1 we haveZ�nH �(g)E(g; s)dg=0:(The integral is absolutely convergent.)Thus we say that the Eisenstein series is �orthogonal� to the cusp forms, though thisis slightly wrong since Es is not in L2(�nG).Proof. The convergence of the integral follows from the rapid decay of f in The-orem 50. We unfold the integral, using the automorphicity of �:Z�nH �(g) X�1n� fs;0(
g)dg = X�1n� Z�nH �(
g)fs;0(
g)dg= Z�1nH �(g)fs;0(g)dg= ZG1nH Z�1nG1 �(ug)fs;0(ug)dudg:since fs;0(ug)= fs;0(g) this vanishes by the cuspidality of �. �Theorem 58. (Selberg) The Eisenstein series E(g; s) has meromorphic continuationto all s and satis�es the functional equationE(g; s)= �(s)E(g; 1� s): (65)For all s such that E(g; s) does not have a pole, it is a smooth function of g, and �TEsis square-integrable. The values of s where E(g; s) has a pole are the same as the valuesof s for which �(s) has a pole. There are only a �nite number of poles with re(s) > 12 ,and these all lie on the real line. If E(g; s) has a pole with re(s)> 12 , then the residue issquare-integrable. If � is an element of L02(�nH), and if s is not a pole of Es, thenZ�nG E(g; s)�(g)dg=0: (66)(The integral is absolutely convergent.) The function �(s) satis�es�(s)�(1� s)=1: (67)If re(s)= 12 , then j�(s)j=1.Proof. Let 
 be a connected, relatively compact open subset of C that intersects thedomain fre(s) > 1g of absolute convergence of E(g; s). By Lemmas 54 and 55 we maychoose � 2 H� such that �(�) is self-adjoint and �̂ is nonvanishing on 
. We will provethat we have meromorphic continuation of both Es and � to 
.
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We will show that �TEs and is meromorphic as a function 
� L2(�nH). We willalso see that �(s) is meromorphic and does not have a pole at s unless �TEs also has apole there. If this is established it will follow that Es is a smooth function of g where itdoes not have a pole in s, since it will satisfy (61); thus Es = �TEs + EsT + �(s)E1�sT isthe convolution of a locally integrable function with a compactly supported smoothfunction, hence smooth.Let us de�ne FsT =�T�(�)EsT :Lemma 59. The function FsT(g) is bounded and compactly supported modulo � as afunction of g. It is entire as a function of s.Proof. Let g 2 GT . If y(g) is su�ciently large, then y(gh) > T for all h in the supportof �. For such g we have�(�)EsT�� 1 x1 �g�= Z �(h)EsT�� 1 x1 �gh�dh=Z �(h)fs�� 1 x1 �gh�dh:This is independent of x, so �(�)EsT(g) agrees with its own constant term when y(g) issu�ciently large. Thus FsT(g) = 0 for all such g. This proves that FsT(g) is compactlysupported. On the other hand, it is clearly dominated by �(�)fjsj, which is continuous,and so it is bounded. �Working in L2(�nH), letesT =� (�T�(�)�T � �̂(s))�1FsT : (68)This is the unique solution to the Fredholm equation(�T�(�)�T � �̂(s))esT =FsT :By Theorem 45, esT is a meromorphic function of s, analytic as long as �̂(s) is not aneigenvalue of the compact operator �T�(�)�T . We will show that if re(s)> 1 we have�TEs= esT + �(s)e1�sT : (69)Since �T�(�)�T � �̂(s) is invertible when �̂(s) � Spec(�T�(�)�T), it is su�cient to showthat applying this operator to both sides has the same result. In other words, (69) fol-lows immediately from(�T�(�)�T � �̂(s))�TEs=�FsT + �(s)F1�sT ;which in turn follows from (64) and (61), and the de�nition of FsT .Since esT is a meromorphic function 
 � L2(�nH), by (69) the function �TEs ismeromorphic wherever �(s) is meromorphic. Now let us show that �(s) is meromorphicon 
. De�ne E~s=EsT + esT :
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Observe that E~s is a meromorphic analytic function of s 2
 taking values in Lloc2 (�nH),the Frechet space of locally square-integrable functions, since EsT is an entire functiontaking values in Lloc2 (�nG), and esT is meromorphic on 
, taking values in L2(�nH).Moreover, E~s is square-integrable if re(s)< 12 (since then EsT is L2). By (64) and (69) wehave Es=E~sT + �(s)E~1�sT (70)Apply �(�) to (70). By (61) we have�(s)(�(�)� �̂(s))E~1�sT =� (�(�)� �̂(s))E~sT : (71)Since (�(�) � �̂(s))E~sT is meromorphic with values in Lloc2 (�nH), this proportionalitygives the meromorphicity of �(s) provided (�(�)� �̂(s))E~1�s is not identically zero. Tosee this, we may take re(s) > 12 such that �̂(s) is not real. Then E~1�s is a vector in theHilbert space L2(�nG), and since �(�) induces a self-adjoint operator, its eigenvalues arereal, and �̂(s) is not, so E~s cannot be a eigenvector.By (71) and the fact that �̂(s) = �̂(1 � s) we have (67), which together with (70)implies the functional equation (65).Let � 2L02(�nH) be a cusp form. Then (66) is proved in Proposition 57, when re(s)>1. but both sides are meromorphic functions of s. Indeed, the integral on the left side isconvergent where Es does not have a pole, since Es = �TEs + EsT + �(s)E1�sT , where�TEs is square integrable while EsT(g) and �(s)E1�sT (g) are of polynomial growth in y=y(g) as y� 1, while � is of rapid decay. Thus (66) remains true by analytic continua-tion for all s where Es is not polar.Next we show that if Es has a pole at s = s0 then so does �(s). If not, observe thatthe constant term (62) has no pole, so the residue �= ress=s0Es is in L02(�nH). Considerthe integral Z�nH Es(z)�(z) dx^ dyy2 :By (66), this is zero, but taking the residue at s = s0 produces the L2 norm of �(z),which is not zero. This contradiction proves that the poles of Es and the poles of �(s)are the same.We will show that if re(s0) > 12 and Es has a pole at s = s0, then s0 is real. If not,then by Lemma 55 we can choose � so that �̂(s0) is not real. Then since �T�(�)�T isself-adjoint, �̂(s0) cannot be an eigenvector, and so by Theorem 45 and (68), esT has nopole at s0. On the other hand, EsT is entire. Thus E~sT = EsT + esT has no pole at s = s0.Similarly, since �̂(1 � s) = �̂(s), e1�sT has no pole at s = s0. This means that E~1�sT =e1�sT + E1�sT has no pole at s = s0. Since re(1 � s0) < 12 , E1�s0T is square-integrable, andso E~1�s0 2 L2(�nH). Now �(�), though not compact, is a self-adjoint bounded operator,so its eigenvalues are real, and �̂(�) is not. Therefore (�(�) � �̂(s0))E~1�s0T is nonzero.Since we are assuming Es has a pole at s = s0, �(s) has a pole there. We see that theleft-hand side of (71) has a pole but the right-hand side does not, which is a contradic-tion.
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Next observe that �(s�) = �(s), so j�(s)j = j�(s�)j. If re(s) = 12 , this means j�(s)j =j�(1� s)j so by (67) we have j�(s)j=1 on the line re(s)= 12 . This implies that Es has nopoles on the line re(s)= 12 .Finally, if re(s0)> 12 and Es has a pole at s0, then (64) shows that the residue isress=s0�TEs+ME1�s0T ;where M = ress=s0�(s). Both terms are square integrable. �
11 The Maass-Selberg relationTheorem 60. (Selberg) We haveZ�nH �TE(z; s)�TE(z; s0)dx^ dyy2 =T s+s0�1� �(s)�(s0)T 1�s�s0s+ s0� 1 + �(s)T s0�s� �(s0)T s�s0s0� s : (72)Harish-Chandra and Langlands described this as the Maass-Selberg relation but it ismore correctly attributed to Selberg. However, the name has stuck, and we will refer toit as the Maass-Selberg relation. Selberg gave two proofs. One was in the original ver-sion of the Göttingen notes, the other is in a comment added when these were publishedin his collected works. We will reproduce the latter proof.Proof. Assuming re(s0) > re(s) + 1 and re(s0) > 1, we may proceed as follows. Let�T(y)= 1 if y >T , 0 otherwise. Z�nH �TE(z; s)�TE(z; s0)dx^ dyy2 =Z�nH E(z; s)�TE(z; s0)dx^ dyy2 =ZF E(z; s)(E(z; s0)� �T(y)ys0)dx^ dyy2 � �(s0) ZFT E(z; s)y1�s0dx^ dyy2 :The two terms may be handled separately as follows. The �rst term equalsZF E(z; s)(E(z; s0)� ys0)dx^ dyy2 + ZFT E(z; s)ys0dx^ dyy2 =ZF E(z; s) X
2�1n(���1) y(
z)s0 dx^ dyy2 + ZFT E(z; s)ys0dx^ dyy2 =ZF1�F E(z; s)ys0 dx^ dyy2 +ZFT E(z; s)ys0dx^ dyy2 ;
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where F1 = fx + iy jjxj < 12g is a fundamental domain for �1. Since the disjoint unionof F1�F and FT is fx+ iy jjxj< 12 ; y <T g, this givesZ0T (ys+ �(s)y1�s)ys0dyy2 = T s+s0�1s+ s0� 1 � �(s)T s0�ss0� s :The second term gives�(s0)ZT1 (ys+ �(s)y1�s)y1�s0dyy2 =� �(s0)T s�s0s� s0 + �(s)�(s0) T 1�s�s01� s� s0 :The identity is now proved for re(s0) su�ciently large, but since both sides are meromor-phic, it now follows for all s0 where they are not polar. �As a special case, we may take s=�� it, s0=�+ it with �; t real, to obtainZ�nH ���TE(z; �+ it)��2dx^ dyy2 =T 2��1� j�(�+ it)j2T 1�2�2�� 1 + �(�� it)T 2it� �(�+ it)T�2it2it : (73)Corollary 61. On the region 12 <�< 32 , t > 1 the factor �(�+ it) is bounded.Proof. Fix any T > T0, with T0 as in Section 10. Since (73) is positive, writing j�(� +it)j=M , we have M2<bM + c; b= 2�� 1t T 2��1;where b= 2�� 1t T 2��1; c=T 4��2:Thus M is bounded by the positive root of the quadratic equation M2 � bM � c = 0,that is, by 12(b+ b2+4cp ). The statement follows since b and c are both bounded in theregion in question. �Corollary 62. We have Z�nH �����TE(z; 12 + it)����2dx^ dyy2 =2log(T )� �0�� 12 + it�+ �� 12 � it�T 2it� �� 12 + it�T�2it2it :Proof. This follows from (73) on letting � � 12 and using L'Hôpital's rule, remem-bering that �(12 + it)�(12 � it)=1. �Corollary 63. Let � 2 (12 ; 1] be a place where E(z; s) and �(s) has a pole. If � 2L2(�nH) is the residue of E(z; s) at � then the residue of � is h�; �i. In particular � >0.
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Proof. The Eisenstein series E(z; s) and �(s) are both real valued when s 2R, so � isreal. Let be the residue of E(z; s). Then multiplying (72) by (s� �)(s0� �) and takingthe limit as s; s0� � we obtainT s+s0�1� �(s)�(s0)T 1�s�s0s+ s0� 1 + �(s)T s0�s� �(s0)T s�s0s0� s
�T�;�T��= � �2T 1�2�2�� 1 + �This proves that �> 0, and taking the limit as T� 1 gives h�,�i= �. �12 Spectral expansionThe spectral expansion was obtained by Roelcke [37], modulo the analytic continuationof the Eisenstein series. Numerous accounts are in the literature, of which Gode-ment [15], [16] is a good and in�uential one. In this section we discuss the spectralexpansion for L2(�nH) where as in Section 6 the group has a single cusp. We willassume the analytic continuation of the Eisenstein series (Theorem 61).Let � be a K-�nite element of Cc1(G1nG). The incomplete theta series��(g)= X�1n� �(
g) (74)is something like an Eisenstein series but it is not a �-eigenfunction. (Godement'sterm �incomplete theta series� seems something of a misnomer.) If f 2C1(�nG) letf0(g)=Z�1nG1 f(u g)dube its constant term, which is in C1(G1nG). As a notational point, if f is itselfindexed, i.e. f = fi we will write fi0 instead of fi;0 for the constant term.Proposition 64. The incomplete theta series and constant term maps are adjoints; thatis, if f 2C1(�nG) and �2Cc1(G1nG) we haveZ�nG ��(g)f(g)d g=ZG1nG �(g)f0(g)d g: (75)Proof. The left side is Z�nG X
2�1n� �(
g)f(g)d g= Z�1nG �(g)f(g)d g=ZG1nG Z�1nG1 �(u g)f(u g)dud g= ZG1nG �(g) Z�1nG1 f(u g)d ud gwhich equals the right side. �
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The incomplete theta series are compactly supported modulo �, hence are square-integrable. For this reason they are easier to work with than the Eisenstein series them-selves.Proposition 65. L02(�nG) is the orthogonal complement in L2(�nG) of the closed sub-space spanned by the incomplete theta series.Proof. Immediate from Proposition 64, since the cuspidal spectrum is characterized byvanishing of its constant terms. �For the remainder of this section, we make the simplifying assumption that the char-acter � to be trivial and we only consider functions on G which are right invariant byK, that is, which may be regarded as functions on H. We will therefore denote E(g; fs;0;1) as just E(g; s), or as E(z; s) where z = g(i). We will also denote fs = fs;0. We willwrite the constant term in the formE0(g; s)= fs(g)+ �(s)f1�s(g): (76)(See Proposition 52.)Using Theorem 50, let �i be a basis of L02(�nG). Also, note that by Theorem 61there may be a �nite number of poles of the Eisenstein series E(z; s) at locations �j 2(12 ; 1] (j =1;� ; N). These are also poles of �(s). Let �j be the residue of �(s) at s=�j.By Corollary 63, �> 0 and if we de�ne�j= 1�jp ress=�j E(g; s); (77)then the �j have norm 1 in L2(�nH).Proposition 66. The constant term of �j is �p f1��j. The functions �j are real valued,square integrable and orthogonal to the cusp forms.Proof. Part (i) is immediate from (76) since the �rst term on the right has no pole butthe second one does. The �j are real valued since the �j are real. The fact that theresidue is square integrable is already noted in Theorem 58, and the fact that the con-stant term of �j is �p f1��j follows from (76). Taking the residue in Proposition 57shows that the �j are orthogonal to the cusp forms. �Proposition 67. We have h��; �ji= �jp ��(�j):Proof. This follows from Proposition 64, Proposition 66 and from the de�nitionof ��. �Proposition 68. Let �2Cc1(G1nG/K). De�ne��(s)=ZG1nG �(g)f1�s(g)d g: (78)
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This is an entire function of s and t! ��(� + i t) is of Schwartz class for all real �. Forreal � we have �(g)= 12�i Z��i1�+i1 ��(s)fs(g)d s: (79)(The contour integral is over the vertical line with real part �.) Moreover if � > 1 wehave ��(g)= 12�i Z��i1�+i1 ��(s)E(g; s)d s (80)Proof. We have ��(s)=Z01 � y1/2 y�1/2 !y�s d yy :Since � is compactly supported and smooth, t! ��(� + i t) is the Fourier transform of aSchwartz function, hence is Schwartz itself. By the Mellin inversion formula� y1/2 y�1/2 != 12�i Z��i1�+i1 ��(s)ysd s: (81)This veri�es (79) on the diagonal, and since both sides are left invariant by G1 andright invariant by K, the general case follows. If � > 1 we may replace g by 
g then sumover 
 2�1n� to obtain (80). �Proposition 69. Let �; � 2Cc1(G1nG/K). Then Z�nG ��(g)��(g)dg=Xj=1N h��(g); �jih��(g); �ji+ 14� Z�11 ���; E( � ; 12 + i t)���� ; E( � ; 12 + i t)�dt: (82)Proof. Take � > 1. Using Proposition 64 and (80), the inner product on the left-handside equals ZG1nG ��0(g)�(g)dg= ZG1nG 12�i Z��i1�+i1 ��(s)E0(g; s)d s �(g)dg:Since E0(g; s) = fs(g) + �(s)f1�s(g) with �(s) bounded by Corollary 61, there is no dif-�culty inerchanging the order of integration to obtain12�i Z��i1�+i1 ��(s) ZG1nG (fs(g)+ �(s)f1�s(g))�(g)dgds:Moreover, using Proposition 61 and the fact that � is compactly supported while �� is ofrapid decay on vertical lines, it is legitimate to move the path of integration left to � =12 . At each �j there is a residue��(�j) ZG1nG �jf1��j(g)�(g)dg= �j��(�j)��(�j)= h��; �jih�� ; �ji;
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where we have used (78) and Proposition 67. These terms will thus appear, togetherwith 12�i Z12�i112+i1 ��(s) ZG1nG (fs(g)+ �(s)f1�s(g))�(g)dgds =12� Z�11 ��� 12 + it�"��� 12 + it�+ �� 12 + it���� 12 � it�#dtComparing this with (82), what we need to show is that14� Z�11 ���; E( � ; 12 + i t)���� ; E( � ; 12 + i t)�dt =12� Z�11 ��� 12 + it�"��� 12 + it�+ �� 12 + it���� 12 � it�#dt: (83)Proposition 64 implies that ��� ; E( � ; 12 + i t)� =ZG1nG �(g)�f12�it(g)+ �� 12 � it�f12+it(g)�dg =��� 12 + it�+ �� 12 � it���� 12 � it�:Multiplying the complex conjugate of this identity by���; E( � ; 12 + i t)�=Z�nG ��(g)E�g; 12 � it�dg;the left-hand side of (83) equals14� Z�11 Z�nG ��(g)"��� 12 + it�+ �� 12 + it���� 12 � it�#E�g; 12 � it�dgdt =14� Z�11 Z�nG ��(g)"��� 12 + it�E�g; 12 � it�+ ��� 12 � it�E�g; 12 + it�#dgdt;where we have used the functional equation of the Eisenstein series. Observe that thereare two terms, but these are equal since the change of variables t	 � t interchangesthem, so the the left-hand side of (83) equals12� Z�11 Z�nG ��(g)��� 12 + it�E�g; 12 � it�dgdt
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We now use Proposition 64 again to obtain12� Z�11 ZG1nG �(g)��� 12 + it�� f12�it(g)+ �� 12 � it�f12+it(g)�dgdt =12� Z�11 ZG1nG ��� 12 + it����� 12 + it�+ �� 12 � it���� 12 � it��dgdt:Making the variable change t	 � t in the second term (but not the �rst) gives (83). �Let Lres2 (�nH) be the �nite-dimensional linear span of the residues �j of E(z; s); wecall it the residual part of L2(�nH). The set of eigenvalues �j of � that occur inLres2 (�nH) are referred to as the residual spectrum. Similarly, the eigenvalues �j of �that occur in L02(�nH) comprise the cuspidal spectrum; let �j be an orthonormal basis ofcusp forms such that ��j = �j�j. Let Ldisc2 (�nH) = L02(�nH) � Lres2 (�nH). ThusLdisc2 (�nH) decomposes into a direct sum of one-dimensional eigenspaces for �; theunion of the �j and �j are called the discrete spectrum. Let Lcont2 (�nH) be the orthog-onal complement of Ldisc2 (�nH).Theorem 70. Let f 2 L2(�nH). Then there exists a function f̂ 2 L2(R) that satis�esf̂ (t)= �� 12 � it�f̂ (� t) such thathf1; f2i=Xj hf1; �jihf2; �ji+Xj hf1; �jihf2; �ji+ 14� Z�11 f̂1(t) f̂2(t)dtIf f is a cusp form then f̂ (t)=0, while if f is incomplete theta series we havef̂ (t)=�f ; E( � ; 12 + i t)�:The map f	 f̂ is continuous.Proof. Let H be the Hilbert space M�j2residual spectrum C!� M�j2cuspidal spectrum C!�L2(R);and let V be the linear span of L02(�nH) and the vector space of incomplete theta series.The function f̂ is de�ned on this dense subspace as in the statement of the Proposition.Then if f 2V and L(f)2H is�hf ; �1i; hf ; �2i;� ; hf ; �1i; hf ; �2i;� ; f̂ �;then by Proposition 69, the map L: V � H is an isometry. Since V is dense inL2(�nH), we can extend L to all of L2(�nH) in the following way. If f 2 L2(�nH) �nd asequence fi 2 V converging to f ; using the isometry property of L, Lfi is a Cauchysequence, so it has a limit in the Hilbert space H , and the Theorem is proved. �

54 Section 12



To proceed further, we need a bit more information out of the Maass-Selberg rela-tions. If f is a smooth, compactly supported function, we want to assign a meaning tointegrals such as Z�11 f(u)u du:We take this to be the principal valuelim"� 0� Z�1�" f(u)u du+ Z"1 f(u)u du�:This equals Z�11 f(u)� f(�u)u du:We will always employ this meaning in the sequel, particularly in the following Lemma.Lemma 71. Let  be a smooth, compactly supported function. ThenlimT�1Z�11  (u)T iuiu du=� (0):Proof. We may separate  into its odd and even parts, and treat these two cases sepa-rately. If  is odd, then  1(u)=  (u)/iu is continuous at 0, andZ�11  1(u)T iudu� 0=� (0)by the Riemann-Lebesgue Lemma. Thus we may assume that  is even. In this case theintegral is Z�11  (u)�T iu�T�iu2iu �du =Z�11  (u)sin(log(T )u)u du� � (0):The last step needs a bit of justi�cation. We will make use of the identityZ�11 e�u2sin(xu)u du= �p Z�x/2x/2 e�t2dt:ThusZ�11  (u)sin(xu)u du=Z�11  (u)�  (0)e�u2u sin(ux)du+  (0) �p Z�x/2x/2 e�t2dt:The �rst term tends to zero by the Riemann-Lebegue Lemma, while the second has thelimit � (0) as x= log(T )� 1. �Theorem 72. Let � be a smooth, compactly supported function on R satisfying�(t)= �� 12 � it��(� t); (84)
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and consider �(g)= 14� Z�11 �(t)E�g; 12 + it�dt:Then �2L2(�nH), and Z�nH j�(g)j2dg= 14� Z�11 j�(t)j2dt:Proof. Let �T(g)= 14� Z�11 �(t)�TE�g; 12 + it�dt:This is clearly square integrable since �T is. We will prove thatZ�nH j�T(g)j2dg= 1(2�)2 Z�11  (u)T iuiu du (85)where we use the principal value and (u)= 1(2�)2 Z�11 �(u+ t)�(t)dt:By the Maass-Selberg relation, the left-hand side of (85) is1(4�)2 Z�11 Z�11 �(t)�(t0)24 T i(t�t0)� �� 12 + it��� 12 � it0�T�i(t�t0)i(t� t0) 35dtdt0 �1(4�)2 Z�11 Z�11 �(t)�(t0)24 �� 12 + it�T�i(t0+t)� �� 12 � it0�T i(t+t0)i(t0+ t) 35dtdt0:Written this way, these integrands are clearly bounded since �� 12 + it� and �� 12 � it�are complex conjugates of absolute value 1 when t is real. The following manipulationsdestroy the absolute convergence of the integral but are justi�ed as long as we agree touse the principal value. We make use of �(t)�� 12 + it�= �( � t) and �(t0)�� 12 � it0�=�(� t0) to eliminate each occurrence of �. Then wherever �( � t) or �(� t0) occurs, wereplace t or t0 by its negative to obtain four equal terms. We get1(2�)2 Z�11 Z�11 �(t)�(t0)T i(t�t0)i(t� t0)dtdt0;and (85) follows.Now it follows from the Lemma thatZ�nH j�(g)j2dg= limT�1 Z�nH j�T(g)j2dg= 14� Z�11 j�(t)j2dt: �Corollary 73. The image of L2(�nH) under the map f	 f̂ in ( 70) is the space L2(R;�) of square integrable functions on R that satisfy f̂ (t)= �� 12 � it�f̂ (� t).
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Proof. The issue is surjectivity. It follows from Theorem 72 that the image of this mapcontains a dense subspace, since we have constructed the inverse map on the subspace ofsmooth compactly supported functions in L2(R) satisfying f̂ (t)= �� 12 � it�f̂ (� t). �We now have constructed an isomorphismL2(�nH)<M M�j2residual spectrum C!� M�j2cuspidal spectrum C!�L2(R; �);and so we may write, for any f 2L2(�nH)f =Xj hf ; �ji�j+Xj hf ; �ji�j+ 14� Z�11 f̂ (t)E� � ; 12 + it�dt:This is the spectral expansion.13 Liftings and the Trace FormulaOne of the most interesting applications of the trace formula is to liftings of automor-phic forms. The method involves comparison of two di�erent trace formulae, on di�erentgroups, leading to the conclusion that automorphic forms on one group can be lifted toautomorphic forms on the other.Jacquet and Langlands [22] gave an early application in a lifting from automorphicforms on a division algebra to GL2. A variation of this theme noted by Gelbart andJacquet [13] is probably the simplest example of this type, since in this case neithertrace formula involves a continuous spectrum. It will be convenient to switch to anadelic point of view, but we think the reader who has read Section 5 will not havetrouble making the transition.If D1 and D2 are central division algebras over a �eld F , then D1 
 D2 < Matk(D3)for some D3 and k, and D1; D2!D3 is an associative multiplication on the set B(F ) ofisomorphism classes of central division algebras. Thus B(F ) becomes a group, called theBrauer group.If D is a central division algebra over F then the dimension of D is a square d2, andif E/F is any �eld extension of degree d which can be embedded in D then E 
 D <Matd(E). Thus a division ring is a Galois twisted form of a matrix ring. The compositemap D!E 
D< Matd(E)!E;the last map being either the trace or determinant, takes values in F , and gives us thereduced trace or reduced norm.The Brauer group of a local or global �eld F admits a simple and beautiful descrip-tion related to the reciprocity laws of class �eld theory. See Section 1 of Chapter 6(�Local Class Field Theory� by J.-P. Serre) and Section 9 of Chapter 7 (�Global ClassField Theory� by J. Tate) in Cassels and Fröhlich [6].
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Let F be a global �eld, A its adele ring, and D a central division algebra of degreep2 over F , where p is a prime. Let Z < F� be the center of D�. Let S be the �nite setof places where Dv is a division ring. If v � S we identify Dv=Matp(Fv).Let H be the set of functions on DA�=Qv Dv� which are �nite linear combinations offunctions of the form Qv �v where for each v, �v: Dv� ! C is smooth and compactlysupported modulo Zv, satis�es �v(zvgv) = �v(gv) when zv 2Zv, and agrees with the char-acteristic function of ZvMatp(ov) for almost all places v of F . The ring H contains theclassical Hecke operators as well as the integral operators introduced in Section 7 above.ZADF�nDA� is compact. As with SL2(R), L2(ZADF�nDA�) admits integral operators�(�) for �2H: (�(�)f)(g)= ZZAnDA� �(h)f(g h)dh:Let f
g be a set of representatives for the conjugacy classes of DF�. We denote by C
the centralizer of 
 in DF�. It is an algebraic group, so C
(A) � DA� will denote itspoints in A.Theorem 74. (Selberg trace formula).tr �(�)=Xf
g vol(C
nC
(A)) ZC
(A)ZAnDA� �(g�1
g)d g: (86)Proof. The proof of Proposition 6 goes through without change, so(�(�)f)(g)=ZZADF�nDA� K�(g; h)f(h)dh;K�(g; h)= X
2DF�/ZF� �(g�1
h):As with SL2(R), the operator �(�) is thus Hilbert-Schmidt, and with more work may beshown to be trace class. As in Theorem 32,tr �(�)= ZZADF�nDA� K�(g; g)d gNow (86) follows as in Theorem 32. �The conjugacy classes of DF� are easily described.Proposition 75. If � 2 DF� � ZF, then F (�) is a �eld extension of F of degree p. Ele-ments � and � are conjugate in DF� if and only if there is a �eld isomorphism F (�) !F (�) such that � � �. If F (�) is a �eld extension of degree p, then F (�) may beembedded in DF if and only if [Fv(�):Fv] = p for all v 2S.Proof. The conjugacy of � and � follows from the Skolem-Noether Theorem (Her-stein [20], p. 99). The last statement follows from (i) $ (ii) in Weil [44], Proposi-tion VIII.5 on p. 253. �
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The trace formula can be used to prove functorial liftings in many cases.Let E be another division algebra of degree p2, and assume that the set of placeswhere Ev is a division ring agrees with the set S of places where Dv is. If p = 2 thisimplies that D and E are isomorphic, but not in general. (This follows from the compu-tation of the Brauer group in the global class �eld theory. See Chapters 6 and 7 in [6].)Thus we want p> 2.We will show that two spaces of automorphic forms on D and on E are isomorphic.Suppose that �=
v �v is an irreducible constituent of L2(ZADF�nDA�). Since ZvnDv�is compact for v 2 S, �v is �nite-dimensional at these places. We assume that �v istrivial when v 2S.If v � S, then Dv < Ev < Matp(Fv). We may therefore identify �v with an irreduciblerepresentation �v0 of Ev when v � S, and if v 2 S we take �v0 = 1. Let � 0=
 �v0 . It is anirreducible representation of EA�.Theorem 76. � 0 occurs in L2(ZAEF�nEA�).The correspondence �! � 0 is a functorial lift of automorphic forms in the sense of Lang-lands (Langlands [29], Borel [3]).Proof. (Sketch.) If v 2 S, then ZvnDv� is compact, so the constant function �v�(gv) = 1is in Cc1(Fv). Let HS be the subalgebra of H spanned by functions Q �v such that�v = �v� for v 2 S. It is isomorphic to the corresponding Hecke ring on E. Let �! �0denote this isomorphism.By Proposition 75, noncentral conjugacy classes in DF� and EF� are both in bijectionwith the set of Galois equivalence classes of elements � of �eld extensions [F (�): F ] = psuch that [Fv(�): Fv] = p for all p 2 S. This intrinsic characterization shows that we mayidentify the conjugacy classes of DF and EF , and compare trace formulae to gettr �(�)= tr �(�)0: (87)This is almost but not quite as easy as we've made it sound, because one must showthat the volumes on the right side of (86) are the same for the two trace formulae.It follows from (87) that the representations of HS on the spacesL2(ZADF�Yv2S Dv�nDA�) and L2(ZAEF�Yv2S Ev�nEA�)are gisomorphic, and the theorem follows. �Underlying the �nal step is the fact that two representations of rings are character-ized by their traces. For example if R is an algebra over a �eld of characteristic zero andif M1, M2 are �nite-dimensional semisimple R-modules, and if for every � 2 R theinduced endomorphisms of M1 and M2 have the same trace, then the modules are iso-morphic (Lang [28], Corollary 3.8 on p. 650). This statement is not directly applicablehere but it gives the �avor.For the remainder we take p = 2, and review the Jacquet-Langlands correspondence.Let D be as before. The Jacquet-Langlands correspondence is a lifting of automorphicrepresentations from D� to GL2(F ).
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There is a local correspondence for v 2 S. Dv� is compact modulo its center, so itsirreducible representations are �nite-dimensional. These lift to irreducible representa-tions of GL2(Fv) having the same central character. The lifting was constructed byJacquet and Langlands by use of the theta correspondence. Indeed, ZvnDv� is a quotientof the orthogonal group GO(4) while GL2 is the same as GSp2, and theta correspon-dence GO(4) $ GSp2 gives the Jacquet-Langlands correspondence. Its image is thesquare integrable representations (that is, the supercuspidals and the Steinberg represen-tation).Jacquet and Langlands constructed a global correspondence from automorphic formson D� to automorphic forms on GL2 �rst using the converse theorem in Section 14 oftheir book. To prove functional equations of L-functions on D�, they use the Godement-Jacquet construction, because the Hecke integral is not available in this context.Finally, they reconsidered the lifting from the point of view of the trace formula.This allowed them to characterize the image of the lift. They sketched a proof (and laterGelbart and Jacquet completed) of:Theorem 77. An automorphic representation � of GL2(A) is the lift of an automor-phic representation of DA� if and only if �v is square integrable for every v 2S.The remarkable fact is that their proof of this fact uses so many di�erent techniqueswhich have proved important in the subsequent 30 years: the Hecke and Godement-Jacquet integral constructions of L-functions, the Weil representation and the trace for-mula.The trace formula on GL2 is harder than on the division ring because of the presenceof the continuous spectrum. We've avoided this problem by proving Theorem 76 insteadof Theorem 77.
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