Spectral Theory and the Trace Formula
(Expanded Text)

BY DANIEL BumP

We give an account of a portion of the spectral theory I'\SLy(RR), particularly the
Selberg trace formula, emphasizing ideas from representation theory. The last section is
of a different nature, intended to show a simple application of the trace formula to a
lifting problem.
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1 The spectral problem
The group G =SLy(R) acts on H={z+iy|y>0}:
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The stabilizer of i is K =S0(2) so H =G /K. The noneuclidean Laplacian
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is a G-invariant differential operator. Let I' be a discrete cocompact subgroup of G =
SLp(R). Then X = I'\$) is a compact Riemann surface. The question at hand is to
describe the spectrum of A on X.

We may sometimes consider the upper half-plane § to be embedded in the Riemann
sphere R = C U {oc}. The boundary of $ is then R U {o0}. A geodesic in H for the
noneuclidean hyperbolic geometry on §) is a circle perpendicular to the boundary at the
two points of intersection. As a special case, a vertical line is a geodesic.

Proposition 1. The group T' has a fundamental domain F on $ whose boundary con-
sists of pairs of geodesic arcs a; and v;(cy), with v; € . When the boundary is traversed
counterclockwise the congruent arcs «; and v;(a;) are traversed in opposite directions.

Proof. (Sketch) Choose a point P € §) which is not fixed by any element of I except
+ I. Let F be the set of points which are nearer P than to y(P) in the noneuclidean
metric for any v € I'. Let N = {~1, ---, 7, } be the set elements of I' such that ~;(F) is
adjacent to F.

At first we assume no v = 1. Evidently each v; ' € N, so N has an even number 2
of elements. We arrange it so that the ~; so that v;4.p = ’yfl (1 <i< h). Let a; be the
intersection of the geodesic consisting of the set of points which are equidistant from P
and fy;l(P) with the closure of F. Then 7;(;) = a;4p and ay, -+, ap, satisfy our require-
ments.
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If some v2 =1 then the arc «; is self-congruent by ~; and its midpoint is fixed by ;.
So we split such arcs in two at their midpoints and we are done. O

The Laplacian A acts on C*°(T'\H).

Proposition 2. A is symmetric and positive with respect to the invariant metric
y 2dx ANdy.

Proof. Symmetry means that

Taking a fundamental domain F as in Proposition 1, this equals
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By Stoke’s theorem, this is equal to the integral of w around the boundary of F. By
Proposition 1, the contributions of the boundary arcs cancel in pairs.
Positivity means that (A f, f) >0 with equality only if f is constant. We compute
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By Stoke’s theorem we thus have
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with equality only if df/dx = 0f/dy = 0 identically, that is, if f is constant. Using the
Cauchy-Riemann equations and the chain rule if one may check that if © + ¢y and u +
tv are related by a holomorphic mapping, such as a linear fractional transformation then
(Of J0x)dy — (Of Joy)d x = (Of Jou)d v — (Of /Ov)d u. Tt follows that the contributions of
congruent boundary arcs cancel and (3) is zero. O

_I_

Ay

We will see later that A extends to a self-adjoint unbounded operator on £ =
L?(T\$, y 2d A d y). This means that there is a dense subspace D of £ containing
C>(I'\9) such that A extends to D, and that if v € £ is such that u— (v, Au) is contin-
uous on D, then v € D and (Av,u)= (v, Au).

Since A is a self-adjoint operator it has a nice spectral theory, which we want to
develop. We will accomplish this by introducing integral operators which commute with
A. We will show that these operators are of trace class, and we will prove the Selberg
trace formula for them.

Finally we will consider the more difficult case where I' has a cusp. In this case there
are both discrete and continuous spectra, and the theory of Eisenstein series is an essen-
tial feature.
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2 Rings of integral operators

The group G acts on functions f: G — C by the right reqular action (p(g)f)(z)= f(z g).
Since we will soon be discussing differential operators let us at first restrict ourselves to
f €C>(G); however f can be any locally integrable function in this notation.

Because ) is canonically identified with the homogeneous space G/K, any function f
on $) may be regarded as a function on G which is right invariant by K. The relevance
of the regular representation of G to functions on $) may not be immediately clear,
because the property of right K invariance is not preserved under right translation.
However, there is a relevance which we now explain.

The Lie algebra of G consists of the vector space g of 2 x 2 real matrices of trace
zero. It acts on smooth functions f on G by:

d
Xf9)= 77 fge M)z, Xeg.

This is a Lie algebra representation. This means that [X, Y] = XY - Y X (XY =
matrix multiplication) has the same effect as X oY — Y o X (X oY = composition of
operators). This representation of g is the differential form of the regular representation.

The universal enveloping algebra U(g) is the associative R-algebra generated by g
modulo the relations

X,Y]- (XYY -X)=0

(X - Y = multiplication in U(g)). Any Lie algebra representation extends uniquely to a
representation of U(g). In particular the regular representation of g extends to a repre-
sentation of U(g). Thus U(g) is realized as a ring of differential operators on C*°(G).

If D is an element of the center of U(g) then it commutes with the regular represen-
tation. This is intuitively reasonable and proved in Bump [5|, Proposition 2.2.4. In par-
ticular, if f is fixed under p(K), then so is D f. Therefore D acts on C°°(9).

A particular element of the center of U(g) is the Laplace-Beltrami or Casimir ele-
ment

~AA=H-H+2R-L+2L-R, (4)

(o) (0 (0 0)

In fact, C[A] is the center of U(g). We have used the same letter A that we previously
used for the noneuclidean Laplacian, for when this element of U(g) is interpreted as a
differential operator on §) they are the same. See Bump [5], Proposition 2.2.5.

Let ‘H be the convolution ring of smooth, compactly supported functions on G. Let
H® be the subring of K-bi-invariant functions. These are rings without unit. We call H°
the spherical Hecke algebra but caution the reader that there are other natural and
closely related rings which have also been called this. The ring H is noncommutative,
but:

Theorem 3. The ring H® is commutative.
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Proof. Matrix transposition preserves K so it induces an involution ¢ on H° such that
t(p* ) =1(1)) ou(e), where (vf)(g) = f(g'). Every double coset in K\G/K has a diag-
onal representative. So ¢ is the identity map. O

This theorem of Gelfand has a representation theoretic meaning. If (7, V') is a repre-
sentation of G on a Banach space we will denote by VX the vector subspace of K-fixed
vectors. The algebra H acts on V by

ﬂ(d))?):/Gqﬁ(g)ﬂ(g)vdg, peH,veV.

Here fG d g is the Haar integral. If ¢ € H° then 7(¢)v € VE. In particular VE is a
module for H°.

Since K is compact, any irreducible representation p of K is finite-dimensional. The
p-isotypic part V(p) of V is the direct sum of all K-invariant subspaces isomorphic to p
as K-modules. A representation (7, V') of G is called admissible if V(p) is finite-dimen-
sional for every p. In particular, if p is the trivial representation V(p) = V¥ so VE must
be finite-dimensional.

Theorem 4. If (w, V) is an irreducible admissible representation of G then VE is at
most one-dimensional.

Proof. Since H° is commutative, its finite-dimensional irreducible modules are one-
dimensional. Thus it is sufficient to show that VX (if nonzero) is an irreducible module
for H°. Suppose L C V¥ is a closed nonzero HC°-invariant subspace. If v € VK we will
show that v e L.

Let € > 0 be given. Since V is irreducible and L is nonzero, the closure of w(H)L is
V and so there exists ¢ € H, w € L such that 7(¢)w = vy, where |v; — v| < e. Let vy =
fK m(k)vidk. Then v is K-fixed and since v is K-fixed,

|v2—v:‘/K7r(k)(v1—v)dk g/K |7r(k)(v1—v)|dk:/K o1 —v|dk<e.

(We normalize the Haar measure so K has volume 1.) Since w is K-fixed,
m(k)m(@)m(k)w = m(k)or
for all k, k' € K. Integrating over k and k', we thus get m(¢g)w = vy where

bo(g) :A B p(kgk)dkdk'.

Now ¢g € H® and since L is HC°-invariant this implies that vy € L. We can therefore
approximate v arbitrarily closely by elements of L, and since L C VX is finite-dimen-
sional, hence closed, this implies that v € L. O

More generally, if (7w, V) is a representation of G and k € Z we will denote by V (k)
the subspace of v € K satisfying

e w — eikEy oo — cos(f) sin(f)
() v, b <sin(9) cos(0) )EK'
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(This is the p-isotypic subspace where p is the character e'*® of K.) If (m, V) is irre-
ducible, then since — I € K is central, it acts by a scalar ( — 1)¢ where ¢ =0 or 1. Evi-
dently the parity of & must be the same as e for V(k) to be nonzero. We will call & even
if e=0, and odd if e=1.

Proposition 5. If (m, V) is an irreducible admissible representation of G then V (k) is
at most one-dimensional.

Proof. (Sketch) This may be proved along the same lines as Theorem 4. Because K =
SO(2) is commutative, it may be seen that the convolution ring of smooth, compactly
supported functions which satisfy f(kggrg)) = e*+9) f(g) is commutative. See
Bump [5|, Proposition 2.2.8. O

We note that while Theorem 4 generalizes directly to arbitrary reductive Lie groups,
Proposition 5 does not. Thus if (7, V) is an irreducible admissible representation of a
reductive Lie group, the multiplicity of the trivial representation of its maximal compact
subgroup is at most one; the other irreducible representations of the maximal compact
each occur with finite multiplicity (this is admissibility), but not necessarily multiplicity
one. Actually irreducible representations are automatically admissible, though this fact
is not needed in the theory of automorphic forms, where admissibility of automorphic
representations can be proved directly.

If (w, V) is an irreducible representation of G, we will denote by Vj, the direct sum
of the V' (k). This is the space of K-finite vectors. It is not invariant under the action of
G, but it is invariant under the actions of the Lie algebra g of G and of K. It is there-
fore a (g, K)-module. See Bump [5], p. 200 for a discussion of this concept.

When 7 = p is the right regular representation, we have

p(9)(2) = /G #(9) [z g)dg.

This formula make sense for any locally integrable function f on G. The operator p(¢)
is convolution with the function g — ¢(g~1'). These integral operators are important for
us because they commute with A, yet they are easier to study than A. We note that
L?(I'\G) is invariant under p(¢), and if ¢ € H° then p(¢) preserves the property of right
invariance by K, so it can be regarded as an integral operator on L*(T'\$).

Let ¢ € H, and let

Ky, y)=>_ ¢z 1y). (5)

vel

At first we regard (z, y) as an element of G x G. If z and y are restricted to a compact
set C, then ¢(x~1gy) vanishes for g off a compact set C’. Therefore only finitely many
v contribute. It follows that (5) is convergent and defines a smooth function of z and y.

A change of variables shows that Kg4(x, y) is invariant if either z or y is changed on
the left by an element of 7, so we may regard this kernel as defined on either G x G or
on I'\G x I'\G, and it is a continuous function. If ¢ € H° then K4 may even be regarded
as a function on X x X. (Recall that X =T'\$.)
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Proposition 6. We have

Proof. The left side equals

| ot fandy= [ s rmar=Y [ o wmiwas.

yel na

where we have used f(yy)= f(y). Interchanging sum and integral gives (6). O

If H is a Hilbert space, an operator T: H — H is compact if T maps bounded sets
into compact sets.

Theorem 7. p($) is a compact operator on L?(T\G).

See Bump [5|, Section II.3, particularly Theorem 2.3.2 and Proposition 2.3.1 for fuller
details.

Proof. The kernel Ky is continuous on the compact space (I'\G) x (I'\G), so it is cer-
tainly in L?(('\G) x (I'\G)). The well-known theorem of Hilbert and Schmidt asserts
that if Z is any locally compact Borel measure space such that L2(Z) is a separable
Hilbert space then integral operator

1)@= [ Kla.) 1)y
with the kernel K € L*(Z x Z) is compact. O

If
¢(g~ 1) =d(9) (7)
then Ky(z,y)=Ky(y,x), so p(¢) is self-adjoint.
Theorem 8. Let T be a compact self-adjoint operator on a separable Hilbert space H.

Then H has an orthonormal basis ¢; (i =1,2,3, ) of eigenvectors of T, so that Tep; =
wipi. The eigenvalues p; — 0 as 1 — oo.

Proof. This is the Spectral Theorem for compact operators. See Bump [5]|, The-
orem 2.3.1. O

Thus if (7) is true then p(¢) is a self-adjoint compact operator whose nonzero eigen-
values p; — 0. The Hilbert-Schmidt property implies more: Y |u;|? < co. Later we will
see that more is true: Y |u;| < oc. This means that p(¢) is trace class. This fact is
important because of the Selberg trace formula.

Theorem 9. L2(X) has a basis consisting of eigenvectors of A.
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Proof. The operators p(¢) with ¢ satisfying (7) are a commuting family of self-adjoint
compact operators so they can be simultaneously diagonalized. By the spectral theorem
the nonzero eigenspaces are finite-dimensional; there is no nonzero vector on which the
operators p(¢) are all zero, since ¢ can be chosen to be positive, of mass one and con-
centrated near the identity in which case p(¢)f approximates f. Therefore the simulta-
neous eigenspaces of H® are finite-dimensional.

Let V be such an eigenspace. Since A commutes with the p(¢), it preserves V, and
since it is symmetric it induces a self-adjoint transformation on V. Choose an
orthonormal basis for each such V consisting of eigenvectors of A and put these together
for all V. ]

Closely related to Theorem 9 is a representation-theoretic statement about L*(I'\G).
The regular representation p is a unitary representation on this space.

Lemma 10. Let H be a closed nonzero G-invariant subspace of L>(T\G). Then H con-
tains an irreducible subspace.

Proof. (Langlands) Since H is G-invariant, each p(¢) induces an endomorphism of
H. We show first that the restriction of p(¢) to H is nonzero for suitable ¢ satisfying
(7). If 0 # & € H then for g near the identity p(g)¢ is near . Thus if we take ¢ satis-
fying (7) such that ¢ > 0, fG #(g)d g = 1 and such that the support of ¢ is nonzero
then p(¢)¢& is near & so p(¢) is nonzero on H, and p(¢) is self-adjoint.

Let L C H be the eigenspace of a nonzero eigenvalue of p(¢). It is finite-dimensional
by Theorem 8. Let Ly be a nonzero subspace minimal with respect to property of being
the intersection of L with a nonzero closed invariant subspace of H. Let V be the
smallest closed invariant subspace of H such that LNV = Ly. We show V is irreducible.
If not, let V7 be a proper, nonzero closed invariant subspace and let V5 be its orthogonal
complement, so V =V, @& V,. Let 0 # f € Ly. Write f = f1 + fo with f; € V;. Since 0 =
p($)F — M = (p($)F1r — AR) + (p(@)f2 — Afa) and p(¢)fi — Afi € Vi we have p(@)fi
Afi=0. Thus f; € LNV;. By the minimality of Lo, Lo = L NV for some i, say Lo= LN
V1. Now the minimality of V is contradicted. 0

Theorem 11. L*(T\G) decomposes as a direct sum of closed, irreducible subspaces.
Each affords an irreducible admissible representation of G.

Proof. By Zorn’s Lemma, let S be a maximal set of orthogonal closed irreducible sub-
spaces. Let H = @Ves V. If H is proper, applying Lemma 10 to its orthogonal comple-
ment contradicts the maximality of S. We leave admissibility to the reader. U

Each of these closed irreducible subspaces has at most one K-fixed vector by The-
orem 4.

Theorem 11 may be thought of as a more satisfactory extension of Theorem 9.
Indeed, if ¢ is an eigenfunction of A occurring in L*(T'\§)) then its right translates span
an irreducible subspace of L?(I'\G). Conversely, A acts by a scalar on each irreducible
subspace. If that subspace happens to have a K-fixed vector in it, that vector will be
one of the basis elements in Theorem 9.
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There will, however, be some irreducible subspaces of L?(I'\G) which have no K-
fixed vectors. These can be constructed from holomorphic modular forms as follows. Let
f:T\$ — C be a holomorphic function satisfying

f<“+b>:(cz+d)kf(z), <ff Z)er.

cz+d

If £ is sufficiently large, such f will always exist, as may be shown from the Riemann-
Roch theorem. Regarded as a function on G, the function f is right invariant by K, but
it is not left invariant by T", so it is not a function on I'\G. However we may modify it,
sacrificing the right invariance by K to obtain true left invariance by I'. Define

A a)-evoa(G)

Then F(vg) = F(g) for v € T, while F(grg) = ¢?**F(g). The irreducible representation
spanned by F' has not K-fixed vector. This is the weight k holomorphic discrete series
representation.

The representation-theoretic approach has another generalization, its extension to
automorphic forms on adele groups. Assume that I'=SLy(Z). Let A be the adele ring of
Q. The inclusion of SLa(R) — GL2(A) at the infinite place induces a homeomorphism

I'\G — GLa(Q)Za\GLa(A)/ [1, K.

where Zp is the center of GLy(A) and K, = GLy(Z,) is a maximal compact subgroup of
GL2(Qp). Thus functions on TI'\G may be reinterpreted as functions on
GL2(Q)Za\GLy(A), and in particular we may embed

LYT\G) — L2(GLy(Q) Za\GLa(A)).

Now the study of L*(GL2(Q)Za\GL2(A)) may be carried out along exactly the same
lines as we’ve applied above. The class of integral operators is larger now, however. In
addition to the ring H, we have its p-adic analogs, which are rings of Hecke operators.
To see this, fix a prime p. Let #H, be the convolution ring of smooth (i.e. locally con-
stant) compactly supported functions on GL2(@Q,). This ring is not commutative, but
the subring #j of functions which are K, bi-invariant is commutative. (Compare The-

orem 3.) For example, the characteristic function of K, K, is an element of this

p 0
01
ring, and this is the adelization of classical Hecke operator T}, which picks off the p-th
Fourier coefficient of a Hecke eigenform. We will return to this point of view in the final

section when we study such operators using the trace formula.

3 Green’s functions and the spectral resolvent

References for this section are Hejhal [19], Section 6 and Bump [5], Chapter 2 Section 3.
We are interested in functions f on § with the following
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Property S The function f is left invariant by K =SO(2), possibly singular at K’s fized
point at 1, and is an eigenfunction of the Laplacian.

We will see that for each eigenvalue A of A there are two linearly independent such
functions, one of which (the Green’s function) has nice behavior at the boundary, the
other of which (the spherical function) is continuous at i. Each has its uses. Since H =
G /K, these may be regarded as functions on K\G/K (possibly undefined on K) which
are eigenfunctions of the Laplace Beltrami operator.

We can map the upper half plane into the unit disk ® by the Cayley transform z —
w=(z—1)/(z+1). Let r = |lw|. Then since f as in Property S is left invariant by K,
f(z) depends only on 7. Denote f(z) = W (r). Thus a function f with Property S is
determined by the function W on (0,1) such that

1/2
W("'):f< Y y_1/2 ):

where r = (y — 1)/(y + 1) € (0, 1). The eigenvalue property amounts to the differential

equation
4\

o) =0. (8)

W)+ W) +
This differential equation has regular singular points at (0,1) and there are two solutions
of interest. One is nicely behaved at 0, the other at 1. (We assume familiarity with reg-
ular singular points of second order linear differential equations, particularly the indicial
equation, for which see Whittaker and Watson [45], Section 10.3.) In this section we will
be concerned with the solution which has nice behavior on the boundary, that is, at r =
1; the other one will occupy the next section.

Let A be a negative real number. At =1 the roots of the indicial equation of (8) for

the singularity at r = 1 are %(1 + 1 —4X). With A < 0 exactly one root o = %(1 +
/1 —4\) is positive, so there is a unique (up to multiple) solution g to (8) which van-

ishes near the boundary. We can use it to study the resolvent of the Laplacian.

Lemma 12. If ) is a negative real number, then gx(r) has a logarithmic singularity at

r=0. Near r =1 we have gx(r) ~ c(1 — r)* where a = %(1 +V1-4X)>1, and ¢ is a
nonzero constant.

Proof. The roots of the indicial equation at » =0 are 0 with multiplicity 2, so one solu-
tion has a logarithmic singularity, another is analytic. If g, does not have the loga-
rithmic singularity, then g,(r) is real and analytic on [ — 1, 1] hence has a maximum or
minimum. At such a point g(r) =0 and since A <0, equation (8) implies that g, and gy
have the same sign, impossible at the maximum or minimum because g ( — 1) = ga(1) =
0. This proves the existence of the logarithmic singularity at » = 0. The behavior at r =
1 is clear from the definition of g,. O

Let
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z,( €%. This is a Green’s function.

Theorem 13. Let A be a negative real number. Then

2 2
(gt ) 00

gx(z, C) is singular on the diagonal z = ¢;
ga(z,¢) =0 as y—0;
9a(z, Q) = ga(C, 2);
gA(h(z), h(C)) = ga(2,¢),  h€SLy(R). (9)

Proof. The first property boils down to (8), the second property comes from
Lemma 12, the third follows from the boundary behavior of ¢), and the last two proper-
ties follow since |(z — ¢)/(z — ()| is unchanged if z and ¢ are interchanged, or if an ele-
ment of SLy(RR) is applied to both. See Bump [5], Proposition 2.3.4 on p. 181 for fuller
details. O

Since gy has a logarithmic singularity at 0 it can be normalized so g)(r) — %log(r) is
bounded as r — 0. It follows that gy(r) — 271W is analytic near r = 0.

Theorem 14. Let A be a negative real number. If f € C°($) then (writing ( =& +in)

/ﬁgx(zyC)[n2<53—;+§—7’22>/\]f(0d57;\2dn:f(d (C=¢+in).

Proof. See Bump 5|, Proposition 2.3.4 on p. 181 for fuller details. We review the proof

quickly. Let w=(z - ()/(z — () =u+iveD. Let F:® — C be defined by F(w)= f(2).
In the w coordinates we must prove

Let B, be the disk of radius r, and let R < 1 be large enough that the support of F' is
contained in Bgr. The left side equals

. 0?  0? 4
i f, 9wl { - (W * aw) 0 —[wP)?

Using Stoke’s theorem as in Proposition 2, this is

. 0% 02 4\
Eh_r)r(l) - F(w)[ — <8u2 + 81)2) o |w|2)2] n(w)dundv +

. Iga((w]) ,  dga(|w])
elgr(l) CGF(w)( ou dv ov du

}F(w)du/\dv.

. OF (w) ,  OF(w)
Elgr(l) CegA(|w|)< 50 dv 5 du |,
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where C is the path circling the origin counterclockwise around the circle with radius e.
(There would also be terms integrating around Cpg, but these are zero because they lie
outside the support of F'.)

The first term vanishes by Theorem 13. The last term vanishes because the length of
the arc shrinks faster than gy blows up (logarithmically).

To evaluate the middle term let w =re*®. By the chain rule,

agA0u4>dv6@1;7’>du::rg300d9-

u
We obtain
2
lim F(ee?®)dfe gi(e) = F(0),
e—=0 /o
since gi(€) ~1/(2me) as e— 0. O

Proposition 15. Let A be a negative real number. The series

Gz 0= Y. o)) = D, o020

ye{£1\L ye{£1\L

15 absolutely convergent provided z and ¢ are not I'-equivalent.

Proof. Let B, be a ball of radius r with center at the origin. If » < 1 then B, C D.

With ¢ fixed we use the Cayley transform z+—— C¢(2) = (2 — ()/(z — () to transfer gy to
the unit disk. The volume of B, in the hyperbolic metric on ® is 47r2/(1 — r2), so the
number of v € I with (yz — ¢)/(vz — () € B, is asymptotically ¢r?/(1 — r2), where ¢ =
47 /V, with V the volume of the fundamental domain of CCFCC_I.

Near r = 1, it follows from Lemma 12 that gx(r) ~ (1 — r)® where « > 1. Thus the
convergence of the series amounts to the convergence of

! d r? ! o d 72
A gx(r)%mdr or /0 (]_ *7") %mdr<oo O

Ga(z, () is the automorphic Green’s function. We will see that it is an integral kernel for
the resolvent of the Laplacian.

Theorem 16. G is defined and real analytic for all values of (z, () except where { =
v(z) for some yel'. We have

[ _ y2<88—;+§—;2> — )\:|G)\(Z, ¢)=0;
GA(h(z). b)) = Cr(z. ), heG,
GaA(z, Q) =GA(7(2), ) =Gz, 7(¢)), €T,

G)\(z, C) = GA(C? z)v
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and Gx(z, C) ~ %log\z — (| near z = (, where e is the order of the isotropy subgroup of ¢
in I'. For feC>®(T'\$)

0* 0 dENdn _ e
F\ﬁGA(Z,C)[ "(852 > /\]f(o P = f(») (C=&+1in). (10)

See Bump [5] Proposition 2.3.5 and Hejhal [19], Proposition 6.5 on p. 33.

Proof. Most of these properties follow from the corresponding properties of g . We
prove (10). We will need a function F' € C°($) such that f(z) = > qer F(vz). To con-

struct F', let u be a function on $ which is smooth, nonnegative, and has compact sup-
port containing a fundamental domain of I'. Then for all z, the function Zvel“ u(yz) is

positive, and for z restricted to a compact set this sum is finite. It is thus a smooth,
positive valued function and we can divide by it. Now

has the required property.
Substituting this and the definition of G and using (9) gives

S [, 200~ gt g ) - AP LR

v,0€Tl

One of the summations may be collapsed with the integration to give

> [ ae) [ n<§§ 02) A]F(c“)diff”:;F(é(z))zf(zy

vyel

This completes the proof. l

Let A < 0. As is easily checked, the logarithmic singularity along the diagonal is not
sufficient to cause divergence of the integral

/ / ‘Qda:/\dydf/\dn
rs Jr\s y? n’

Thus the corresponding integral operator, which we shall denote R(A, A), is Hilbert-
Schmidt.

Theorem 17. (i) The eigenvalues X\; of A on L3)(T\$) tend to oo, and satisfy .
)\{2 < oo. (We exclude the eigenvalue Ag =0 corresponding to the constant function from
this summation.)

(ii) The Laplacian A has an extension to a self-adjoint operator on the Hilbert space
L2(T\ ).

(iii) If A <0 then the compact operator R(A,A) is a bounded inverse to A — \I.

We express (iii) by saying that R(\, A) = (A — XI) ! is the resolvent of A.
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Proof. Let A <0 be an arbitrary negative real number. By Theorem 9, let ¢; be a basis
of H = L%(T'\$) consisting of eigenvectors of A, with corresponding eigenvalues \;. It
follows from (10) that ¢; is also an eigenfunction of R(A, A) with eigenvalue (\; — X)L
Since R(A, A) is Hilbert-Schmidt, Y, (Ai —A) 2 < oo, whence Y. A 2 < oo

We prove (ii). Let Da be the linear subspace of L?(I'\$) consisting of elements of
the form Y a;¢; such that 3 A?|a;|? < oo; on this space, define

A( Z ai¢i> :Z i@ ;.

Since the A; tend to infinity, and in particular are bounded away from zero, it is not
hard to check that this operator is closed and in fact self-adjoint. This proves (ii).

We have already checked that if R(X, A)¢; = (A\; — A)"'¢. Since the ¢; are an
orthonormal basis of H, this implies (iii). O

We arrange the eigenvalues of A in ascending order:
A=0< A <A< A3 <.

The eigenvalue Ag corresponds to the constant function and has multiplicity exactly one.
Eigenvalues in the range (0, %) are called exceptional eigenvalues. They are qualitatively
different. For example, the spherical functions corresponding to exceptional eigenvalues
are nontempered they grow faster than spherical functions corresponding to A > i.
(See Section 4). Exceptional eigenvalues correspond to zeros of the Selberg zeta function
on the real line between 0 and 1. By contrast zeros corresponding to A > i satisfy the
Riemann hypothesis. (See Section 7.) Randol [36] proved that for some X, exceptional
eigenvalues do occur. On the other hand, Selberg [40] conjectured that exceptional
eigenvalues do not occur in the cuspidal spectrum of congruence subgroups of SLy(7Z),
and it would follow from this that they do not occur in the spectrum of compact quo-
tients I'\ $) associated to quaternion division algebras.

4 Spherical functions

As we pointed out, Property S reduces to a second order differential equation which has
two independent solutions. One solution, having nice behavior at the boundary, is the
Green’s function. Another, having nice behavior at i, is the so-called spherical function.
The substance of Lemma 12 is that these two solutions are not the same. In this section
we will study the spherical function.

Definition 18. Let A be a complex number. We call a function o on SLa(R) a A-spher-
ical function if it is smooth, K-bi-invariant, and Ao = A\o.

Here A is the Laplace-Beltrami operator. Before we show that such a function exists
and is unique up to constant multiple, let us explain briefly how such a function fits into
the representation theory.
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Suppose that (7, V) is an irreducible representation of G. Let (7, V) be its contra-
gredient. Thus there exists an invariant bilinear pairing (, ): V' x V> C.

By Theorem 4, if V¥ and VE are nonzero, they are one-dimensional, and we will
assume this. (Actually if one is nonzero the other is too.) Let v° € VE and 4° € VX be
nonzero K-fixed vectors. The function

a(g)=(n(g)v°,0°)

is evidently K-bi-invariant. Moreover, Regarding A as an element of the center of the
universal enveloping algebra U(g), it acts by a scalar A on V. and o inherits this prop-
erty. So it is a spherical function.

Without reference to this construction, we now show that spherical functions exist
and are unique.

Theorem 19. (i) Let A € C. Then there is a unique smooth K-bi-invariant function wy
on SLa(R) such that Awy = Awy and wx(1)=1. (ii) If f: G — C is any smooth function
such that A f=M\f, then

[ fEgk)drar = f(1)ws) (11)
KxK
(1i3) If f is right K-invariant and Af=\f, then

/Kf(hkg)def(h)wA(g)- (12)

Proof. To satisfy Aw = Aw we need

1/2 -1
W) =wl Y _y-1
“j_w< y—w2>’ Tyl

to satisfy (8). As we have seen, this differential equation has a regular singular point at
the origin, and one solution is bounded there, whereas the other has a logarithmic singu-
larity. Hence wy, if it exists, is unique.

To show that such a function exists, let f be any continuous function on G which is
an eigenfunction of A. The left hand side of (11) is a K-bi-invariant function which is
an eigenfunction of A. If f(1) = 1, this will satisfy (i), proving existence. For example
we can take f= f; where A=s(1—s) and

y1/2 *
£, Ce JF)=Y y>0keK, (13)
Y

Now that the existence and uniqueness of w are established, we note that the left sides
of both (11) and (12) are smooth K-bi-invariant eigenfunctions of A, hence constant
multiples of wy. In both cases, the constant may be evaluated by taking g = 1. This
proves both (ii) and (iii). O



SPHERICAL FUNCTIONS 15

Theorem 20. Suppose that f is a smooth function on G which is right invariant by K
and such that Af=M\f. Then for ¢ € H® we have

p(d)f=xxr(9)f (14)

where

)= [ sy (15)
Proof. By Theorem 19, we have

/K f(hkg)dk=F(h)w(g). (16)

We note that p(¢)f is an average of right translates of f, and right translation com-
mutes with left translation. Hence we may apply p(¢) to both sides of (16) to obtain

/K (o($) 1)k g)dk = F(B) (p($)wn) (g).

We take g=1 in this identity. Since p(¢)f is right K-invariant, the integrand on the left
side becomes constant when g =1 and so the left side becomes just (p(¢)f)(h). On the

other hand (p(¢)wa)(1) equals the integral (15), so p(¢) f(h) = xr(¢) f(h). O
Theorem 21. If ¢1 and ¢ € H®, then
Xa(P1% ¢2) = xa(d1) Xa(P2)-

Proof. This follows from Theorem 20 on applying p(¢) to any eigenfunction f, for
example fg as in (13). O

Thus the function yx: H° — C is a character of H°. We return to the point of view
introduced at the beginning of the section to explain the meaning of x(¢) in terms of
representations. First, we recall the construction and parametrization of a class of irre-
ducible representations of SLa(IR), the principal series.

Let s be a complex number. Let P be the set of functions f: G — C such that

1/2 —1/2
f(( s )g) = (— 1)yt f(g), (17)
Y

where € = 0, and such that the restriction of f to K is square integrable. Similarly let
P, be the space of functions satisfying (17) with e = 1. G acts on these spaces by right
translation. Let (ﬂ'sj:, Psi) be these representations. The representation 7r;t is irreducible
except in the case where 2s is an integer and 2s is even for 7}, odd for 7. We call 7
and 7, the odd and even principal series of representations, respectively.

Suppose that re(s) > % An intertwining integral M (s): P — P | is given by

winw=[" ()T ) ) (18)
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It may be checked that the integral is absolutely convergent. Now M (s) extends by ana-
lytic continuation to an intertwining map for all s such that 2s is not an integer con-
gruent to € mod 2. Actually we only claim that it extends to an infinitesimal equiva-

lence, that, is, an isomorphism of the underlying (g, K') module, but it is a true isomor-

S . . 1
phism in the important special case re(s) = 5- Thus ”it/z-m't = 7rfc/27it.

Let £k =€ modulo 2. Let

/2, .
fs,k<< Y Y1/ )me) =sgn(y)y*e'’. (19)

This is a K-finite vector in PT where =+ is (— 1)°. Let f~1—s,k = M(s) fs 5. One may
compute

I‘(s)F(s - % ; 20)
F<S+ §>F<s — E) o

fk,lfs:(ii)k\/%

See Bump [5], Proposition 2.6.3.

The representation 7Til:/2+it is unitary if ¢ is real. These representations are called the
unitary principal series representations. Also 7} is unitary if s is a real number between
0 and 1. These are the complementary series representations. They correspond to excep-
tional eigenvalues of the Laplacian in the automorphic spectrum. There are a few other
irreducible representations, namely the discrete series (related to holomorphic modular
forms) and the trivial representations. But only the even principal series 7} have K-
fixed vectors. All of these facts are proved in Bump [5], Chapter 2.

The K-fixed vector in P is precisely the function f, in (13). Now if ¢ € H° then

since ¢ is K-bi-invariant, the operator 7+ (¢) maps all of P; onto the unique K-fixed

S
vector fs. Thus the trace of the rank one operator 7r2'(¢) is just its eigenvalue on this
vector fs, so

tr 7 (6) = xa(4). (21)

5 The Plancherel formula

Let ¢ € H°. Define

g(u)=e"/? /O:O ¢(< el e >< ! ; ))dx= (22)

h(t) = / g(u)eintdt (23)

and let

be its Fourier transform.

Theorem 22. The functions g and h are even, and g is compactly supported. If A\=—+

t2, then

N

Xa(@) = h(t). (24)
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Proof. Let fs be as in (13) with s = % + it so that A = i + 12 = 5(1 — s). By The-
orem 19,

/;kamdkzuu@»

and

xm¢%:[;/;¢uangMdkdg

Interchanging the order of integration and making the variable change g — gk~1, since ¢
is right k& invariant, we obtain

mwzéwmmmw.

Now we use the coordinates

u/2 1 1
e x
g—( o u/2 >< 1 >f€9, dg—%dud:nd& (25)

Noting that in these coordinates f,(g)=e"/2e"*, we obtain

xﬂ@z/WQWWmﬂw

oo

proving (24). We note that wy, and therefore the character xx(¢) is unchanged if s —
1 —s, that is, if t— —¢. Hence (24) implies that h is an even function. By Fourier inver-
sion, so is g¢. O

Theorem 23. (i) We have

p(1) = =

oo
- /0 £h(t) tanh(rt) d 1.
(ii) If ¢1, p2 are K-invariant and compactly supported then

1 [ —

/G¢1(g)¢2(g)dg:g i thg, (t) he,(t)tanh(nt)dt.

Proofs may be found in Knapp [25|, Chapter 11, Gelfand, Graev and Piatetski-
Shapiro |14, Chapter 2 Section 6 and Varadarajan [41] Theorem 39 on p. 205. We will
give a proof (after some Lemmas) which uses no Lie theory. A portion of the argument
parallels Proposition 4.1 on p. 15 of Hejhal |18, and we have made our notation consis-
tent with his, and with Selberg |38], (3.1).

Theorem 23 (i) is the Fourier inversion formula on the noncommutative group
SL2(R). It is sometimes called the Plancherel formula because it implies (ii), which is
the true Plancherel formula. The measure %ttanh(ﬂt)dt is called the Plancherel mea-

sure on the even unitary principal series. (Since we have only considered ¢ € H® we do
not need the other irreducible unitary representations.) The Plancherel measure is
closely related to the intertwining integrals (18). Indeed, M(é —it)o M(% +it) is an G-
equivariant endomorphism of the irreducible space P1—72—|—it= so by Schur’s Lemma it is a

scalar. One may check using (20) that the reciprocal of this scalar is %ttanh(ﬂt). See
Knapp and Stein [24].
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Lemma 24. Letn>y>1. Then

A0 e )AL )

r=+yln+n -y -y b).

where

Proof. Identifying K\G/K with K\#H, we want to find = such that the images ni and
z=x + iy of the two matrices in H are in the same SO(2) orbit. Mapping H to the unit
disk by the Cayley transform z — (z —i)/(z + i), their images must therefore be equidis-

tant from the origin. That is,
[a—2y 2 2
e . | — L ]-
012y a=z"+ Yy +

Applying the map ¢t — (1 + ¢2)/(1 — t?) to both sides of this equation, n + n~! = a/y.
This equation can now be solved for x. 0

z—1
z+1

n—1_
n+1

Define a function ® on R™ by

u/
@(61L+61L2):¢< ¢ 2 6711,/2 ) (26)

Lemma 25. I[fU =¢e“+e % —2, then g(u) = Q(U) where
CP(V)dV
v VV-U
Proof. Let V=¢"+¢e¢7" —2. With y =¢% n=¢" and x as in Lemma 24, think of x as

function of V' > U. Then d x = %e“(V ~ U)"Y24 V. We integrate V from U to infinity
and double the result to account for both positive and negative . 0J

QU) = (27)

Lemma 26. We have
1 [ Q(V)dV
OU)=—-— = 28
©) w/U Vg (28)

Proof. We'd like to differentiate under the integral sign in (27) but since the left end-
point depends on U we must be careful. Integrate (27) by parts to obtain

Q(U):—z/: O'(V) T —TdV.

The integrand now vanishes at the left endpoint, so we may differentiate under the inte-
gral sign, then integrate by parts again to obtain

Q'(U)= ;i§%¥%dV:—2AfQWWUMV—UdV
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We substitute this into the right side of (28), then switch the order of integration:

%U \/W //\/:@" VAW AV —
// ,/I"/V [‘J/dvqﬂ' (29)

To evaluate the inner integral, let V =U + ( )v. We have
w
W -V
/U VU dVv = / Ydv= W U)
since fol v Y21 —0)2dv=B (% %) =7 Thus (29) equals

/oo (UW)(I)”(W)dW:/OO O(W)AW = B(U),
U U

where we have integrated twice by parts. 0

Proof of Theorem 23. Take U =0 and write Lemma 26 in the form

s =o=-1 [ gl (30)

7r
Since g is even and ¢’ is odd, we have the Fourier inversion formula

g(u):l/ h(t)e "tudt, g’(u):,i/ th(t)e tudt,
0 0

T iT
and we may change the limits in (30) to ( — 0o, 00), dividing by 2, then interchange the
order of integration to obtain

1 [ i [ e iutdy
¢>(1)_%/0 th(t);/_oo —eu/zfe—u/zdt'

The inner integral passes through the pole at u =0 of the integrand and is interpreted as
the principal value. The Plancherel formula now follows from

o) —iut
/ ﬁ: — i7rtanh(7rt), (31)

which we may prove as follows. Since t > 0, the numerator e~*“* is small for u in the
lower half plane, and we may move the path of integration downwards. The left side of
(31) — 27 times the sum of the residues at u= — 2min of the integrand in the lower half
plane. The residue at u = 0 is only counted half since the path of integration passes
through this point. We get

—27ri<l Z (— 1)k _2“kt>——7ritanh(7rt)

N



20 SECTION b

proving (i).

To prove (ii) define ¢5(g) = ¢a(g1). Since ¢y is K-bi-invariant, and since the K-
double cosets are stable under g — g~ ! this equals ¢2(g). Now apply (i) to ¢ = ¢1 x ¢,
then ¢(0) = (¢1, ¢2),. On the other hand hg(t) = hg,(t) he,(t) by Theorem 21 so (ii) fol-
lows. U

Proposition 27. Let g be an even, compactly supported function on IR. There exists
¢ € H® such that (22) is true.

Proof. Let Q: Rt — C be defined by Q(e* + e * — 2) = g(u). We claim that @ has
derivatives of all orders that are continuous on IR*. The only issue is continuity at 0.
Write U =e" 4+ e~ — 2. We find that

1 U3/2 3U5/2
u=2log| =(vVU +VU+4) | =vVU — —+ — ...
2 24 640
Since only odd powers of U'/? appear, when we substitute u into the smooth, even func-

tion g we obtain a function of v that has continuous derivatives of all orders at v = 0.
We define ®: Ry — C by (28) or, integrating by parts and substituting W=V — U,

@(U):%/OOO Q"W + U)W dW.

We may differentiate under the integral sign arbitrarily many times, so ¢ has contin-
uous derivatives of all orders, even at U =0. Now u— ®(e"+ e~ ™ — 2) is a smooth, even,
compactly supported function. We will show that this implies that there is a unique
smooth, compactly supported K-bi-invariant ¢ satisfying (26). Every double coset of

SO(2) has a representative of the form ( e?

a2 > The only two such representatives
are for values v and — u, and since ® is even there is a uniquely determined function
such that (22) is true. The issue is to show that this function is smooth. Since it is con-
stant on cosets of G/SO(2) = 9, we can transfer it to the upper half plane by the map
G — $ given by g — ¢(i) and it is sufficient to show that the corresponding function
on $ is smooth. Furthermore, we may then transfer the function to the unit disk by the
Cayley transform. If re* are polar coordinates on the disk, then the resulting function

depends only on r, and its value is

w . 472 B 1-—r
O(e"+e 2)—@<m>, u-log(l_i_r)

Since ® is a compactly supported function on R, with continous derivatives of all
2

ar 2) defines a smooth compactly supported function on the disk.

- T

1
Thus proves that ¢ € H°. O

orders, re'? —s CID(
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6 The Selberg trace formula

We have already shown that the integral operators p(¢) are Hilbert-Schmidt, hence
compact. More is true: they are trace class. A compact operator is trace class if it can
be factored as the composite of two Hilbert-Schmidt operators. If it is self-adjoint, and
has eigenvalues )\;, it is easy to see that this is equivalent to Y |\;| < co. Lang’s |27]
contains much useful material about trace class operators.

Let f; be an orthonormal basis of L2(I'\$) consisting of eigenfunctions of p(¢) which
are also eigenfunctions of A. Assuming that ¢ € H° satisfies (7), let p; be the eigen-
values of p(¢) with respect to this basis. Making a Fourier expansion we have

(z,w) Z wifi(z fZ w) (32)

Initially this expansion is only valid in L%(T'\$ x I'\$), but we will now show that the
right-hand side represents the kernel in the sense of uniform convergence.

Lemma 28. (Dini’s Theorem) Let f; be a sequence of functions on the compact set
X such that Y0 | fi(z)| converges pointwise to a continuous function F(x). Then the
series Y ., fi(x) converges absolutely and uniformly.

Proof. For each 2 € X there exists N, such that F(z) — Y " | [fi(z)] < e of n > N,.
Since the sequence of functions

n

gu(n) = F(z) =3 |fila)

1=1

are continuous and decrease monotonely to zero, there exists a neighborhood U, of x
such that g,(y) < e for all y € U, and n > N,. Since X is compact, it is covered by a
finite number of the sets U, i =1, ---,7. Now take N = max (INV;,). We see that if n > N
then g,(z) <e on X. This shows that the convergence of the series >°°° | fi(x)| is uni-
form, so the series ). fi(x) converges absolutely and uniformly. O

Theorem 29. (Hilbert and Schmidt) Let f € C®(T\$), and let f; be an
orthonormal basis of L2(T\$) consisting of eigenfunctions of A. Then the expansion

oo

f(z)= Z cifi(z), ci=(f,fi) (33)

1=1

15 absolutely and uniformly convergent. More precisely, let X be any negative number,
and let € > 0, C' > 0 be positive constants. Then there exists a constant N c, indepen-
dent of f such that

oo

f(z) = cifilz)

1=1

<e if (hW)<C,n>N.c, h=(A=MNT. (34)
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Proof. Let A be any negative number. We have
Gz, Q) =3 (= N1 fil2) Falw),

where A f; = \;fi. Indeed, if we expand Gx(z, () = v;ifi(2) fi(w), then the coefficient v;
may be evaluated by taking f= f; in (10); we find that v;= (A\; — ) L. Let

»y(z)z/m GAM)P%, C=Etines,

which is easily seen to be a continuous function on I'\$). We have

D AP = (=) (35)
This follows from the orthogonormality of the f;. Both sides are continuous and so by
Dini’s theorem (Lemma 28) the convergence in (35) is uniform in z.
By (10) we have
d¢Nd
ORY NRCCHSTIE (36)
\$

Ui

where h(¢) = (A —X)f. If h=>_ a;fi, then since h is continuous, it is square integrable,

and
> lail=(h,h) < oo. (37)

C; = az()\z — )\)_

By (36) we have

Now by the Cauchy-Schwartz inequality and (35), (37) we have
> eifilz \—Z ai(Ai— A) 1 fil2) \/Z A= A2 i(2) \/Z ja;|? <oo.  (38)

Since (35) is uniformly convergent, convergence of this series is also uniformly conver-
gent. Since Y ¢;f; = f in L*(T'\$), we have Y ¢;fi(z) = f(z) almost everywhere. The
uniform convergence of > |¢;fi(z)| implies the uniform convergence of > ¢;fi(z). As
the uniform limit of continuous functions, > ¢;f; is continuous and so is f, and so )
cifi(z) = f(z) for all z. Finally, if h is allowed to vary with (h, h) < C, we may replace

\/>0; lai|> by Cin (38), and it is clear that N, ¢ can be chosen to make (34) true. O

Theorem 30. The expansion on the right-hand side of (32) converges absolutely and
uniformly to K.

Proof. If w is fixed, then applying Theorem 29 to K 4(z, w) shows that the convergence
is absolute and uniform in z. Moreover, taking A to be negative and applying A — X to
Ky(z, w) (in the z parameter) gives a continuous function on the compact set I'\$) x
['\$ that is bounded. We regard this as family of functions of z, indexed by w, that are
bounded in the L norm and a fortiori in the L? norm, so (34) shows that the conver-
gence of (32) to K4(z,w) is actually uniform in both variables. O
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Theorem 31. If ¢ € H° then p(¢p) is trace class.

Proof. A linear combination of trace class operators is trace class. Hence it is sufficient
to prove this with ¢ replaced by %((ﬁ(g) + ¢(g9~")) and by %(qﬁ(g) — ¢(g~")). We may
thus assume that ¢ satisfies (7) and so p(¢) is self-adjoint. Let p; be its (nonzero) eigen-
values. Let A; be the corresponding eigenvalues of A. Thus A\ 2 < o0,

Applying A to K4(z, w) in the first variable gives a new kernel A,K4. We will show
that

(ALK y)(z,w) = Z widifi(z) fi(y). (39)

Formally this follows from (32) by termwise differentiation. However this must be justi-
fied the uniform convergence of Theorem 30 would of course justify term-by-term inte-
gration but not differentiation.

Note that A,K 4(z,w) is continuous hence has an expansion

(8K ) (z,w) = vifil) fily)-
Let A < 0. Consider

/F\55 Gz, Q[(AK ) (¢ w) — AK¢(C,w)]M,

On the one hand by (10) this is just (32). On the other hand, the term in square
brackets is > . (v; — Aws) fi(¢) fi(w), and since the resolvent is compact, may apply it
term by term. Using R(A, A)fi= (X — N) 71 fi we get (v; + Api)(Ni — N) 71 = p;, so v; =
Aipti proving (39).

Since this function A,K(z, w) is continuous, it is Hilbert-Schmidt, and so we obtain
the bound

Z | pidi? < oo, (40)
Now Y |u;| < oo follows from 3 |A;|7? < oo and (40) by Cauchy-Schwarz. O

The trace tr T' of a self-adjoint trace class operator T' is by definition the sum of its
eigenvalues.

Theorem 32. If ¢ € H° satisfies (7), and if p; are the eigenvalues of p(¢p), the trace

dxzNd
trp(p)= [  Ky(z.2) =5 (41)
r\$ Yy
Proof. This follows from orthonormality on integrating (32). O

The Selberg trace formula is a more explicit formula for its trace. Let {7} denote a
set of representatives for the conjugacy classes of I'. Let Zp(7y) denote the centralizer in
I' of ~.
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Theorem 33. We have

r = -1 dg. 4
tr p(¢) % _/ZF(V)\G $(g~tvg)dg (42)

Proof. We rewrite the right side of (41) as

Z/Gaﬁ(g‘lvg)dgzz > /Gaﬁ(g‘lé‘lvég)dg-

vyel {v} d€Zr\T

Combining the integral and the summation gives (42). O

This is a primitive form of the trace formula. To make this more explicit, we must
study more explicitly the orbital integrals on the right side. An element 1 # v € I' is
hyperbolic if its eigenvalues are real, elliptic if complex of absolute value 1. T' is hyper-
bolic if each 1 # v € I' is hyperbolic. For example, let X be a compact Riemann surface
of genus > 2. Its universal cover is $ and ' = 71(X) acts with quotient X. These exam-
ples are precisely the hyperbolic groups.

We assume now that I' is a hyperbolic group. If 1 # v € I" define N = N () by asking

that v be conjugate to
N1/2
() @

for some N. Let Ny= Ny() be such that

N/
NO—1/2

is conjugate to a generator of Zp(7y). We may obviously assume that N and Ny are > 1.
We note that Zg(7y) is conjugate to the diagonal subgroup. Its image in X is a closed
geodesic. So the numbers N(7) are thus the lengths of closed geodesics, and the num-
bers Ny(7y) are the lengths of prime geodesics.

Theorem 34. With g the function in (22),

- log N
-/Zr(v)\G o~ 1g)dg= N1/2 f Nofl/z g(log N). (44)

Proof. We may assume that v equals (43). Using Iwasawa coordinates (25) the integral

[ o (Y e ) ) e
log (Vo) O:O ¢<<N1/2 N1/2>< 1 (1J¥1)x ))M

and a change of variables proves (44). O
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Theorem 35. Let g be a smooth, even, compactly supported function and let h be its
Fourier transform, defined by (23). If %+ t? are the eigenvalues of A on T'\$, and if

log(N) runs through the lengths of closed geodesics of T', where for each N we let Ny be
the length of the corresponding prime geodesic, we have

3 h(ti):w / () tanh () dt + - /l;’f]]\éol 9(log ). (45)

— 0

This is the Selberg trace formula. See Selberg [38| and [39].

Proof. We choose ¢ as in Proposition 27. By Theorem 20 and Theorem 22, the h(t;)
are the eigenvalues of p(¢) on the eigenfunctions of the Laplacian, so the left side of
(45) is the trace of p(¢). By Theorem 23 and Theorem 34, the right side of (45) is the
sum of the orbital integrals. Thus the identity follows from Theorem 33. U

7 The Selberg zeta function

In order to get useful applications the class of functions g and A in the trace formula
must be expanded.

Theorem 36. The trace formula Theorem 35 remains true provided h is an even func-
tion analytic in the strip im(z) < % + 0, such that h(r) = O(1 + |r|) =272 in this strip.

1
This assumption implies that the Fourier transform g(u) = 0(67(54_6)‘“").

Proof. See Hejhal |18|, Chapter 1 Section 7 for the proof by an approximation argu-
ment that Theorem 35 implies this stronger statement. 0

Theorem 37. (Weyl’s law) . The number of j with t; < x is asymptotically

1 2
EVOI(F\@).T :

This must be mentioned as the first significant application of the trace formula. Noting

1

that A; :i—kt?, this means that the number of A; <z is asymptotically —vol(I'\9)z.

Proof. (Sketch) Briefly, taking h(t) = e~*T, the hyperbolic contributions in The-
orem 35 are of smaller magnitude and the first term in (45) predominates. One obtains

3 e N > ﬁvol(r\f}), and Weyl’s law follows from a Tauberian theorem. See
Hejhal [18], Chapter 2 Section 2. O

The trace formula may be regarded as a duality between the length spectrum of T'\$
(that is, the set of lengths N of closed geodesics) and the numbers ¢; such that %-I— t? are

the eigenvalues of the Laplacian. A similar duality, which we next discuss, pertains
between the set of prime numbers and the zeros of the Riemann zeta function.
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Theorem 38. Let g be compactly supported, smooth and even, and let

W) = /Oo it g (1) d .

— 0

Let %—Hﬁti denote the zeros of ¢ in the cricital strip. Then

h( %) -3 h(ti)+h<%>:% _o; h(t)%dt

T g(0)log(m) +2 3" kﬁg) g(log(p™)). (46)

Since h is assumed even h( — i/2) = h(i/2). However there are good reasons for writing
the formula this way. (See Remark 4 below.) Special cases (“explicit formulae”) were
found by Riemann, von Mangoldt, Hadamard, de la Vallee Poussin, and Ingham. These
are discussed in Ingham [21]. Weil [43] formalized the duality.

Proof. To prove this, let £(s) =TRr(s)((s), where I'r(s) = W’S/QF(g). The function h(t)
:H( +it), H(s)=h(—i(s—1/2)). Consider, for >0

1 14+d+ico f’(s)
— ds.
=g M L

Moving the path of integration to re(s) = — § and using the functional equation £(s) =
&(1— s), we obtain the negative of this integral plus the sum of the residues; so

% 146 +i00 65’((;)) H(s)ds= Z h(t;) — h<%> _ h< _ %)

146 —1i00

is entire and we write h(t)

We have ¢'/¢ =TRr/Tr + ¢'/(, and the integral over I'g can be moved left to re(s) ==
We have

l l+i00 Ffa(S) h< - z'(s _ l))ds: _ g(o)log(ﬂ) + L/_oo h(t)udt.

i 1 oo R () 2 2

’1

On the other hand, we have — ¢(s)/((s) =Y A(n)n—* where A(p*) =log(p), p prime,
while A(n) =0 if n is not a prime power. We have
24100
L‘ H(s)n’SdS: g(lOg(Tl))y
27 o oo vn

and assembling the pieces we get (46). O
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Remark 1. Moving the line of integration requires knowing that a path from 2+ : 7T to
— 144 T can be found for arbitrarily large 7" where ¢’/ is not too large. This can be
accomplished by choosing the path to lie about half way between a pair of zeros that are
not too close together. See Ingham [21], Theorem 26 on p. 71, where he proves that one
can always find ¢ near T such that ¢/’ is O(log?(T)) on the line from 2+it to —1+it.

Remark 2. In practice the condition that g be compactly supported is too strong. It is
sufficient that ¢ and h be as in Theorem 36.

Remark 3. If H is not too big in the left half plane we have

~ F/(l—l-%t) Lyiso T
1 h(t)—4,dt— L H(s) (
or | o F<1+2zt> 2me Jr o (
4

l\3|m

d9—2ZH

l\3|m

where the sum is over the residues at the poles of I'(s/2).

Remark 4. Let X be a nonsingular complete curve of genus ¢ over the finite field £ =
F,,. If P is a prime divisor of degree d(P) we denote N(P)= ¢*"). The zeta function of

X is
I1;2, (1-aj ) !
(1=g=*)(A—g'=%)"

where «; are the eigenvalues of the Frobenius map in Hl(X (Ql) for any prime [ # p.

[]-nwE)y 1=

The Riemann hypothesis is that |« ;| = /qg. We write a; = q2 . Let g(n):7Z — C be a
sequence which is even and nonzero for only finitely many n, and let

(D) =3 gln)eitmion

n

Thus h is entire, even, and periodic with period 27 /log(gq). Then

h( —%) = h(aj)+h<%> —(20-2)g zp: mz::l \/7()13)).

This function field analog of Theorem 38 may be proved by considering

24-2mit/log(q) (g
L (84 - viosta) Jrco)a,

271

where h(t) = H(% + ¢ t). It may be regarded as an application of the Lefschetz-

Grothendieck fixed point formula applied to a correspondence on X, and the three con-
tributions h( —i/2), > h(#;) and h(i/2) are the traces of the correspondence applied to
H°(X), HY(X) and H?*(X). See Patterson [35], Chapter 5 and the first part of
Connes [9].
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The analogy between the Selberg trace formula and the explicit formulae has been
the source of much speculation. Whether this analogy is misleading or not remains to be
seen. One major difference between the explicit formulae and the Selberg trace formula
is that in the trace formula, Y h(t;) appears with a positive sign, while in (46), it
appears with a negative sign. As Connes [9] points out, this difference may be very sig-
nificant.

One tangible fruit of the analogy is Selberg’s discovery of a zeta function which bears
a relationship to the trace formula similar to that of the Riemann zeta function to the
explicit formulae. With notation as in the previous section, Selberg considered

= H H (I_N()is*k):
{No} k=0
where log(Ng) runs through the lengths of prime geodesics.

Theorem 39. Z(s) has analytic continuation to all s, with zeros at the negative inte-
gers and at %iz’tk, where i-l—t,% are the eigenvalues of the Laplacian on T'\$.

Proof and discussion. To motivate the introduction of the Selberg zeta function, we

would like to take

in the trace formula. Unfortunately we cannot use this function, but if we could, the
geometric side of the trace formula would be the logarithmic derivative of Z(s):

Lemma 40.

3 log(No) N=G=1/2)  7/(s)
NYZ_N-12  Z(s)

{N}
Proof. Writing N = N{"*
>~ log(No) N, s 1/2) > log(No) Ny ™*
PO D e T DD Dl s
{No} m=1 0 {No} m=1 0

Substituting (1— Ny ™)~ 1=>"7, Ny ** and interchanging the order of summation, this
equals

> log(No) N “*% _ 7/(s)
—(s+k) '
& 1N, Z(s)

This completes the proof. 0

lul(s—1/2)

Although we cannot use g(u) =e~ , We may use

—lul(s=1/2)  —lul(e—1/2)

g() == T~ 5
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where s and o are distinct. This device of subtraction eliminates the discontinuity in ¢’
at u=0. We will hold ¢ fixed and vary s. Initially, they are both assumed to have large
real part. The Fourier transform h(t) = ffooo g(u)edu is

1 B 1
1 1 ’
(=340 (0—3P+r

h(t) =

Next we prove, assuming that s and o have real part > -, that

/OO h(t)ttanh(mj)dt:2,§) [gi—k%ﬂf} (47)

N | =

— 0

To prove this, use the partial fraction decomposition

The left side of (47) equals
1 [ [ 1 1

2i )

oo

tanh(mt)dt.

1 [ 1 1

20 Jooo | (s—5)+it  (0—3)+it
Since tanh is odd, the two contributions are equal, and the first integral may be evalu-
ated by moving the path of integration up into the upper half-plane, where the only
poles are at the poles i(k + %) of tanh(nt), k=0,1,2,---. The residue of tanh(nt) at these
points is 71, and we obtain (47).

We now use the Selberg Trace Formula. We note that the volume of the fundamental

domain is 4w(g —1). So for these functions g and h we get:

1 Z'(s) 1 Z'(0)

2s—1 Z(s) 20—1Z(c)
oo
1 1 1 1
oY | Y e o T
=JCRLEY (- 22+ (022402
Fixing o and varying s, the right side has meromorphic continuation to all s. Multi-
plying by 2s — 1 see that the poles of Z'/Z are simple and have integer residues. Hence

Z(s) =exp /s ZZ,((;)) ds

has analytic continuation to all s.

8 Cusps

There are discontinuous subgroups I' of G = SLy(RR) such that I'\$) is noncompact but
has finite volume. A well-known example is [' = SLy(%Z).
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We recall that SLo(C) acts on the Riemann sphere )% = P1(C) = C U {oc} by linear
fractional equations, extending (1) to complex matrices. Now 2R contains both the upper
half plane $ and the unit disk ® ={z € C||z| < 1}. We can map $) to the unit disk © by

the Cayley transform
C— 1 11—\, . Z—1
S V2i\ 1 i) Z2+1i

estamct=su)={( ) L+ pr=1}.

We have

Thus if I' is a discontinuous group of SLa(R) acting on $ such that I'\$) has finite vol-
umen, then I'p = CI'C ! a discontinuous group of SU(1, 1) acting on ® such that I'p\D
has finite volume. The advantage of working with I'p in the following discussion is that
® is bounded, so we can draw better pictures showing the behavior of the boundary.

If T\ $ or equivalently I'p\® is noncompact, we can still find a fundamental domain
F for such a group whose boundary arcs are pairs of congruent geodesics, as in Proposi-
tion 1, by the same method. As in Proposition 1, if one traverses the boundary in a
counterclockwise direction, the congruent boundary arcs are always traversed in opposite
directions.

We will call such a domain polygonal. With the removal of the assumption that I'\$
is compact, there is an important difference. Now the fundamental domain can go down
to the boundary in one or more places. Let us call the point of the boundary of $ or ©
where the fundamental domain F of I or I'p touches it a cusp of F.

Figure 1. Noncompact fundamental domains in ®. Left: infinite volume. Right: finite volume
with one cusp (at the point P.)

Figure 1 shows two polygonal domains inside of © bounded by noneuclidean poly-
gons, whose boundaries are geodesic arcs as in Proposition 1. It is easy to see that the
domain on the left has infinite volume, so only the type of boundary behavior in the
second figure is permitted for groups where I'\$) (or, equivalently I'9\®) has finite
volume. If F is a fundamental domain for I', then of course F5 = CF is a fundamental
domain for I'y. We will consider these two groups and fundamental domains as equiva-
lent, but our pictures will usually draw © and Fp.

Proposition 41. We may choose the fundamental domain F so that if P and Q are dis-
tinct cusps of F, then there is no element v €' such that v(P)= Q.
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Proof. (sketch) We suppose that there is such an element v. Then we may modify the
fundamental domain by cutting off a piece N of F mnear @ and replacing it with
v~Y(N). This procedure is illustrated in Figure 2.

P

Q=1(P)

Figure 2. Left: a fundamental domain containing two congruent boundary points. Right: fun-
damental domain for the same group after moving a boundary piece from the vicinity of @ up
to P.

It may be confirmed that this procedure does not affect the fact that the boundary
consists of congruent geodesic arcs that are traversed in opposite directions when the
boundary is navigated counterclockwise.

The diagram in Figure 2 suggests that we may perform this operation in such a way
as to produce a connected fundamental domain. This is true, though we have not proved
it yet one might have to move the piece y~'A around a bit more. Suppose that we
have “missed” and obtained a disconnected fundamental domain as in Figure 3.

P

Figure 3.
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We have labeled the four arcs through P in order as «j, s, @z and 4. The
boundary arcs occur in congruent pairs, so vy must be congruent to another arc, which
must obviously pass through a cusp. Since we have already arranged that P is not con-
gruent to any other cusp of F, we see that oy must be congruent to another arc through
P, that is, to g, a3 or ay. It cannot be ag that it is congruent to, since we recall that if
the boundary is traversed in a clockwise direction, congruent arcs are traversed oppo-
sitely. Thus there is an element of I' that can move a7 to ag or ay. In either case, this
operation will reduce the “gap” and repeating the process if necessary will eventually
produce a connected fundamental domain. 0

We will henceforth assume that the fundamental domain is chosen in this way.

We classify an element g # 1 of SLa(IR) as hyperbolic, parabolic or elliptic depending
on how many fixed points they have in PR. If there are two fixed points on the boundary
R U {oc}, then g is hyperbolic; if there is a single fixed point on the boundary, g is
parabolic; and if there are a pair of complex conjugate fixed points, one each in the inte-
rior of % and H then g is elliptic. We have a similar classification of elements of SU(1,
1) in terms of the fixed points in © and its boundary; thus g € SLa(R) will have the
same classification as CgC~' € SU(1,1).

Proposition 42. If g€ SLa(R) or SU(1,1) then g is

hyperbolic if |tr(g)|>2;
parabolic if |tr(g)|=2;
elliptic if tr(g)| <2

Proof. First suppose g = ( ‘{f 3 ) € SLy(R). If z is a fixed point then z = Zjis SO z is a

root of

cz?+(d—a)z —b=0.

The discriminant of this quadratic is (d — a)?+ 4bc= (a + d)? — 4. So there are two real
roots if |a + d| > 2, one real root of |a + d| =2 and two complex conjugate roots if |a +
d| < 2. (This argument must be modified slightly if ¢ =0, when oo is a fixed point.)

If g €SU(1,1), then g has the same classification as C~'gC € SLo(R). Since conjuga-
tion does not change the trace, the statement follows. 0

Proposition 43. Suppose that P is a point of the boundary of $ (resp. ©) that is a
cusp of F (resp. Fn). Then T (resp. T'n ) contains a parabolic element fizing P.

Proof. We will treat the case of a discontinuous group I' acting on ). The case of the
disk is clearly equivalent.

Let a and S be the two boundary arcs passing through P. Since the boundary arcs
occur in congruent pairs, there is some v € I' such that «(a) is another boundary arc,
and evidently «(P) is a cusp of I'. Since F is chosen as in Proposition 41, v(P) = P and

s0 v(a) = B.
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We must show that ~ is parabolic. It has one fixed point on the boundary of $,
namely P and so we must show that it has no other. Arguing by contradiction, let ) be
a second boundary point such that v(Q) = Q. Applying a linear fractional transforma-
tion, we may assume that P = oo and @ = 0. Thus 7(z) = az for some positive real
number a. We may assume that a < 1, since if ¢ > 1 we may interchange o and 3, and
hence replace v by v~ !. Now it is clear that the sequence of fundamental domains F,
vF, v2F, - have accumulation points on the positive imaginary axis. This is a contra-
diction, since I' is a discontinuous group. 0

With Proposition 43 in mind, we may now give a more satisfactory definition of a
cusp. Let S € R U oo (resp. the unit circle) be the set of boundary a points of $
(resp. ) such that y(a) = a for some parabolic element. Clearly I' (resp. I'p) acts tran-
sitively on S. We call an orbit of I' on S a cusp. This is consistent with our previous
terminology since, given Proposition 43, it is not hard to see that every cusp of a funda-
mental domain that satisfies the conclusion of Proposition 41 must contain exactly one
representative from each orbit in S. So this notion of a cusp gives the same set of cusps
as our previous definition, but is intrinsic in the sense that it does not depend on the
choice of a fundamental domain.

9 Fredholm equations

We will deduce the meromorphic continuation of the Eisenstein series from the mero-
morphic continuation of the resolvent of an operator. In this section we will prove a
statement that is sufficient for our purposes.

We begin by recalling the following property of compact operators.

Theorem 44. (Fredholm Alternative) Let H be a Hilbert space, and let T: H — H
be a compact operator. Let 0 X € C. If T — A is not invertible, then Tz = Az for some
nonzero x € H.

We will give a proof of this well-known fact in a special case, assuming that 7" is a
self-adjoint operator of Hilbert-Schmidt type; this proof will give more information since
it will also show that the resolvent (T — AI)~! is a meromorphic function of A. More
precisely, (T — XAI)~!' — A7!I is a Hilbert-Schmidt operator that can be represented by a
kernel that is meromorphic as a function of A.

Thus, let X be a locally compact Hausdorff space with a positive Borel measure, and
let K € L*(X x X). We define an operator T on H = L*(X) by

Tf(z) = /X K(z.y) f(y)de.

The operator T is compact, and assuming K(z, y) = K(y,z) it is self-adjoint. The spec-
tral theorem for compact operators guarantees that H has an orthonormal basis {¢;} of
eigenvectors of T', and if T¢; = \;¢; then

K(T,y):Z Aigi(w) di(y).
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The A; are real, A\;, — 0 as 1 — oo and

Z A%:/X . |K (2, y)]?dzdy < oo. (48)
X

Define another kernel Ky (z, y) by

Ki(z,y)=K(z,y) +Z \ i?,\iaﬁi(w)@(y)-

Note that the series is absolutely convergent by (48), so K, defines another Hilbert-
Schmidt operator. It is a meromorphic function of A, with poles at the A;.

Theorem 45. In this setting, let A be a nonzero complexr number which is not among
the ;. Then

Raf(e) == A=A 2 [ Kaeon) f)d
X
defines a bounded inverse of T — Al.

Proof. If f is in the nullspace of T, then f is orthogonal to the ¢; and it follows that
Ryf=—AX"1f,80 (T — AX)Rxf =Rx(T — M) f = f. To prove the result, it is thus suffi-
cient to check that Ryd;= (A — )~ '¢;. Indeed,

Radi=| — A" T=X2[ N+ Al b =
APq — 3 )\7)\1 i —
A2 = ) THAA = X)) = XN = A) + A7 g = (Ni—A) 1.

The proof is now complete. l

A Fredholm integral equation is one that may be written

/X K (2, ) () dy — Af (2) = (o),

where f is the “unknown” and w is a given function. Since the left-hand side is (T" —

Al) f, we have proved that if K is a Hilbert-Schmidt kernel satisfying K (z, y) = K(y, x),
and if A is not in the spectrum of 7', then this equation has a unique solution Ryu.

10 Groups with one cusp

If the discontinuous subgroup I' of G = SLy(R) is of cofinite volume but has cusps, the
spectral theory is complicated by a continuous spectrum, coming from the Eisenstein
series. In this section we will consider the case where I' has one cusp. We may assume
that — I € I', though of course it acts trivially on $. Without loss of generality, we may
assume that this cusp is at oo and the stabilizer of co in I' is

= {x(1 7 )lneal



(GROUPS WITH ONE CUSP 35

We will also denote G, = { i( 1 315 >|x EIR,}.
For some positive real number Ty, F will contain the set
Fr={z=z+iyeFly>T}

for all T > Ty, and F — Fr will be compact. We will also let G and Gr be the preimages
of F and Fr in G under the map g — ¢(i); thus G is a fundamental domain for T'\G.
Finally, let

Hr={z=z+iyeH|y>T},  Gr={geGlg(i)eHtr}.

Then Fr (resp. Gr) is a fundamental domain for I'oo\Hr (resp. I'oo\G7T).
In contrast with Theorem 7, the operators p(¢) are bounded but no longer compact.
In order to obtain compact operators, we introduce truncation. Truncation was system-
atically studied by Arthur, but for rank one groups it was already used by Selberg, and

is used in his Gottingen lectures. If f is a locally integrable function on I'\G, and if T is
a sufficiently large real number, let fo be its constant term

'fO(g):/rm\Gm f(w)clu:/O1 f<< L )g)daz.

Let us introduce the notation
y(g) =im(g(i)).
Thus y(g) = fi,0(g) in the notation (19). Let

0 otherwise.

Lemma 46. Suppose that T > Ty and that g€ G, y€I'. Then

1 ify(g)>T and vy€Tl;
0 otherwise.

or(79) :{

Proof. If y(vg) > T then for suitable v, € I'sc we have 7,79 € G. Since G is a funda-

mental domain and g, v..7yg are both in it, this implies that y,,y=1, so v € I'. 0
Let
ATf(9)=f(9)— > dr(9) fo(9). (50)
'YEFOO\F

On the fundamental domain G, the truncation operator is easy to characterize: the con-
stant term is subtracted above T'. That is, we have

T _ | flag) if ge G—Gr;
A (“’)_{ 7l9) — folg) if g Gr. (51)

Indeed, this follows immediately from Lemma 46.
The truncation operator has the following adjointness property.



36 SecTioN 10

Proposition 47. Let f and h be two locally integrable functions on T\G. Then
(ATf h) = (f, ATh) (52)

provided that the integrals defining the inner products (f, h) and (fo, h) are absolutely
convergent.

Proof. We have

(ATf,h)= / F(9) (g dg — / folo)R(g) dg
while g gr
(. AThY = /g F(a)hg)dg - /g (o) Ta(g)dg.

It is thus enough to show that

fo(g)@dg=/g f(9)ho(g)dg.

Indeed, we may write

folg)h(g)dg = / -, Dolo)hg)dg = / . / )R dudy

gr

Interchanging the order of integration and making the variable change g —— u™lg

proves (52). O

Let ¢ € C(G) and let Ky(g,h)=>" ¢(g 'vh) as in (5). Define another kernel KQ’T
by

where the meaning of the notation is as follows. We recall that K4 is automorphic in

each variable separately. Thus we may apply the truncation operator to Ky in both g
and h.

Theorem 48. Let ¢ € C°(G). Then p™T(¢p) = AT o p(¢) o AT is a compact operator on
L?(T\G). We have, for f € L*(I'\G)

pMT(9) fg) = o Ky (g, h) f(h)dh.

The kernel K;}’T(g, h) is of weakly rapid decay in the following sense. Let us denote

(1 yl/? (1 u vl/?
g—< 1>< 9_1/2 "o "= 1 v~ /2 fh

where kg and kp, € SO(2). There exist constants A and B, depending only on ¢ such that

if g, h € G, with then KQ’T(g, h) =0 unless A < y(g)y(h) ! < B. Moreover, if N >0 is
any constant, then there is a constant Cn >0 such that

K3 (g,h)|<Cnylg) N
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as y(g) — oo uniformly in h.

Proof. By (6) we have
A 0)= [ NFK (g WATF(R) .
G

Now by (52) we may move the truncation in h from f to AJK s, whence (48).

Our aim is to prove that the kernel K;}’T is Hilbert-Schmidt, so that p*7T(¢) is a
compact operator.
Let

K&(g,h)= Y é(g~"h).

vElw

The first step will be to show that there is a compact subset €2 of G x G such that
(g,h)€ (G xG)—Qimplies Ky(g,h) =K (g,h). (53)

Since supp(¢) is compact, there exists a constant £ > 0 such that if ¢ <& then

172 ,
ol K 172 k" ]1=0

for all k, k"€ SO(2). There exists a constant ¢; > 0 such that if g € G then y=y(g) > c1.
Moreover, there exists a constant constant U such that if y €' — ', and if g€ G, h €
Gy then y(vh) < c1e. This means that

B B t1/2
g vh=r, 1( Y )f‘v’

where ¢t =y 1y(yh) <e, and so

d(g tyh) #0, geEG,heGy implies v €.

Therefore if h € Gy and g € G then Ky(g, h) = K3°(g, h). Similarly, there exists a U’
such that if g € Gy and h € G then Ky(g,h) = Kg(g,h). We may therefore take €2 to be
the complement in G x G of (G x Gy) U (Gy' x G), which is compact, and (53) is proved.

Next we show that if K = K4 or K£’T then there are positive constants A < B such
that for g, h € G we have K(g,h) =0 unless

K(g,h)#0 implies A<%<B. (54)
Thus if g or h goes to the cusp at infinity within the fundamental domain G, and (g, h)
remains in the support of K, then g and h both go to the cusp, and at the same rate. It
is easy to see that if f is any locally integrable function on I'\G then y(supp ATf) C
y(supp f); applying this fact to K in both variables shows that if (54) is true for K =
K 4 then it is also true for K;}’T with the same constants A and B.
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Thus to prove (54) we may assume that K = K,. Clearly it is enough to check this
off the compact set 2, and so we may actually assume that K = Kg°. When v € Iy we

have
—1,\1/2
—tp ot () * o1
7 g( (y~ o)t )"

where the value x is unimportant. It is easy to see that if this is to lie in a given com-
pact subset of G, particularly supp(¢), then y v is restricted to a compact subset of
RZY, which is the content of (54).

Now to show that the kernel KA T is Hilbert- Schmldt it is sufficient to show that it
is of rapid decay as y(g), y(h) — oo, because K¢ is obviously bounded on any com-

pact subset of G x G. In view of (54), y(g), y(h) must go to oc at about the same rate.
If y(g) and y(h) are sufficiently large then, in view of (53) we have

K¢gh Z g,h —.I‘+U+f)
§EZ

—1/2 1/2
Fgah(@:qﬁ(“gl( Y e )( : f )( ’ o172 )”h)'

Now in G, truncation in g subtracts the constant term producing

> Fyn(—z+u+¢) /ZF (—z4u+E+t)dt

(€T 0 ¢ez
o

Z gh(—z+u+§) — / Fgn(—x+u+t)dt.

EEZ o
As a function of h, this function has no constant term since, it is easy to see, integrating
uw from 0 to 1 produces zero. Thus the second truncation in h does not change the
result, so

where

oo
K:;Tgy Zth —z4+u+§) — / Fyn(—x+u+t)dt.
£€Z -
Now by the Poisson summation formula we have
K" (g.h) = / Fgn(—z+u+t)e 2"t dt.

n#0
The n-th term in this sum is

win(u—x o —1 11 y_l'U 1/2 * —2mi nt
Ve )/m(b(";g( 1><( | P L C

As the Fourier transform of a smooth, compactly supported function, this is rapidly
decreasing as y — oo; that is, it is O(y~") for all N; the decay is uniform in k,, 5, and
y~ v, all of which are restricted to compact sets, remembering (54).

It is now evident that

IK5" (g,h)]2dg dh < oo,
Gxg
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so ATo p(¢) o AT is a Hilbert-Schmidt operator. In particular, it is compact. 0

Let L3(I'\G) be the subspace of “cusp forms” f € L2(I'\G) satisfying

LA 1o

almost everywhere. It is easy to see that this space is invariant under the action of G,
and is p(¢)-stable.

Also let L(I'\$) be the right K-invariant elements of L§(I'\G), which may be
regarded as functions on $). It is not true that p(¢) is a compact operator. However, its
restriction to the space of cusp forms is compact.

Theorem 49. (Gelfand, Graev and Piatetski-Shapiro) If ¢ € H, the restriction of
p(¢) to L3(T\G) is a compact operator. Indeed, the restriction of p(¢) to L{(I'\G) coin-
cides with p(p)MT.

Proof. This follows from Theorem 48 since the truncation operator AT clearly coincides
with the identity operator on the space of cusp forms. 0

If f is a function on F\G, then we say that f is of weakly rapid decay if for all N >
0 there exists a constant Cy such that f(g) < Cnyy(g)~) for all g € G. If f is smooth,
and if for all D € U(g) (regarded as a ring of differential operators on G) the function
D f is of weakly rapid decay, then we say that f is of rapid decay.

Theorem 50. (i) L3(I'\9) has a basis consisting of eigenfunctions of A.

(ii) L§(T\G) decomposes as a direct sum of irreducible invariant subspaces.

(iii) Any K-finite element of an irreducible invariant subspace L3(T'\$) is smooth and of
rapid decay.

Proof. For parts (i) and (ii), the proofs Theorem 9 and Theorem 11 are easily adapted.
For (iii), it is sufficient to show that if V' C L3(I'\G) is an irreducible subspace and

b

f € V(k) then f is of rapid decay. We may find ¢ € H satisfying ¢(rkegr,) =

e (019 (g), and such that
1/2
Y
y—¢ _

is a positive function of mass 1 concentrated near y = 1. Then p(¢)f is near f, therefore
nonzero, and it is in V(k), which is one-dimensional by Proposition 5, so it is propor-
tional to f. Since p(¢)f is the convolution of f with a smooth function, it is smooth as
a function on G. It follows from the weakly rapid decay of the kernel KQ’T(g, h) that
p(®) f is of weakly rapid decay, and thus so is f. Moreover by Proposition 2.4.5 of
Bump [5], the SO(2)-finite vectors in V are smooth vectors, the space of SO(2)-finite
vectors is closed under the action of U(g). Thus or D € U(g) the function D f satisfies
the same assumptions as f, and is of weakly rapid decay, proving (iii). O
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As in the case of compact quotient, the Laplacian acts by scalars on each irreducible
one-dimensional subspace. The cuspidal spectrum behaves much as the entire spectrum
in the compact case. On the other hand the orthogonal complement of L3(I'\G) con-
tains a continuous spectrum. The eigenfunctions of the Laplacian relevant to the spec-
tral theorem HEisenstein series are themselves not square integrable.

To understand how this can be, and to get some intuition as to the nature of the
continuous spectrum, consider the following example. The group R acts on itself by
translation, and the Laplacian — d?/dz? is an invariant differential operator. It has
eigenfunctions f,(z) = e27ta®
sion

with eigenvalues a®. Any L? function has a Fourier expan-

o) = [ da) fuw)da,

but f, is itself not L2 If T C R is measurable, the Fourier transforms of L2 functions
supported on 7' form an invariant subspace. There are no minimal invariant subspaces,
so L?(R) doesn’t decompose as a direct sum of irreducible representations.

Proposition 51. The series

_ y® a b
EXZ,S)—— j{: TEZf;?ﬂEgv Y ( ¢ d )

YET\I'

converges absolutely if re(s) >1 when z € §).

Proof. Let o be the real part of s. What we need to show is that if o > 1 then

g

¥y
Fz\:r or T < (56)

We define a measure p, on the upper half plane by p, =4°~"2dx Ady. Let B be a small
neighborhood around z € ). The Jacobian of the map z — y(z), where v= (gs) € SLy(R)
is |cz+d|~* Hence the p,-volume of v(B) is (approximately) |cz + d|~2?vol(B).

We may choose the representatives v € I';o\I' so that the images (B) all lie within
the rectangle 0 <z <1, 0 < y < C for some constant C. (Actually this is not quite true.
If one v(B) happens to lie on the left or right edge of this region, cut it into two pieces
along this edge and move one piece by =+ 1 back into the region.) This rectangle has
finite volume, so ZFOO\F |c 2+ d| 27 < 0o, which implies (56). O

If g€ G, we will also denote F(g,s)=FE(z,s) where z= g(i). Thus
E(g,s)= Y fs0(79). (57)
YET o \I'

We will eventually prove that this has meromorphic continuation to all s € C. More gen-
erally, if f, is any SO(2)-finite element of P;” we can define

E(g, fo= Y [

'YEFOO\F
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As s varies, we may organize the functions f, into a family by requiring that the restric-
tion of fs to SO(2) is independent of s. Since fy is to be SO(2)-finite, this means that
[s is a finite linear combination of the functions f, ; with k an even integer, that were
defined by (19). When re(s) > 1, the series is analytic function of s, and in this gener-
ality F(g, s, fs) is an analytic function of s. More generally still, we may introduce a
unitary character y: I' — C* such that x(— 1) = (— 1)¢ with e =0 or 1; then let f, €
PZ be a family of SO(2)-finite vector, where we use Py if e = 0 and P, if e = 1. Then
we may consider

E(g, fsx)=x(7) > fs(v),

vEl\T

and in the same way one has meromorphic continuation as a function of s.
The analytic continuation of the Eisenstein series is closely connected with the ana-
lytic continuation of its constant term

Eo(g,fs,x):A1 E<< 1 | >g,fs,x>dt. (58)

We recall that an intertwining operator M (s): PT — P | defined by (18).

Proposition 52. Assume re(s) > 1. There exists an analytic function c(s) independent
of the choice of fs € PSi which is bounded on vertical strips (to the right of 1) such that

EO(gaf57X):fs(g)+C(S)M(S) s (59)

Proof. Substitute the definition of E(g, fs, x) into (58). The coset I's, in I'oo\I' con-
tributes fs . The remaining terms contribute

1
— 1 x
/ > > x(%)fs(%( I>g>dw
0 L er.\I'/T. O0€lw
Y¢l o

= X (o )e)e
YET AT /T -

Y€l o

Iff)/z(‘i 2)¢Foo then c=c(vy) #0 and

()

so the variable change x — 2 — d/c shows that

oo oo s

Thus (59) is satisfied where
c(s)= > x(leM> (60)

YET\I'/Teo
7¢Foo
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Since we are within the region of absolute convergence of the Eisenstein series this
Dirichlet series is convergent if re(s) > 1, and (60) shows that it is an analytic function
bounded in vertical strips. O

Example. Let us consider

E(g,s)= Y fs0(79)

Too\T

where I' = SL(2, Z). Then in (60), the number of v with ¢(v) = ¢ is ¢(c), where (in this
example only) ¢ denotes the Euler totient function. Thus

— - —25_C(2S—1)
c(s)—; d(c)e = 25

The analytic continuation of ¢(s) can be proved directly, and so can the analytic contin-
uation of the Eisenstein series. For example, let E*(z, s) = 7~ *I'(s)((2s)E(g, s) where
z=g(i)=z+iyeH and t > 0. Let

CIOENDY o—Tlmztn|?t/y

(m,n)€E€Z?
It follows from Euler’s integral for the Gamma function

E*(z,s)z%/ooo ©(t) - 1)ts%.

The Poisson summation formula implies that ©(¢t) =¢~'©(¢t~1). From this one gets

* _1 oo- s l—-s\ 2% =
E(z,s)—2/0 L A KA

This expression gives the analytic continuation and functional equation. Such methods
do not work in general, which is why Selberg’s proof of the analytic continuation of the
Eisenstein series for arbitrary I' in 1953 was a breakthrough.

The literature on the analytic continuation of Eisenstein series is quite extensive.
Proofs may be found in Borel [4], Cohen and Sarnak [7], Colin de Verdier [8], Efrat [10],
Elstrodt [11], Fadeev [12], Harish-Chandra [17|, Hejhal [19] (Chapter 6 and Appendix F,
with discussion of the literature on p. 225), Kubota [26], Jacquet [23], Langlands [30],
Lax and Phillips [31], Moeglin and Waldspurger [32], Miiller [33], Osborne and
Warner [34], Venkov [42] and Wong [46]. The most general treatments are Langlands’
historically important work [30] and the careful modern treatise of Moeglin and Wald-
spurger [32].

This body of literature all owes something to Selberg, who found three proofs, in
1953, 1957 and 1967. Generally speaking, one shows the analytic continuation of the
FEisenstein series and its constant term simultaneously. The basic principle is that the
resolvent of an operator has analytic continuation to the complement of its spectrum.
Applied as for example in Kubota [26], Venkov [42] or Appendix IV of Langlands [30] to
the resolvent of A, this gives the analytic continuation of the Eisenstein series to the
region re(s) > %, s¢ (% 1]. In this approach, similar to Selberg’s earlier proofs, obtaining
the meromorphic continuation to the entire plane then presents some difficulties.
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Selberg and Bernstein realized independently that these difficulties could be avoided
by combining the resolvent principle with another one, the insight that if a system of
inhomogeneous linear equations having analytic coefficients has a unique solution, then
the solution has meromorphic continuation to wherever the coefficients in the linear
equations do. In this method of proof, the linear equations are integral equations of
Fredholm type Bernstein’s work in the 1980’s came later than Selberg’s 1967 proof,
which was not published by Selberg but shown to Hejhal and to Cohen and Sarnak, and
which influenced Efrat [10] and Wong [46]. Selberg’s published comments on the idea of
using Fredholm equations are in his introduction (written in 1988) to his 1955 Gottingen
lectures [39].

Despite Selberg’s priority in the use of Fredholm equations to prove the analytic con-
tinuation of Kisenstein series, Bernstein’s rediscovery was been extremely important in
clarifying the issues to the world at large. Moreover, Bernstein also simplified the ana-
lytic continuation of Eisenstein series in several variables, and in addition to the analytic
continuation of Eisenstein series he gave other applications of the idea, such as to the
analytic continuation of the intertwining integrals M (s) and their p-adic analogs ([1],
[2]), and his method has become an standard technique in the representation theory of
p-adic groups. Thus his work has been extremely influential.

In this section we will prove the meromorphicity of E(z, s), or equivalently the func-
tion E(g, s) defined by (57). Thus fs = fs o is the SO(2)-fixed vector in P;. The proof
we give is based on Jacquet |23]|. Instead of using the resolvent of A, we will use the
analytic continuation of the resolvent of the compact operators p™7T(¢) with ¢ € C°(G),
which is a Fredholm operator.

In order that we may treat E(g, s) as a vector element of some function space, we
will write F4(g) = E(g, s) interchangeably. It does not live in L?(T\G), but it does live
in the space of locally square-integrable functions leoc(F\G). This is a space whose
topology is defined by the set of semi-norms given by the L? norm on compact sets. It is
a complete, locally convex space with this topology, in other words a Frechet space.

In this section we will denote

b(5) = Xs1_ (),
where x» is the character of H° defined by (15).
Proposition 53. If re(s) > 1 we have
p($)Ey=$(s) E,. (61)
Proof. By (14) we have
p(&) fs.0= Xs(1—8) (@) fs.0= b (5) fs.0(9)

Since p(¢) is an average of right translates of fs o, this operator commutes with left
translation by . Therefore

~

(p(¢) fs.0)(79) = & (s) fs,0(9)
for all ¥ €T'. Summing over v we obtain (61). O

Lemma 54. Let ¢ € H°. Then p(¢) is self-adjoint if ¢ is real-valued.
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Proof. If g € SLy(R), then g and g ! lie in the same SO(2) double coset. Indeed, we
can write g = kdr’, where k, k" € SO(2) and d is diagonal, and

d=wd 'w, w:( : -1 )eSO(2).

Thus if ¢ is real-valued then ¢(g ') = ¢(g), which implies that (7) is satisfied, so ¢ is
self-adjoint. O

Lemma 55. Let Q be a compact region of C. Then there exists ¢ € H® which is real-
valued and such that ¢ is nonvanishing on 2. Moreover, if s:%-l—it € Q) then unless t is

real or pure imaginary (so s is real) we may choose ¢ so that ¢(s) is not real.

Proof. From the Taylor expansion sin(z)/z =1 — %xQ -+ %x‘l — ... we see that if ¢ >0 is

sufficiently small, then sin(ez)/(ez) is nonvanishing on Q. Moreover, if s = % +it € Qis
given such that ¢ is not real or purely imaginary, then we can also choose ¢ so that
sin(ex)/(ex) is not real at x =s.

Now we let g; be a sequence of smooth, even, compactly supported functions that
converge uniformly on R to the 1/2¢ times the characteristic function of the interval | —
e,e|. By Proposition 27 there is a corresponding sequence of functions ¢; € H° related to
the g; by (22). By Theorem 22 we have

b l+z’t _ [T ~(u)€iUtd’UJ—>L ) Pi“tdu—lsin(st)
7 9 - gi - %% . ’ _€t

— 00

uniformly on €2. The statement is now clear. 0J

Let us denote

u(s) = c(5) ﬁu,

I'(s)
so that by (20) with £=0 and (59) the constant term
Eo(g.5) = [fs,0(9) + n(s) f1-s,0(9)- (62)

Let ET be the function
EL(9)= Y 0r(v9) fs.0(79)

Too\T
where dp is defined as in (49).

Lemma 56. IfT >Ty and g € G we have
EST(Q) :{ fs(g) if g€ Gr; (63)

0 otherwise.

N |
=

The function EX(g) is entire as a function of s and is square-integrable if re(s) <
have

ATES =FEs— E;T - N(S)Egls- (64)
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Proof. The characterization (63) follows from Lemma 46, the fact that EI is entire is
clear, and the square-integrability when re(s) < % is easily checked. Now (64) follows
from (51) and (62). O

Proposition 57. If 0 € L§(T'\$), and if re(s) > 1 we have
/ 0(9)E(g,s)dg=0.
r'\$

(The integral is absolutely convergent.)

Thus we say that the Eisenstein series is “orthogonal” to the cusp forms, though this
is slightly wrong since Ej is not in L*(I'\G).

Proof. The convergence of the integral follows from the rapid decay of f in The-
orem 50. We unfold the integral, using the automorphicity of 6:

/F\ﬁ 0(g9) Y feolrg)dg = g\:r /F\ﬁ 0(~9) fs,0(19)dyg

Coo\T

_ / 0(9) f.0(g)dyg
T'oo\$H

- / / O(ug) fso(ug)dudg.
Goc\$ JT\Coo
since fs o(ug) = fs,0(g) this vanishes by the cuspidality of 6. O

Theorem 58. (Selberg) The Fisenstein series E(g, s) has meromorphic continuation
to all s and satisfies the functional equation

E(g,s)=pn(s)E(g,1 - s). (65)

For all s such that E(g, s) does not have a pole, it is a smooth function of g, and ATE,
is square-integrable. The values of s where E(g, s) has a pole are the same as the values
of s for which p(s) has a pole. There are only a finite number of poles with re(s) > %,
and these all lie on the real line. If E(g,s) has a pole with re(s) > %, then the residue is
square-integrable. If 0 is an element of LA(T'\$), and if s is not a pole of Ey, then

E(g,s)6(g)dg=0. (66)
G

(The integral is absolutely convergent.) The function pu(s) satisfies

w5l 5)=1. (67
If re(s)= %, then |u(s)|=1.

Proof. Let € be a connected, relatively compact open subset of € that intersects the
domain {re(s) > 1} of absolute convergence of E(g, s). By Lemmas 54 and 55 we may

~

choose ¢ € H° such that p(¢) is self-adjoint and ¢ is nonvanishing on 2. We will prove
that we have meromorphic continuation of both E and pu to €.
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We will show that ATE, and is meromorphic as a function Q — L%T\$). We will
also see that u(s) is meromorphic and does not have a pole at s unless ATE; also has a
pole there. If this is established it will follow that Ej is a smooth function of g where it
does not have a pole in s, since it will satisfy (61); thus Ey = ATE, + ET + pu(s)E{_, is
the convolution of a locally integrable function with a compactly supported smooth
function, hence smooth.

Let us define

FT = ATp(g) Y.

Lemma 59. The function FST(g) 15 bounded and compactly supported modulo I' as a
function of g. It is entire as a function of s.

Proof. Let g € Gr. If y(g) is sufficiently large, then y(gh) > T for all h in the support
of ¢. For such g we have

porpr((1 4 )a)= fommr((1 4 Jan)an= four (1] )on)an

This is independent of z, so p(¢p)ET(g) agrees with its own constant term when y(g) is
sufficiently large. Thus F. (g) = 0 for all such g. This proves that F (g) is compactly
supported. On the other hand, it is clearly dominated by p(¢) f|s|, which is continuous,
and so it is bounded. O

Working in L%(T'\§), let
e == (Mp(¢)AT — d(s)) ' F. (68)
This is the unique solution to the Fredholm equation
(ATp($)AT = §(s))eT = FT.

By Theorem 45, el is a meromorphic function of s, analytic as long as ¢;(9) is not an
eigenvalue of the compact operator ATp(¢)AT. We will show that if re(s) > 1 we have

ATE =el' + u(s)el .. (69)

Since ATp(p)AT — ¢ (s) is invertible when ¢ (s) ¢ Spec(ATp(¢)AT), it is sufficient to show
that applying this operator to both sides has the same result. In other words, (69) fol-
lows immediately from

(ATp(¢)AT - QE(S))ATES = FsT + N(S)Flem

which in turn follows from (64) and (61), and the definition of FZ.
Since el is a meromorphic function Q@ — L2(I'\$), by (69) the function ATE, is
meromorphic wherever f(s) is meromorphic. Now let us show that u(s) is meromorphic

on ). Define
E,= ET 4T,
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Observe that Ej is a meromorphic analytic function of s € Q taking values in L2 .(T'\$),
the Frechet space of locally square-integrable functions, since ET is an entire function
taking values in L .(I'\G), and el is meromorphic on , taking values in L2(T'\$).
Moreover, Ey is square-integrable if re(s) < % (since then ET is L?). By (64) and (69) we
have

Es=FE{ + p(s)Ef (70)
Apply p(¢) to (70). By (61) we have
u(s)(p(d) — d())EL o= (p(¢) — p(5))ES . (71)

Since (p(¢) — ¢(s))ET is meromorphic with values in L{(T'\$), this proportionality

gives the meromorphicity of u(s) provided (p(¢) — ¢(s))E1_, is not identically zero. To
see this, we may take re(s) > % such that ¢ (s) is not real. Then E;_, is a vector in the
Hilbert space L*(I'\G), and since p(¢) induces a self-adjoint operator, its eigenvalues are
real, and qg(e) is not, so By cannot be a eigenvector.

By (71) and the fact that ¢(s) = ¢(1 — s) we have (67), which together with (70)
implies the functional equation (65).

Let 6 € L§(T'\$) be a cusp form. Then (66) is proved in Proposition 57, when re(s) >
1. but both sides are meromorphic functions of s. Indeed, the integral on the left side is
convergent where E, does not have a pole, since E, = ATE, + ET 4+ pu(s)ET_,, where
ATE, is square integrable while EZ(g) and u(s)ET_(g) are of polynomial growth in y =
y(g) as y — oo, while @ is of rapid decay. Thus (66) remains true by analytic continua-
tion for all s where F is not polar.

Next we show that if F, has a pole at s = s¢ then so does pu(s). If not, observe that
the constant term (62) has no pole, so the residue 0 = res,—,,E, is in L§(T'\$). Consider

the integral
B(2)0() 50,
r'\$ Yy
By (66), this is zero, but taking the residue at s = sg produces the L? norm of 6(z),
which is not zero. This contradiction proves that the poles of Ey and the poles of pu(s)
are the same.

We will show that if re(sqg) > % and F ha§ a pole at s = sqg, then sq is real. If not,
then by Lemma 55 we can choose ¢ so that ¢(sg) is not real. Then since ATp(p)AT is
self-adjoint, ¢(s¢) cannot be an eigenvector, and so by Theorem 45 and (68), el has no
pole at sg. On the other hand, ET is entire. Thus El = ET + €T has no pole at s = .
Similarly, since ¢A(1 —5) = (5(3), el . has no pole at s = sg. This means that Ei_; =
el ,+ ET , has no pole at s = sg. Since re(1 — sg) < %, Ef,SO is square-integrable, and
so By, € L*(T\9). Now p(¢), though not compact, is a self-adjoint bounded operator,

so its eigenvalues are real, and ¢(p) is not. Therefore (p(¢) — ¢ (s0))Ei_ s, is nonzero.
Since we are assuming Fs has a pole at s = so, p(s) has a pole there. We see that the
left-hand side of (71) has a pole but the right-hand side does not, which is a contradic-
tion.
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Next observe that u(s) = u(s), so |u(s)] = |u(s)]. If re(s) = %, this means |u(s)| =

|1(1— )| so by (67) we have |u(s)| =1 on the line re(s) = % This implies that E, has no
poles on the line re(s) = 5.

Finally, if re(so) >% and FE has a pole at sg, then (64) shows that the residue is
ress—s,ANTEs + MElT,SO,

where M =res;_,,u(s). Both terms are square integrable. U

11 The Maass-Selberg relation

Theorem 60. (Selberg) We have

/ ATE(Z,S)ATE(Z,S’)d'T/\zdy =

9 Yy

Ts+s -1 /,L(S),U/(S,)Tlisis N /,L(Q)TS —s /,L(S,)Tsis (72)
s+s'—1 s’ — s '

Harish-Chandra and Langlands described this as the Maass-Selberg relation but it is
more correctly attributed to Selberg. However, the name has stuck, and we will refer to
it as the Maass-Selberg relation. Selberg gave two proofs. One was in the original ver-
sion of the Gottingen notes, the other is in a comment added when these were published
in his collected works. We will reproduce the latter proof.

Proof. Assuming re(s’) > re(s) + 1 and re(s’) > 1, we may proceed as follows. Let
dr(y)=1if y>T, 0 otherwise.

/ ATE(z,s)ATE(z,s’)dx/\zdy =
\$ Y
Bz, s)ATE(z, s) PEA LY _
r'\9 Yy
e nd _dznd
/ Bz, 8)(E(z, ') — or(n)y*) LAY sy [ Bz, )yt SEA0Y,
F y .'FT y

The two terms may be handled separately as follows. The first term equals

ndrNd sdrNd
/E(Z7S)(E(27,9,)ys) 2 y+ E(Z7S)y 2 K -
F Yy Fr Y
vdxANd rdx Nd
/E(z,s) Z y(vz)* 2 y+ E(z,s)y® 2 ! =
d VETc\(T'—Te) Y T Y
/d'l:/\d S’d-/l;/\d
[ Py T [ pe sy L,
FoorF Yy Fr Yy
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where Foo = {z +iy||z| < } is a fundamental domain for I'sc. Since the disjoint union
of Foo —F and Fr is {x+zy||x\<— y < T}, this gives

/dy Ts—l—s -1 N(S)Ts’—s
2 s+s—1 s'—s

/0 (v*+ u(s)y'*)y*

The second term gives

!

) [ s = T )

!

The identity is now proved for re(s’) sufficiently large, but since both sides are meromor-
phic, it now follows for all s’ where they are not polar. O

As a special case, we may take s=o0 —it, s'=0 + it with o, real, to obtain

/ ATE(z, 0 +it) 225000

'\$ Yy

T2071 - ‘/'L(O' + it)|2T1720 N /'L(O' o Zt)TQ'Lt o M(O’-l— Z't)Tf2it
20 —1 21t ’

(73)

Corollary 61. On the region %< o< g, t > 1 the factor p(o +it) is bounded.

Proof. Fix any T > Ty, with Tj as in Section 10. Since (73) is positive, writing |u(o +
it)|= M, we have

M2<bM +e, b:%t—_lT%—l,
where

h— 20t_1T20 1 =T -2

Thus M is bounded by the positive root of the quadratic equation M2 — bM — ¢ = 0,

that is, by (b +Vb?+4c). The statement follows since b and ¢ are both bounded in the

region in questlon. O
2dx A dy

[“\55 y?

L 2it 1., —2it
/ pl = —it )T — pl =+t )T
pfl (2 ) (2 )
2log(T) — —| =+t .
og(T) u(2+2 >+ 577

Corollary 62. We have

ATE(Z,%JFH)

Proof. This follows from (73) on letting 0 —» % and using L’Hopital’s rule, remem-

bering that ,u( + zt),u(— —it)=1. O

Corollary 63. Let 0 € (%, 1] be a place where E(z, s) and pu(s) has a pole. If n €

L2(T\9) is the residue of E(z,s) at o then the residue of u is (n,n). In particular p >
0.
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Proof. The Eisenstein series E(z, s) and pu(s) are both real valued when s € R, so p is
real. Let be the residue of E(z,s). Then multiplying (72) by (s — o)(s’ — ¢) and taking
the limit as s, s’ — o we obtain

T4 () ()T ()T = ()T

+

s+s'—1 s'—s
P21 20
(N AT} = =5 gt
This proves that p> 0, and taking the limit as 7" — oo gives (n,n) = p. O

12 Spectral expansion

The spectral expansion was obtained by Roelcke [37], modulo the analytic continuation
of the FEisenstein series. Numerous accounts are in the literature, of which Gode-
ment [15], [16] is a good and influential one. In this section we discuss the spectral
expansion for L?(I'\$)) where as in Section 6 the group has a single cusp. We will
assume the analytic continuation of the Eisenstein series (Theorem 61).

Let o be a K-finite element of C2°(Goo\G). The incomplete theta series

Oulg)= > alvg) (74)

Do \T

is something like an Eisenstein series but it is not a A-eigenfunction. (Godement’s
term “incomplete theta series” seems something of a misnomer.) If f € C>®(I'\G) let

folg) = / | Jwg)du

be its constant term, which is in C®°(Gx\G). As a notational point, if f is itself
indexed, i.e. f= f; we will write f? instead of fi.o for the constant term.

Proposition 64. The incomplete theta series and constant term maps are adjoints; that

is, if f € C°(T\G) and a € CF(Goo\G) we have

/ 9a(g)mdg=/ a(g) fo(g)dg. (75)
G G \G

Proof. The left side is

/ a(vg) f(yg
na 'yEl" \Tl

/| » / o) Fug)dudg = /G »

which equals the right side. 0J

=]
9 e
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The incomplete theta series are compactly supported modulo I', hence are square-
integrable. For this reason they are easier to work with than the Eisenstein series them-
selves.

Proposition 65. L3(I'\G) is the orthogonal complement in L2(I'\G) of the closed sub-
space spanned by the incomplete theta series.

Proof. Immediate from Proposition 64, since the cuspidal spectrum is characterized by
vanishing of its constant terms. 0

For the remainder of this section, we make the simplifying assumption that the char-
acter x to be trivial and we only consider functions on G which are right invariant by
K, that is, which may be regarded as functions on §). We will therefore denote E(g, fs o,
1) as just E(g, s), or as E(z, s) where z = g(i). We will also denote f; = fs 0. We will
write the constant term in the form

Eolg,5) = f(g) + p(s) f1-s(9). (76)
(See Proposition 52.)

Using Theorem 50, let & be a basis of L3(I'\G). Also, note that by Theorem 61
there may be a finite number of poles of the Eisenstein series E(z, s) at locations o; €
(%, 1] (j=1,--,N). These are also poles of u(s). Let p; be the residue of pu(s) at s=o0;.
By Corollary 63, p >0 and if we define

1
n-: I‘eSS:ng 9757 77
= (9 "

then the 7; have norm 1 in L*(I'\$).

Proposition 66. The constant term of n; is \/p fi—o;- The functions n; are real valued,
square integrable and orthogonal to the cusp forms.

Proof. Part (i) is immediate from (76) since the first term on the right has no pole but
the second one does. The 7; are real valued since the o; are real. The fact that the
residue is square integrable is already noted in Theorem 58, and the fact that the con-
stant term of n; is /pfi_,, follows from (76). Taking the residue in Proposition 57
shows that the n; are orthogonal to the cusp forms. 0J

Proposition 67. We have

(o, mj) = \/Pj (o).

Proof. This follows from Proposition 64, Proposition 66 and from the definition
of a. O

Proposition 68. Let o € C°(Goo\G/K). Define

d(S)Z/GOO\G a(g) f1-s(g9)dyg. (78)
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This is an entire function of s and t — &(o +1it) is of Schwartz class for all real o. For

real o we have
1

w=g [ a9 sds (79)

21 oo

(The contour integral is over the wvertical line with real part o.) Moreover if o > 1 we
have

buls) =5 | T () Blg,5)ds (80)

27”, —ioco

0o 1/2 d
. Y —s@y
oz(s):/ o' Yy —=.
0 ( y 12 ) Y

Since « is compactly supported and smooth, ¢t — @ (o + i t) is the Fourier transform of a
Schwartz function, hence is Schwartz itself. By the Mellin inversion formula

e" y'? _ 1 T a(s)y*ds. (81)
y_1/2 27 o

— 1200

Proof. We have

This verifies (79) on the diagonal, and since both sides are left invariant by G and
right invariant by K, the general case follows. If ¢ > 1 we may replace g by vg then sum
over v € I'oo\I' to obtain (80). O

Proposition 69. Let o, 5 € C°(Goo\G/K). Then

f: <9a(g)7nj>m+$/oo <9a,E( : ,%-I—z’t)><95,E( : ,%-I—z’t)>dt. (82)

— 0

Proof. Take o > 1. Using Proposition 64 and (80), the inner product on the left-hand
side equals

1 o +1i00

| ewbwa= [ o= & (5) Eolg, 5)d s Bg)dg.
G \G G

\G 2mi o—i00
Since Eo(g, s) = fs(g) + p(s) fi—s(g) with pu(s) bounded by Corollary 61, there is no dif-
ficulty inerchanging the order of integration to obtain
1 o+1i00 _

L i (s) /G o Ul i) o) Ty

2mi o — 100

Moreover, using Proposition 61 and the fact that g is compactly supported while & is of
rapid decay on vertical lines, it is legitimate to move the path of integration left to o =

1 . )
5 At each o there is a residue

i (o) /G - Pil=o,{9) B0y = (o) Blo) = (e ms) W),
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where we have used (78) and Proposition 67. These terms will thus appear, together
with

L i (s) / (Folg) + u(s) fr—o(9)) Blg)dgds
Goo\G

211 1ioo
(1 . 1 . \s/1 .
B<§+Zt>+u<§+lt>5<§”>]dt

1/ d(l-l- z't)
2 J_ o 2
Comparing this with (82), what we need to show is that

1 o 1 . 1 .
E . <9a,E(7§+Zt)><95,E(,§+2t)>dt =

T[> (1 . 5 1 . \s/(1 .
ol a(§+zt> ﬁ( +2t>+u(§+zt>ﬁ<§—zt>]dt. (83)
Proposition 64 implies that
1 .
<9ﬁ:E(':§+Zt)> =

/| A (f%_“(m ; u(; z't) f%Ht(g))dg _
5<%+it> + u(%— it)B(%— it).

Multiplying the complex conjugate of this identity by

<9a,E( - ,%+it)>:A\G 9a(g)E<g,%it>dg,

the left-hand side of (83) equals
1 . \s/1 .
/ A\G [ < +zt>+u<§+zt>ﬂ<§—zt>
1 . (1 . 1 .
| A5t t) (5 i) ()

where we have used the functional equation of the Eisenstein series. Observe that there
are two terms, but these are equal since the change of variables ¢t — — ¢ interchanges
them, so the the left-hand side of (83) equals

/ /F\G ( +Zt>E<gv%—it>dgdt

E(g,%—it)dgdt _

dgdt,
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We now use Proposition 64 again to obtain

/ /oo\G ( Ht)[f%“(g”“(%“)f;m(g)]dgdt =
/ /m\a < Ht)[ (%+it>+N(%—it>d(%—it>}d9dt.

Making the variable change ¢t — —t in the second term (but not the first) gives (83). O

Let LZ(T'\$) be the finite-dimensional linear span of the residues n; of F(z, s); we
call it the residual part of L*(T'\$). The set of eigenvalues p; of A that occur in
L7.(T\$) are referred to as the residual spectrum. Similarly, the eigenvalues \; of A
that occur in L§(T'\$) comprise the cuspidal spectrum; let £; be an orthonormal basis of
cusp forms such that A¢; = N Let Lij(T\$H) = L3(T\H) © LZ(T\$H). Thus
Liisc(T\$) decomposes into a direct sum of one-dimensional eigenspaces for A; the
union of the p; and \; are called the discrete spectrum. Let L2, (I'\$) be the orthog-
onal complement of LdlSC(I‘\ﬁ).

Theorem 70. Let f € L*(I'\$)). Then there ewxists a function fe L?(R) that satisfies
)= u(—— zt)f( —t) such that

(o) =3 (o) o)+ Y () & + 4 [ RO R0

j —oo

If f is a cusp form then f(t) =0, while if f is incomplete theta series we have

A 1 .
Fo=(1.80 g +iv)
The map fr— f 1 continuous.

Proof. Let H be the Hilbert space

( D @>@( > @)@L?(R),

pj€residual spectrum Aj €cuspidal spectrum

and let V be tpe linear span of L%(F\ﬁ) and the vector space of incomplete theta series.
The function f is defined on this dense subspace as in the statement of the Proposition.
Then if feV and L(f)€ H is

((F 1), (F oo (F, €00, F o o) F ),

then by Proposition 69, the map L: V — H is an isometry. Since V is dense in
L3(T\$), we can extend L to all of L%(T'\$) in the following way. If f € L*(T'\$) find a
sequence f; € V converging to f; using the isometry property of L, L f; is a Cauchy
sequence, so it has a limit in the Hilbert space H, and the Theorem is proved. O
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To proceed further, we need a bit more information out of the Maass-Selberg rela-
tions. If f is a smooth, compactly supported function, we want to assign a meaning to

integrals such as
oo
/ f(w) du.
e U

We take this to be the principal value

- i = fu)
Eh_II)IO|:/OO TdU-I—/{; Tdu}.

[Tt

u

This equals

We will always employ this meaning in the sequel, particularly in the following Lemma.

Lemma 71. Let v be a smooth, compactly supported function. Then

lim/ me“‘ w = mp(0).

T — 00

Proof. We may separate v into its odd and even parts, and treat these two cases sepa-
rately. If 4 is odd, then (u) = (u)/iu is continuous at 0, and

/oo r (1) T¥ s —> 0 = 74p(0)

by the Riemann-Lebesgue Lemma. Thus we may assume that v is even. In this case the
integral is

/ vl <Tw2m w)‘l“—/ ¥(u m(lofﬂduﬁw(o),

The last step needs a bit of justification. We will make use of the identity

0o z/2
/ e zsm( )dt—\/_ e~ tdt.

—o0 —x/2

Thus

—u? iE/
/ Y(u Sm zu) / ¥(u) (0)e sin(ux)du+ 1 (0)/m 2 e Vdt.

—x/2

The first term tends to zero by the Riemann-Lebegue Lemma, while the second has the
limit 7 (0) as z =log(T") — oc. O

Theorem 72. Let ¢ be a smooth, compactly supported function on R satisfying

¢<t>=u(§—u)¢<—t>, (34)
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47r/ b(t) < -I-zt)dt.
/F\f) [D(g)|*dg = 4—/ (t)[*dt.

Br(g) :%/_OO ¢(t)ATE<g,%-I—z't>dt.

This is clearly square integrable since AT is. We will prove that

/ ‘CI)T( ng_
r'\$

where we use the principal value and

I e
)=z | HurDaar

By the Maass-Selberg relation, the left-hand side of (85) is

o0 0o i(t—t') 1 7 lfz'/ —i(t—t")
O A L T R

it t)

oo poo L —ie ) (L g\ piCert)
ar ] ¢>(t>¢>(t'{“<2+ ) i(t/+;<2 )" }dtdt’.

and consider

Then ® € L?(T'\9), and

Proof. Let

w Tz 'u
11U

Written this way, these integrands are clearly bounded since u(% -+ it) and u(% — it)

are complex conjugates of absolute value 1 when ¢ is real. The following manipulations
destroy the absolute convergence of the integral but are justified as long as we agree to

use the principal value. We make use of qﬁ(t),u(% + z't) = ¢(—t) and ¢(t') ,u(% — it’) =

¢(—1t') to eliminate each occurrence of p. Then wherever ¢( — t) or ¢(—1t') occurs, we
replace t or t’ by its negative to obtain four equal terms. We get

)
/
27T / / (1) )dtdt
and (85) follows.

Now it follows from the Lemma that

/ B(g)2dg= lim [ |@r(g)Pdg— L / (1) Pdt.
1"\17) T — oo p\ﬁ 4

O

Corollary 73. The image of L2(D\$) under the map f+— f in (70) is the space L*(RR;
w) of square integrable functions on R that satisfy f (t)= ,u(% - 2t>f( —1).
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Proof. The issue is surjectivity. It follows from Theorem 72 that the image of this map
contains a dense subspace, since we have constructed the inverse map on the subspace of

smooth compactly supported functions in L?(IR) satisfying f (t)= u(% - 2t>f( —-t). O

We now have constructed an isomorphism

L?(P\ﬁ)g@( P @)ea( &y @)@B(R; 1),

pj€residual spectrum Aj €cuspidal spectrum

and so we may write, for any f e L*(I"'\$)
F=3" (oY <f=§j>fj+41—ﬂ_/ f(t)E(-,%-l—z’t)dt.
J i —0o0

This is the spectral expansion.

13 Liftings and the Trace Formula

One of the most interesting applications of the trace formula is to liftings of automor-
phic forms. The method involves comparison of two different trace formulae, on different
groups, leading to the conclusion that automorphic forms on one group can be lifted to
automorphic forms on the other.

Jacquet and Langlands [22] gave an early application in a lifting from automorphic
forms on a division algebra to GLs. A variation of this theme noted by Gelbart and
Jacquet [13] is probably the simplest example of this type, since in this case neither
trace formula involves a continuous spectrum. It will be convenient to switch to an
adelic point of view, but we think the reader who has read Section 5 will not have
trouble making the transition.

If Dy and D5 are central division algebras over a field F', then Dy ® Dy = Matg(D3)
for some D3 and k, and Dq, D2 — D3 is an associative multiplication on the set B(F') of
isomorphism classes of central division algebras. Thus B(F') becomes a group, called the
Brauer group.

If D is a central division algebra over F' then the dimension of D is a square d?, and
if E/F is any field extension of degree d which can be embedded in D then £ ® D =
Matg4(F). Thus a division ring is a Galois twisted form of a matrix ring. The composite
map

D— E®D>Matq(E) > E,

the last map being either the trace or determinant, takes values in F', and gives us the
reduced trace or reduced norm.

The Brauer group of a local or global field F' admits a simple and beautiful descrip-
tion related to the reciprocity laws of class field theory. See Section 1 of Chapter 6
(“Local Class Field Theory” by J.-P. Serre) and Section 9 of Chapter 7 (“Global Class
Field Theory” by J. Tate) in Cassels and Frohlich [6].
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Let F' be a global field, A its adele ring, and D a central division algebra of degree
p? over F', where p is a prime. Let Z = F'X be the center of DX. Let S be the finite set
of places where D, is a division ring. If v ¢ S we identify D, =Mat,(F,).

Let H be the set of functions on D =[], D,* which are finite linear combinations of
functions of the form T[]  #, where for each v, ¢,: D) — C is smooth and compactly
supported modulo Z,, satisfies ¢,(2y9,) = ¢u(gy) when z, € Z,,, and agrees with the char-
acteristic function of Z,Mat,(0,) for almost all places v of F'. The ring H contains the
classical Hecke operators as well as the integral operators introduced in Section 7 above.

ZpaDE\Dp is compact. As with SLy(R), L*(ZaDp\DJ) admits integral operators
p() for ¢ € H:

D)= [ 9w famin

Let {7} be a set of representatives for the conjugacy classes of Dz. We denote by C.,
the centralizer of v in Dx. It is an algebraic group, so C,(A) C Dj will denote its
points in A.

Theorem 74. (Selberg trace formula).

trp(6) =3 wl(C,\C () | o9 "19)dg. (36)

{7} C+(A)Za\Dx
Proof. The proof of Proposition 6 goes through without change, so

PO = [, | Kolg.h) J)an,

Kolg,h)=" Y  dlg~'vh).

YEDy/Zy

As with SLy(R), the operator p(¢) is thus Hilbert-Schmidt, and with more work may be
shown to be trace class. As in Theorem 32,

tr p(¢) =/ Ky(g.9)dg
ZaDp\Djg
Now (86) follows as in Theorem 32. O

The conjugacy classes of Dy are easily described.

Proposition 75. If « € Dy — Zp, then F(«) is a field extension of F of degree p. Ele-
ments o and B are conjugate in Dy if and only if there is a field isomorphism F(a) —
F(B) such that a — B. If F(«) is a field extension of degree p, then F(a) may be
embedded in Dg if and only if [Fy(«a): Fy]=p for allveS.

Proof. The conjugacy of a and g follows from the Skolem-Noether Theorem (Her-
stein [20], p. 99). The last statement follows from (i) < (ii) in Weil [44], Proposi-
tion VIIL.5 on p. 253. 0
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The trace formula can be used to prove functorial liftings in many cases.

Let E be another division algebra of degree p?, and assume that the set of places
where F, is a division ring agrees with the set S of places where D, is. If p = 2 this
implies that D and E are isomorphic, but not in general. (This follows from the compu-
tation of the Brauer group in the global class field theory. See Chapters 6 and 7 in [6].)
Thus we want p > 2.

We will show that two spaces of automorphic forms on D and on E are isomorphic.

Suppose that T =®, 7, is an irreducible constituent of L2(ZaDz\D}). Since Z,\D.
is compact for v € S, m, is finite-dimensional at these places. We assume that m, is
trivial when v € S.

If v¢ S, then D, = E, = Mat,(F,). We may therefore identify m, with an irreducible
representation 7, of F, when v ¢ S, and if v € S we take m, = 1. Let 7' = ® 7,. It is an
irreducible representation of K.

Theorem 76. 7’ occurs in L2(ZpEF\E}).

The correspondence ™ — 7’ is a functorial lift of automorphic forms in the sense of Lang-
lands (Langlands [29], Borel [3]).

Proof. (Sketch.) If v € S, then Z,\D,’ is compact, so the constant function ¢9(g,) = 1
is in CZ°(F,). Let Hg be the subalgebra of H spanned by functions [] ¢, such that
¢y = ¢ for v € S. It is isomorphic to the corresponding Hecke ring on E. Let ¢ — ¢’
denote this isomorphism.

By Proposition 75, noncentral conjugacy classes in Dj and Ep are both in bijection
with the set of Galois equivalence classes of elements « of field extensions [F(a): F] =p
such that [F,(a): F,| = p for all p€ S. This intrinsic characterization shows that we may
identify the conjugacy classes of D and Fr, and compare trace formulae to get

tr p(¢) = tr p(g)". (87)

This is almost but not quite as easy as we’ve made it sound, because one must show
that the volumes on the right side of (86) are the same for the two trace formulae.
It follows from (87) that the representations of g on the spaces

L*(ZaDy [[ DX\D}) and L2(ZpEj || EX\E})

vES vES

are gisomorphic, and the theorem follows. 0

Underlying the final step is the fact that two representations of rings are character-
ized by their traces. For example if R is an algebra over a field of characteristic zero and
if My, My are finite-dimensional semisimple R-modules, and if for every a € R the
induced endomorphisms of M; and Ms have the same trace, then the modules are iso-
morphic (Lang 28], Corollary 3.8 on p. 650). This statement is not directly applicable
here but it gives the flavor.

For the remainder we take p = 2, and review the Jacquet-Langlands correspondence.
Let D be as before. The Jacquet-Langlands correspondence is a lifting of automorphic
representations from D* to GLy(F).



60 SECTION

There is a local correspondence for v € S. D, is compact modulo its center, so its
irreducible representations are finite-dimensional. These lift to irreducible representa-
tions of GLy(F,) having the same central character. The lifting was constructed by
Jacquet and Langlands by use of the theta correspondence. Indeed, Z,\D,’ is a quotient
of the orthogonal group GO(4) while GLg is the same as GSps, and theta correspon-
dence GO(4) «+ GSps gives the Jacquet-Langlands correspondence. Its image is the
square integrable representations (that is, the supercuspidals and the Steinberg represen-
tation).

Jacquet and Langlands constructed a global correspondence from automorphic forms
on D* to automorphic forms on GLy first using the converse theorem in Section 14 of
their book. To prove functional equations of L-functions on D>, they use the Godement-
Jacquet construction, because the Hecke integral is not available in this context.

Finally, they reconsidered the lifting from the point of view of the trace formula.
This allowed them to characterize the image of the lift. They sketched a proof (and later
Gelbart and Jacquet completed) of:

Theorem 77. An automorphic representation © of GLa(A) is the lift of an automor-
phic representation of D if and only if m, is square integrable for every v € S.

The remarkable fact is that their proof of this fact uses so many different techniques
which have proved important in the subsequent 30 years: the Hecke and Godement-
Jacquet integral constructions of L-functions, the Weil representation and the trace for-
mula.

The trace formula on GL32 is harder than on the division ring because of the presence
of the continuous spectrum. We’ve avoided this problem by proving Theorem 76 instead
of Theorem 77.
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