
Snap2Pass: Consumer-Friendly Challenge-Response
Authentication with a Phone

Ben Dodson Debangsu Sengupta Dan Boneh Monica S. Lam
Computer Science Department

Stanford University
Stanford, CA 94305

{bjdodson, debangsu, dabo, lam}@cs.stanford.edu

ABSTRACT
This paper proposes a challenge-response authentication
system for web applications called Snap2Pass that is easy
to use, provides strong security guarantees, and requires
no browser extensions. The system uses QR codes which
are small two-dimensional pictures that encode digital data.
When logging in to a site, the web server sends the PC
browser a QR code that encodes a cryptographic challenge;
the user takes a picture of the QR code with his cell phone
camera which results in a cryptographic response sent to the
server; the web server then logs the PC browser in. Our user
study shows that authentication using Snap2Pass is easy to
learn and considerably faster than existing one-time pass-
word and challenge-response systems. By implementing our
solution as an OpenID provider, we have made this scheme
available to over 30,000 websites that use OpenID today.

This paper also proposes Snap2Pay, an extension of
Snap2Pass, to improve the usability and security of online
payments. Snap2Pay allows a consumer to use one-time
credit cards as well as the Verified by Visa or Mastercard
SecureCode services securely and easily with just a snap of
a QR code.

1. INTRODUCTION
Passwords are the predominant form of authentication

system used by today’s websites. It is not because the pass-
word system is secure; quite the contrary, they are known
to have many problems. Passwords are vulnerable to dic-
tionary attacks and can be easily phished using a spoofed
web site. Moreover, since users tend to use the same pass-
word at many sites, a single server compromise can result
in account takeover at many other sites. Despite these lim-
itations passwords are widely used.

Over the years, many enhancements have been proposed,
including smart cards, one-time password tokens (such as
RSA SecurID) and challenge-response authentication. To
date, none of these have been widely adopted on the Web.

Challenge-response is a good case study. While it pre-

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
.

vents some attacks that defeat basic passwords, it is rarely
used on the Web due to the cumbersome user experience.
For example, a system called CRYPTOCard uses a smart-
card with a screen and a keyboard where users key in the
challenge and then copy the response to the desktop. Au-
thentication using CRYPTOCard takes far longer than au-
thentication using a simple password. As a result, CRYP-
TOCard is primarily used in corporate settings where the
additional hardware cost and the extra inconvenience is ac-
ceptable.

This paper introduces a new technique called Snap2Pass
that provides a convenient challenge-response system for
logging into web sites from a PC. Snap2Pass requires no
special hardware beyond a cell phone with a camera. There
is no more memorization of passwords and the login process
is faster and less error prone than with existing systems
such as one-time passwords. Our user study confirms the
Snap2Pass ease of use and speed.

1.1 Authentication on the Web
The web has become the dominant platform for modern

applications. Perhaps the largest contribution to the web’s
success as a platform is the ability for users to visit any web
page or application from a standard web browser, found on
any modern computer today, with no configuration. Simply
entering a unique name for that web application is enough
to download the necessary code and launch the application.

A web application’s authentication system must support
this interaction — a user should be able to authenticate
against a web application from any available browser, with
no additional configuration. In particular, the authentica-
tion mechanism is restricted to using generic browser com-
ponents combined with information supplied by the user.
Thus, password-based authentication has remained domi-
nant.

But passwords have known issues. For example, a recent
breach at a large web site showed that close to 1% of users
choose “123456” as their password [1]. Similarly, Florêncio
and Herley found that a single password is typically used
to access over five sites [8]. As more sites support email
addresses as a username, this poses a significant risk–if an
account is breached at one site, others are at risk as well.
The study also indicates that on the order of 0.4% of users
fall victim to a phishing attack each year.

Snap2Pass is our effort to improve web authentication.
It provides improved security for web applications while
supporting roaming users.

1.2 Fast Secure Login on the Web Browser



The phone is always with us and switched on. It is a
personal device–we do not use others’ phones, and nobody
uses our phone, except in rare circumstances. In fact, the
phone is an ideal device for keeping personal, private, infor-
mation. In other words, it serves to identify the owner, and
can be used as a second-factor authentication. Browsers on
the PC, on the other hand, are not personal. We often drift
between browsers, on different PCs, at home, at work and
on the road. Since the PC has a larger screen and a big
keyboard, we can make the best of both worlds by pairing
the phone as a personal device with a generic PC browser.

At a high level, the user experience using Snap2Pass is as
follows. The user navigates his PC browser to the login page
of a web site. The login page displays a QR code containing
a cryptographic challenge, among other things. The user
takes a picture of the QR code using his cell phone camera.
No other user interaction is needed to log in. Under the
hood, a pre-shared secret key stored on the phone is used to
compute a response to the cryptographic challenge which
is then transmitted to the site via the cellular (or wi-fi)
network. The site checks the response and if it verifies,
triggers the PC browser to successfully complete the login
process, and load secured pages. The use of both the phone
and PC provides an added security benefit, as checking the
co-location of these devices can mitigate man-in-the-middle
attacks.

With a snap of the QR code, we have tied our phone to
the PC browser, and now we can use these two platforms
synergistically to enhance our browsing experience. We can
browse on the bigger display of any generic PC available
and use the phone to manage our personal identity. There
is no setup necessary; we do not have to download any
extensions to the browser. Capturing a QR code is easy
and fast. Unlike for example pairing with bluetooth, we do
not need to read any manuals to learn how to snap a QR
code. Consumers already know how to take a picture; they
just need to see it done once. The difficulty is identical to
swiping a bar code.

1.3 Contributions
This paper makes the following contributions:

Snap2Pass: A consumer-friendly challenge-
response authentication system. This technique
is easy to use, requiring users to only take a picture of
the QR code with a camera on their cell phones. The
website displays a QR code that embeds a challenge.
The cell phone sends the response to the challenge
directly to the web server.

OpenID implementation. We have implemented a cus-
tom OpenID provider that uses Snap2Pass, and a mo-
bile client for the Android environment. This provider
can be used immediately to log onto over 30,000 exist-
ing websites that use OpenID today [18]. We demon-
strate that our techniques can be implemented today
with minimal changes to legacy services. No changes
are required on browsers.

Payments. Beyond login and authentication, we discuss
applications of Snap2Pass to payment systems on the
web. We combine Snap2Pass with one-time credit
card numbers to obtain a payment system provid-
ing some user privacy from online merchants. The

Snap2Pass concept can also be used to improve the
security and usability of the Verified by Visa or Mas-
tercard SecureCode services.

User Study. Our user studies suggest that Snap2Pass is
easy to use and is preferred to existing mechanisms
like RSA SecureID and CRYPTOCard.

The Snap2 technology. Snap2 is a general technique
based on the ability to create quickly a secure three-
way connection between a server, a PC browser and
a phone. The browser connects to the server with a
web page visit, which is then connected to the phone
via a QR code that embeds a session key. This en-
ables a server to engage in secure sessions with the
browser and the phone simultaneously. The server
acts as a secure message router between the phone
and the browser.

1.4 Paper Organization
Section 2 presents the threats addressed by this paper.

Section 3 describes the core Snap2Pass algorithm based on
both symmetric keys and public/private keys. Next, Sec-
tion 4 describes how accounts for multiple web sites are
managed. We describe how we simplify OpenID sign-on
by extending it with Snap2Pass. Section 5 shows how the
Snap2Pass concept can be extended to improve the expe-
rience and security of online payments. Sections 6 and 7
present some extensions and a security analysis, respec-
tively. We describe our implementation in Section 8 and the
results of our user study in Section 9. Section 10 presents
related work and Section 11 concludes.

2. THREAT MODEL
Snap2Pass is an authentication system designed for ease

of use while providing stronger security than traditional
passwords or one-time passwords. Our design is intended
to protect against the following types of adversaries:

• Phishing. Phishing targets users who ignore the in-
formation presented in the browser address bar. A
phishing attacker sets up a spoof of a banking site
and tries to fool the user into authenticating at the
spoofed site. Furthermore, we allow for online phish-
ing where the phishing site plays a man-in-the-middle
between the real banking site and the user. The
phisher can wait for authentication to complete and
then hijack the session. One-time-password systems,
such as SecurID over SSL, cannot defend against on-
line phishing. With Snap2Pass this attack is consid-
erably harder, as discussed in section 7.2.

• Network attacker. We allow the attacker to passively
eavesdrop on any network traffic. Moreover, we allow
for a wide class of active network attackers discussed
in Section 7.

• Phone theft. Snap2Pass enables quick revocation in
case of phone theft.

Snap2Pass does not provide security against malware on
the user’s machine. Indeed, a sophisticated transaction gen-
erator could, in principle, execute transactions on the user’s
behalf once authentication completes. A good example is



the stealthy transaction generator described by Jackson et.
al [9]. Similarly, Snap2Pass does not protect against mal-
ware on the phone itself.

3. THE Snap2Pass SYSTEM
We now present the core algorithms in the Snap2Pass sys-

tem. Recall that challenge-response authentication comes
in two flavors. The first is a system based on symmetric
cryptography. It uses little CPU power and generates very
short messages, however it requires that the server pos-
sess the user’s secret authentication key. As a result, the
user must maintain a different secret key for each server
where she has an account. The second is a system based
on public-key cryptography. It requires considerably more
CPU power to generate responses to challenges, but the
server only keeps the user’s public-key. Consequently, the
same user secret key can be used to authenticate with many
servers.

We describe both challenge-response systems as imple-
mented in Snap2Pass. We present the basic work flow, from
account creation, login, to revocation.

3.1 Symmetric key Challenge Response Au-
thentication

In a symmetric key based challenge-response system, the
client(s) and web server communicate using a pre-shared
secret key. Our implementation uses a key length of 128
bits. This key is used in the HMAC-SHA1 algorithm to
compute responses to server-issued challenges. The chal-
lenges are 128-bit length nonces embedded in a QR code,
while the responses are 160 bits long and are sent over the
wireless network.

3.1.1 Account Creation
The account creation web page invites a new user to sub-

mit a username. Upon receiving an acceptable username,
the server generates a shared secret for the account and then
sends a QR code to the web page encoding the account in-
formation. The user launches the Snap2Pass application on
the phone and selects the “Set Account” button to activate
the camera, consume and decode the QR code. The web
site then confirms that the account was created successfully.
To avoid adding spurious entries in the provider’s database,
it should require a user login to complete the creation pro-
cess.

Figure 1 shows the Snap2Pass application running on the
Android phone. We create a QR code representing a cre-
ated account by encoding the following contents:

{ protocol: "V3"

, provider: "goodbank.com"

, respondTo:

"https://login.goodbank.com/response"

, username: "mr_rich"

, secret: "2934bab43cd29f23a9ea"

}

Note that this process eliminates the need for a user to
create and remember a password, which is not just cum-
bersome but extremely insecure as discussed in Section 1.
As a matter of fact, it is not even necessary for the user to
have a friendly user name; however it is important for the
sake of addressing and reassuring the user that the website
recognizes him.

Figure 1: The mobile client running on Android.
(a) The home screen, with a single button to log in
and with “Set Account” accessible as a menu entry.
(b), scanning into a browser session.

Instead of using a user-supplied password, our scheme al-
lows the web server to generate a random key as a shared
secret between the web site and the user. The shared se-
cret is presented in a QR code and saved on the phone’s
password manager once scanned. The user can present it
for subsequent logins without needing to know its value.

The QR code also specifies the endpoint where the phone
will send responses to challenges as part of the login pro-
cedure. A sequence diagram showing the account creation
protocol is shown in Figure 2.

In principle, account creation can be done entirely on
the phone, without the need for an interaction between the
PC and the phone. We chose not to use this approach in
Snap2Pass since during account creation the user is often
required to supply account details such as a physical ad-
dress, email address, etc. Typing all this information on
the phone can be cumbersome. Instead, with Snap2Pass
the user enters all account details on the PC and uses a QR
code to move the corresponding credentials to the phone.

3.1.2 Account Login
On the login page, a website displays a QR code and

asks the user to snap the picture with his phone’s camera
to log in. Figure 3 shows a mock up of what a GMail
login screen would look like using Snap2Pass. Note that
the page provides an alternative login method in case the
user’s phone is not available.

The QR code on the login page, unique per session, en-
codes a random challenge nonce to be used in the sym-
metric challenge-response authentication. This is generally
presented within the context of an SSL session between the
browser and the web server. An example of the contents
contained in a challenge QR code shown at the time of lo-
gin:

{ protocol: "V3"

, provider: "goodbank.com"

, challenge: "59b239ab129ec93f1a"

}

By binding the challenge nonce to the browser session,
the server ensures that only one browser session can make
use of its authorization.



Figure 4: A sequence diagram for logging in to a web application using Snap2Pass.

Figure 2: A sequence diagram for creating an ac-
count in Snap2Pass.

To log in, the user launches the mobile Snap2Pass appli-
cation and selects “Log In”. By using the phone’s camera,
the application consumes the challenge QR code and ex-
tracts the challenge within. The application finds a shared
secret key and response endpoint that match the provider
name and desired user account. It computes a response
comprising of the HMAC-SHA1 hash of the entire challenge
message using the pre-shared secret as key and sends it to
the response endpoint, as well as the original challenge and
account identifier. The provider verifies this response and,

Figure 3: A mockup of a GMail login page using a
QR code.

if successful, the browser session is authenticated with the
appropriate account. An example of a response message is
shown below:

{ protocol: "V3"

, challenge: "59b239ab129ec93f1a"

, response: "14432nafdrwe2443af"

, username: "mr_rich"

}

The challenge and response flows occur within SSL ses-
sions. A sequence diagram showing the login protocol is
shown in Figure 4.



3.2 Public-key Based Challenge Response
Authentication

Key proliferation is a prevalent problem with a challenge
response system that utilizes symmetric keys. The user
needs to negotiate and manage a shared secret with each
web site he visits. We describe a public-key based challenge
response systems to combat this problem.

Instead of using symmetric keys, the Snap2Pass mobile
application can generate private/public key pair for the user
upon installation (and on-demand). The account creation
step is modified such that the user presents his public key
to the web site instead of having the site generate it. The
challenge process proceeds as before. The Snap2Pass appli-
cation generates a response by signing the challenge with
the private key. The web server verifies the response by
matching it against the user’s public key. The user’s public
key can be used across all the sites that he wishes to sign
in at.

There is an alternative solution to the key proliferation
problem in symmetric challenge systems. The user can
take advantage of a Snap2Pass-enabled OpenID provider
and benefit from OpenID’s single sign-on properties across
multiple web sites. Thus, the user’s Snap2Pass application
needs to maintain a single shared secret between the user
and his OpenID provider. The number of keys is limited
to the number of OpenID providers he uses. He may even
use the same private/public key pair across his OpenID
providers enabling Snap2Pass to maintain fewer keys.

Note that this protocol requires no certificate authority
(CA) infrastructure. Client certificates are entirely avoided
in either solution, while the first solution also avoids a
CA. The OpenID-based solution is a centralized component
necessary to enable Snap2Pass use with unmodified web-
sites while mitigating the key proliferation problem. The
OpenID provider may use a CA; our scheme interoperates
with this design but does not require it. Phone loss and
recovery scenarios are address in Section 7.

4. HANDLING MULTIPLE WEBSITES
Section 3 describes the core Snap2Pass algorithm for log-

ging onto one website. We now describe how we use a sin-
gle mobile Snap2Pass client to log onto multiple websites,
potentially with multiple personas. We also describe how
by leveraging OpenID, we can enable the adoption of this
technology immediately across a large number of existing
websites.

4.1 Logging into Multiple Sites
In practice, we wish to carry only one Snap2Pass client

on our phone to log onto multiple websites. The Snap2Pass
client maintains a mapping from providers to accounts. It
may also maintain multiple accounts per provider, allowing
the user to select their desired identity during a login at-
tempt. The response message from the phone to the web
site contains the user’s identity that is logging in along with
the corresponding cryptographic response.

The biggest risk in extending to multiple web sites is a
greater exposure to online phishing attacks. Now, a user
has become accustomed to logging in to a variety of sites
with the same mobile application, and they must be aware
of the site at which they are authenticating. We associate
a recognizable image with the web site and that image is

Figure 5: Confirmation of a Login

displayed on the phone during login, as illustrated in Fig-
ure 5. The phone obtains the image at account creation
time. Furthermore, recall that the cryptographic hash used
to compute the response contains server information, so
that the web site is certain that the mobile client was made
aware of the correct login target.

4.2 OpenID
We have implemented Snap2Pass as a custom OpenID

provider. Many web sites today have adopted the use of
OpenID, enabling single sign-on using their OpenID cre-
dentials. The key advantage is that all of the websites that
support OpenID, known as the relying party, can enable
Snap2Pass based login without requiring any code changes
on their end. The user’s credentials reside with an OpenID
provider that uses Snap2Pass. We used Snap2Pass to log
into several websites supporting the standard, including:
Slashdot, ProductWiki, ccMixter, and LiveJournal. Upon
typing in an OpenID account name to the web site of a re-
lying party, the web page automatically redirects the user
to the login page of the OpenID provider. In this case,
our OpenID provider presents the user with the Snap2Pass
QR code, and the login process proceeds as described in
Section 3. Once the login process completes, the OpenID
provider signals the result to the relying party web site.

4.3 OpenPass: Integrating Snap2Pass into
OpenID

A benefit of Snap2Pass is its simple user interaction — a
user no longer needs to type in any credentials at a partici-
pating website. Unfortunately, the first step of an OpenID
login is to type in the user’s OpenID address, so they may
log in using their chosen identity provider. This defeats our
goal of logging in with a single snap.

To address this issue we use a modified version of
challenge-response. Now, the relying party is charged with
creating the challenge. The phone sends its response to this
challenge to a pre-configured identity provider, which then
notifies the relying party of the transaction.

With OpenPass, a participating website presents the user
with a QR code rather than an input field for an OpenID
username. The QR code contains a challenge created by



this relying party, as well as a response channel:

{ protocol: "V3"

, respondTo:

"https://reliantparty.com/response"

, challenge: "e89c9fd66a5ec1a2d9"

}

The phone sends the response to this challenge to the
user’s pre-configured identity provider, and also forwards
the reliant party’s authentication endpoint:

{ protocol: "V3"

, challenge: "e89c9fd66a5ec1a2d9"

, response: "8fd6ef60acbe0d4193"

, username: "alice@myidprovider.com"

, respondTo:

"https://relyingparty.com/response"

}

The provider, possessing the user’s shared secret, verifies
the response and notifies the relying party at the requested
endpoint. It indicates the user and challenge associated
with the authentication attempt:

{ protocol: "V3"

, challenge: "e89c9fd66a5ec1a2d9"

, username: "alice@myidprovider.com"

, provider: "myidprovider.com"

, status: "OK"

, token: "93aef90b7d0f5a7a96"

}

Finally, as in OpenID, the relying party verifies a to-
ken with the identity provider, using a shared secret. All
the while, the user’s browser waits for the transaction to
complete, awaiting the relying party’s response. In our im-
plementation, we use XMPP’s BOSH extension for this in-
teraction. [23]

OpenPass realizes the goal of logging in with a single snap
to any participating website. It re-introduces the tradeoff
involving simple modifications at the relying party and the
identity provider. To facilitate adoption, we integrate this
technique into our implementation by modifying OpenID’s
Attribute Exchange extension and the identity provider
protocol. The relying party login page now embeds the
unique challenges within links to standard OpenID-based
identity providers. The user selects his provider without
needing to provide user credentials to the relying party. The
user completes the OpenPass interaction with the provider,
which signals the result to the relying party.

For scalability reasons, we assume that a pre-shared
secret exists between the relying party and the identity
provider similar to OpenID’s stateful mode. The provider,
in its response to the relying party, includes a token that
authenticates all transaction data and is signed with the
shared secret key. The relying party looks up with the
shared secret using the provider’s id as key and verifies the
token. Alternatively, the identity provider maintains a ver-
ification time window for the relying party to verify the
token at the cost of an extra round trip.

5. PAYMENTS

With Snap2Pass, we use the private storage of a mobile
phone to create a secure payment experience. We can gen-
eralize the technique to improve our browsing experience in
other ways.

5.1 Snap2Pay
When shopping at a small online retailer for the first

time, the checkout page asks users to enter all their infor-
mation (e.g. credit card number, billing address, shipping
address, etc.) before the transaction can complete. This
step is generally cumbersome and can cause shopping cart
abandonment. In addition, there is some risk in sending all
this sensitive information to a retailer the user has not seen
before.

A generalization of Snap2Pass can help with both us-
ability and security of online payments. The system, called
Snap2Pay, functions as a digital wallet on the phone and in-
teracts with the web site using QR codes. We first describe
the user experience assuming the Snap2Pay application al-
ready has the user’s payment information. We later explain
how to automatically populate the phone with this data.

When making payments with Snap2Pay, the phone auto-
matically contacts the user’s bank and requests a one-time
credit card number specific to the current retailer. This
greatly reduces the risk of giving out the credit card num-
ber to an unknown retailer. Moreover, it enhances user
privacy since it is more difficult for the retailer to track the
user via credit card numbers. Combining this with other
private browsing mechanisms, such as TorButton, gives the
user a convenient way to shop online in private.

While one-time credit card numbers were introduced
some time ago, they have had limited use primarily due
to the manual labor required to generate them. With
Snap2Pay one-time credit card numbers are built in and
generated automatically by the system. As a result, the
system is highly effective for interacting with small retail-
ers or other questionable sites on the Internet.

Using Snap2Pay the checkout process works as follows:

• When the user’s PC browser arrives at the retailer’s
checkout page, the page displays a QR code encoding
transaction details, in addition to normal shopping
cart information. The QR code encodes a response
channel URL.

• Instead of manually entering personal information at
the standard checkout page, the user can simply snap
a picture of the QR code via her Snap2Pay phone
application.

• Once the QR code is snapped the user is asked to con-
firm the transaction on the phone. Next, the phone
securely obtains a one-time credit card number from
the user’s bank specific to that retailer.

• Next, the phone contacts the response channel URL
on the retailer’s site, and provides one-time payment
information.

• The retailer completes the transaction, and redirects
the user’s PC browser to the transaction completed
page. Our implementation uses XMPP’s BOSH for
this server-side push, as in Snap2Pass.

The Snap2Pay checkout process requires the user to a)
snap a picture of the checkout QR code and b) confirm



Figure 6: A mockup of Snap2Pay in Newegg.com’s
checkout page.

the transaction on the phone. No other action is required.
The main reason for doing this on the phone (as opposed
to in the browser) is mobility: the user’s payment data is
available to use on any computer and any browser. No
special hardware or software is required on the PC.

To mitigate phishing, we recognize that the above sce-
nario is analogous to PC browsers, and similar solutions are
applicable here. To mitigate phishing, the Snap2Pay phone
application utilizes individual whitelisting and blacklisting
to warn the user appropriately about malicious sites. If
a retailer site does not appear on either list, the user is
prompted to manually determine the retailer’s validity for
future transactions. By bootstrapping information about
well-known retailers into the application, the user only
needs to make such determination in the case of small or
unknown entities in the long tail of retailers.

To complete the discussion of Snap2Pay, we explain
how to populate the phone with the user’s payment data.
Past experience with digital wallets (e.g. Microsoft’s Dig-
ital Wallet) suggests users do not take the time to enter
their payment information into the wallet. Instead, with
Snap2Pay, every time the user manually enters credit card
information at an online retailer, the retailer displays a
QR code containing that data. The user can simply snap
the QR code to bootstrap the Snap2Pay database. Future
transactions can use this data as explained above. We be-
lieve this process will make adoption much easier, but this
can only be verified through a massive user study with the
support of many online retailers.

5.2 Verified by Visa
Verified by Visa [21] and Mastercard SecureCode are, in

effect, single sign-on services run by Visa and Mastercard
that let merchants obtain user confirmation on requested
transactions. When the user visits a merchant’s checkout
page, the browser is redirected to the user’s bank where the
user is asked to confirm the transaction with a password.
The browser is then redirected back to the merchant where

the transaction completes, provided a valid confirmation
token is supplied by the bank. The resulting transaction
is considered a “card present” transaction which is a strong
incentive for merchants to adopt this system. This archi-
tecture is highly vulnerable to phishing and received much
criticism [14].

Combining Snap2Pass with Snap2Pay can help improve
the usability and security of Verified by Visa and Master-
card SecureCode. The mechanism is similar to how we in-
tegrate Snap2Pass with OpenID, as discussed in Section 4.2
and works as follows:

• In addition to standard transaction details, the mer-
chant’s checkout page includes a QR code that en-
codes the transaction amount plus a random challenge
for a challenge-response protocol. The challenge also
uniquely identifies the merchant.

• The user snaps the QR code with the Snap2Pass ap-
plication and approves the transaction on the phone.
The phone then sends a message to the user’s bank
containing the transaction amount, the random chal-
lenge from the merchant, and the response to that
challenge (computed using the user’s secret key stored
on the phone). The message also includes account in-
formation such as the user’s credit card number. Note
that Snap2Pass is pre-configured at account setup to
only send this message to the user’s bank and nowhere
else.

• The bank checks that the challenge from the merchant
and the response from the phone, both contained in
the message from the phone, are valid; namely, that
the response from the phone is a valid response for the
challenge. If so, it uses a merchant response channel
URL (a well-known endpoint) to send to the mer-
chant the verified by Visa confirmation token, which
includes the random challenge contained in the mes-
sage from the phone in addition to the standard fields.

• The merchant verifies the token from the bank and
also verifies that the challenge in the token is the chal-
lenge that the merchant supplied in the QR code —
this verification is needed to ensure that the phone
answered the correct challenge. If all is valid, the
merchant completes the transaction and transitions
the browser from the checkout page to the transac-
tion completed page.

Using this approach the random challenge is provided
by the merchant (in the QR code), but is verified by the
bank. The improved user experience is very simple: snap a
picture of the QR code on the checkout page, confirm the
transaction on the phone, and wait for the transaction to
complete. Nothing needs to be typed in and no confusing
redirections take place.

Since the user never supplies a credential to the mer-
chant, this approach prevents offline phishing by a mali-
cious merchant. Online phishing, discussed in Section 6.1,
is still possible, but our geolocation-based defense described
in that section applies here too.

6. EXTENSIONS



We now discuss several extensions to Snap2Pass to im-
prove its security and to cope with the scenarios when the
user forgets his phone, or forgets to log out.

6.1 Active Man in the Middle
The basic Snap2Pass does not prevent an active man in

the middle attack such as online phishing. In an online
phishing attack, the attacker creates a spoofed web site
that constantly scrapes the target web site. The phisher
lures users to the spoofed site and uses their responses to
immediately login to their account at the target site. Once
in, the phisher can take any action on the user’s account.
This attack easily defeats one-time password mechanisms
and many phishing toolkits now work this way [6].

We minimize this attack vector by using geolocation in-
formation of the phone relative to the user’s PC. Recall
that in Snap2Pass the target web site communicates with
the user’s PC and with the user’s phone. In normal use,
the two are in close proximity. In an online phishing at-
tack, the site communicates with the phishing server and
the user’s phone. The two are very likely to be far apart.
Thus, the web site can use geolocation information to test
if the two IP addresses it is seeing are in close proximity. If
so, it allows the connection and if not it rejects it. Thus,
for the phisher to succeed he must identify a victim user’s
location, find a compromised host close to the victim and
place the phishing server there. While not impossible, in
most phishing settings, this will be quite challenging for the
phisher. Importantly, the phone’s location measurement is
not known to the web browser.

The above example works well when both the cell phone
and user’s PC operate are addressable, such as on wifi or
wired networks. Commercial systems such as [11] offer ge-
olocation databases claiming over 90 percent accuracy for
resolving IP addresses to city locations. However, the cell
phone is often not addressable, operating from the cellular
provider’s data network with an external gateway IP ad-
dress. Cell phone IP addresses change frequently, and ge-
ographically diverse locations may operate under the same
IP ranges. For example, a test user’s Palo Alto, CA lo-
cation resolved to one of T-Mobile’s gateway IP addresses
in Seattle, WA. The user’s phone aids the geolocation sys-
tem by providing GPS or cell tower ID data at transaction
time. Furthermore, a complimentary approach involves ex-
ploiting application latency measurements to disambiguate
cities operating under the same IP address range within a
cellular data network [3]

We also may not have to rely on the IP network to deter-
mine the phone’s location — most modern platforms can
provide applications with relatively accurate location in-
formation. We expect the phone to cooperate with the
authentication provider.

Another safeguard against the man in the middle is to
require that sensitive transactions be verified on the mobile
device. Here, the attacker gains access to the user’s account
and attempts to make a malicious transaction. The web site
only allows this transaction to complete with confirmation
from the phone, which the man in the middle cannot access.
Using phones for transaction confirmation was previously
studied in other projects [20, 9] and nicely complements
Snap2Pass.

6.2 Logging in Without Phones

Although users will typically have their phones with
them, an additional login method allows users with miss-
ing phones to gain entry to a webpage. This backup login
method is treated as a password reset request. That is, to
login without a phone requires solving a Captcha, respond-
ing to a selection of security questions, and retrieving a link
sent to a primary email address.

6.3 Signing Out
It is difficult for a web site to know if a user has walked

away from an authenticated session [19]. With Snap2Pass
we can use the phone as a proximity sensor, powered by the
device’s location sensors or accelerometers. For example,
when the phone detects motion above a threshold after au-
thentication on the PC completes, it notifies the site. The
site can then require re-authentication for subsequent re-
quests. Thus, upon leaving an internet café, the user’s ses-
sion is immediately terminated. For web users on a moving
train, the site may request one re-authentication and subse-
quently ignore motion notifications from the phone for the
duration of the session.

More generally, with Snap2Pass a user can manually log
out of all of her active sessions from her mobile phone, with-
out returning to the abandoned terminal.

7. SECURITY ANALYSIS
We describe a number of attacks on the system and how

they are addressed. Throughout the section, we assume
that the login process and the subsequent session on the
PC are served over SSL so that basic session hijacking (i.e.
the attacker waits for authentication to complete and then
hijacks the session) is not possible.

We first observe that with Snap2Pass, unlike passwords,
a compromise at one web site does not affect the user’s ac-
count at other sites. To see why, recall that in the symmet-
ric scheme, Snap2Pass maintains a different shared secret
with each site. In the public-key scheme, the site never
stores the phone’s secret key. Thus, in neither case does a
compromise of one site affect another.

It is also worth noting that since the user never types in
their password, Snap2Pass protects users against present
day keylogging malware installed on the user’s PC. Nev-
ertheless, more sophisticated malware on the user’s PC
(e.g. [9]) can defeat Snap2Pass.

7.1 Offline Phishing
An offline phishing attack refers to a phisher who sets up

a static spoofed web site and then waits for users to authen-
ticate at the site. The term “offline” refers to the fact that
the phisher scrapes the target web site’s login page offline.
For sites using password authentication, an offline phisher
obtains a list of username/password that can be sold to
others. We note that users who fall victim to this attack
typically ignore information displayed in the address bar [7].
Consequently, the SSL lock icon or the extended validation
colors in the address bar do not prevent this attack.

Snap2Pass clearly prevents offline phishing since the
phisher does not obtain a credential that can be used or
sold. In fact, the offline phisher gets nothing since the
phone sends its response directly to the target web site.
Recall that during account creation Snap2Pass records the
target web site’s address on the phone. During login, it



sends the response to that address. Consequently, the of-
fline phisher will never see the response.

7.2 Online Phishing and Active Man in the
Middle

Online phishing is an example of an active man in the
middle discussed in Section 6.1. The end result of the at-
tack is that the phisher’s browser is logged into the user’s
account at the target site. As in the offline phishing case,
we cannot rely on security indicators in the browser chrome
to alert the user to this attack. In section 6.1, we discussed
how Snap2Pass uses geolocation to defend against this at-
tack.

It is also worth noting that this attack is easily defeated
using a PC browser extension. The extension would re-
trieve the SSL session key used in the connection to the
web site (i.e. the phishing site) and embed a hash of this
key in the QR code (if the connection is in the clear the
data field would be empty) along with the extension’s digi-
tal signature on the hash. The phone would verify the sig-
nature and then send the hash to the real site along with
its response to the challenge. The web site would now see
that the browser’s SSL session key (used to communicate
with the frontend of the phishing server) is different from
its own SSL key (used to communicate with the backend
of the phishing server) and would conclude that a man in
the middle is interfering with the connection. The reason
for the extension’s signature on the hashed key is to ensure
that the phisher cannot inject its own QR code onto the
page with the “correct” key in it. An alternative to a digi-
tal signature is to place the QR code containing the hashed
key in the browser chrome (e.g. in the address bar) where
the phisher cannot overwrite it with its own data.

We chose to not implement this defense since Snap2Pass
is designed to work with existing unmodified browsers.

7.3 Phone Theft and Key Revocation
If a phone is lost or stolen, that phone can potentially

be used to impersonate the user at all websites where the
user has an account. Snap2Pass mitigates this issue in two
ways.

Firstly, the Snap2Pass application can require the user
to authenticate to the phone before the application can
be used. Rather than implement an unlock feature in
Snap2Pass we rely on the phone’s locking mechanism for
this purpose. Users who worry about device theft can con-
figure their phones to require a pass code before applica-
tions like Snap2Pass can be launched. This forces a thief
to first override the phone’s locking mechanism. Moreover,
several phone vendors provide a remote kill feature that
destroys data on the phone in case it is lost or stolen.

Secondly, when a phone is lost, users can easily revoke the
Snap2Pass credentials on the phone by visiting web sites
where they have an account and resetting their Snap2Pass
credentials at those sites. This results in a new keying ma-
terial generated for the user thus invalidating the secrets on
the lost phone.

8. IMPLEMENTATION
Our implementation of Snap2Pass includes server-side

code, called a provider, and a mobile client. The provider
and the client provide a reference implementation for the

server and client ends of the Snap2Pass protocol, respec-
tively.

8.1 Provider
The provider is implemented as a custom OpenID

provider and offers server-side challenge/response function-
ality as described above. OpenID is a popular protocol for
federated identity management and single sign-on. With
the addition of a layer of indirection, it enable tens of
thousands of existing OpenID consumer web sites to use
Snap2Pass without requiring modification of their server-
side login protocols.

The provider implementation makes use of the Joid open
source project, and is written in Java. It is loosely coupled
to Joid; thus it can be plugged into other standard OpenID
providers. The custom provider consists of a symmetric-
key based challenge response system, account management
and a web portal. The challenge response modules are
written in Java using built-in crypto libraries. It includes
modules for symmetric key generation, and HMAC-based
challenge/response creation and verification. The account
management modules manage user accounts, provide per-
sistence and include a cache for fast lookup of incoming
responses.

The web portal adds QR code features to the OpenID
provider. It includes custom registration and login pages,
implemented as Java Server Pages (JSP) to support the
Snap2Pass account creation and login protocol. On com-
pletion of the login protocol, the web portal integrates with
the provider backend to signal the result using the OpenID
protocol. This enables existing OpenID consumer sites to
support Snap2Pass with no code changes.

The server needs to notify authentication attempt results
with the browser using either pull or push techniques. We
chose a server-side push technique, using XMPP BOSH ex-
tension [23]. For this XMPP connection, we use the Stro-
pheJS Javascript library to connect the browser, and the
Smack XMPP JAVA library for the server.

The provider module has approximately 1,600 source
lines of code (SLOC).

8.2 Mobile Client
The mobile client is written in Java for the Android en-

vironment. It implements the client-side Snap2Pass pro-
tocol, and offers functionality for credential management
and symmetric key challenge/response computation. We
use Android’s SharedPreferences API to store and manage
credentials retrieved from the provider. In a production im-
plementation, the credentials are managed using a secure
credential manager. The login module uses built-in APIs to
compute responses to challenges. We use Android’s intent
system and the ZXing project to scan and consume QR
codes. For improved security, the scanning functionality
will be embedded directly in the application. The mobile
client has approximately 400 SLOC.

9. EXPERIMENTAL RESULTS

9.1 User Study of Snap2Pass
We compare our implementation against existing secure

authentication mechanisms. Our goal is to provide a system
that is more consumer-friendly than what is currently avail-
able without negatively affecting security. There are two



main usability concerns: a) Snap2Pass is intuitive enough
to be used by non-technical users and b) frequent logins are
as fast and effortless as possible.

9.1.1 Using QR Codes
We presented our approach to new users to gauge their

reaction. Our subjects ranged from savvy smartphone users
to those who are considerably less technical.

We found that the UI design for pinpointing a QR code is
important. The visual feedback on the phone’s screen was
helpful in guiding the user to a successful login. Sometimes,
a user would believe a code was recognized by the software
before it was actually able to locate it, causing some confu-
sion on early attempts. Subsequent uses were much faster
and free of this confusion. Usually two or three sample tri-
als were enough for the user to become comfortable with
the system. Most users, including the non-technical, agree
that the approach is “very simple” and usable. Several even
found it fun to use.

The amount of time required for the software to lo-
cate the barcode is important for the system’s usability.
We compared the user experience for the same application
across three hardware platforms: the HTC G1, the Mo-
torola Droid, and the HTC Nexus One. As the platform’s
power increased, the scanning process became noticeably
quicker, thereby improving overall user experience. We did
not experiment with other barcode formats or software so-
lutions — scanning QR codes with the ZXing application
proved sufficiently usable.

9.1.2 Comparing Authentication Techniques
We wanted to gauge both the usability and perceived

security of Snap2Pass as compared to other authentication
methods. We ran a user study across 30 users of different
backgrounds. 15 of our users were female. 16 of our users
were in a technical field.

Our study compared two web authentication methods
enhanced with a cell phone — Snap2Pass, and a system
much like RSA SecurID. With the SecurID system, partic-
ipants used a mobile application to retrieve six randomly
generated digits. They were told that, in deployment, this
number would be synchronized between the phone and the
authentication server. To log in to a web page, then, the
participant entered their username, password, and this six-
digit string.

We demonstrated the two systems to each user once be-
fore having them try for themselves, twice each. We then
had them fill out a short survey about their experience.

To determine the perceived security of authentication
systems, we asked how safe they would feel using a given
system with their primary bank, from 1 (not safe at all) to
10 (completely safe). As a baseline, we asked about using
a standard username/password scheme. The average score
was 5.9. We then asked about SecurID and Snap2Pass;
SecurID came out slightly better than Snap2Pass— 7.7 as
compared to 7.3. Both were perceived to be noticeably
more secure than username/passwords.

Of Snap2Pass, one user writes, “It was really cool. Felt
very secure, like something out of a James Bond movie.”
She also agreed that SecurID felt secure, “but entering an-
other field was very tedious, and I imagine would be pretty
rough to have to do frequently.”

To evaluate the usability of each system, we first asked

how easily users found learning each system, on a scale from
1 (very difficult) to 10 (trivial). We found that users had
no trouble learning either system; Snap2Pass was given an
average of 9.2, and SecurID a 9.1.

We then asked how they found repeated logins with each
system, from 1 (very tedious) to 10 (very easy). Here,
Snap2Pass fared better than SecurID — 8.5 as compared
to 6.9. A user who was skeptical of the system’s security
commented that “Snap2Pass does not seem to be safe but
given the fact that it’s sooo easy to use, I will be happy to
use it as main login method.”

Next, we asked how a participant would feel about using
each system in practice. For the two systems, participants
were asked, assuming they had a capable phone, if they
would prefer to use each system with their primary bank as
compared to username/passwords. They were given three
choices: “I would not want to use this system,”“I would use
this system only if my bank made me,” and “I would prefer
to use this system.” The resulting numbers are:

Snap2Pass SecurID
prefer the system over pwds: 15 13
would only use if required: 11 12
would prefer passwords: 4 5

Finally, we asked participants how they would feel about
using a Snap2Pass-like system for making purchases on the
web; in such a system, a user would point their phone at
their shopping cart’s checkout page to complete the transac-
tion, without typing in billing information. We posed this
question to 22 participants, and 13 indicated they would
prefer such a system to entering billing details; 2 would do
so only if required by their bank, and the remaining 7 would
not want to use such a system.

9.1.3 User Concerns
By far, the most common concern with both demon-

strated systems was an unavailable or stolen phone. Indeed,
a system in deployment must be robust to such incidents,
as we discuss in sections 6.2 and 7.3 respectively. Many
users also stressed that they would only trust the security
of Snap2Pass with suitable on-phone security. A partici-
pant writes, “(I am) concerned about phone security. I love
the idea of using my phone to store/share personal info,
but I do not trust the current security on my phone.” An-
other says, “I feel that if someone stole your phone, they
could easily gain access with this technology to whatever
password protected account you have.” For a system in
deployment, this concern must be suitably addressed.

9.1.4 Comparison for an Experienced User
We also wanted a more quantitative comparison of se-

cure authentication systems. We compared the login times
required for Snap2Pass with the times for other authenti-
cation systems. Our focus was on comparing the amount of
time required for an experienced user to complete a success-
ful authentication. We compared with two security systems
in active deployment: RSA SecurID and CRYPTOCard.
We simulated the logins by providing phone interfaces for
all three protocols.

For SecurID, our workflow was similar to a standard user-
name/password login, with the addition of a “token” field.
This token was generated on the mobile device, and the
generation would be synchronized with the authentication



server in deployment. Our CRYPTOCard simulation in-
volved an extra step. First, the user submits his username
to the authentication server. The server responds with a
random 6-character hex string, which the user must enter
into his mobile device. The mobile device then generates
a 6-character hex response, which the user inputs into the
web form, along with his password. In our scheme, a user
visits the authentication page, which presents a QR code.
The user runs the “Log In” routine on his phone and scans
the QR code, completing the authentication.

For SecurID and CRYPTOCard, we entered a username
and password that the user is familiar with. The username
consisted of 8 lowercase characters, and the password was
also 8 characters, consisting of upper- and lower-case let-
ters, numbers, and punctuation marks.

For each scheme, we issued twenty logins and recorded
the amount of wall clock time required, from the time the
login page loaded to the time the secured content was dis-
played. We assumed that the second factor device was at
hand and the required application can be launched with one
button press. Figure 7 shows the results of the user study.
The error bars indicated were computed by the standard
formula σ√

n
, where σ is the standard deviation and n is the

number of inputs.
The study shows that an experienced user takes about

7 seconds to log in using Snap2Pass. Overall, Snap2Pass
was approximately 2.5 times faster than the CRYPTOCard
system, and 30% faster than RSA tokens. Most of the time
required for logging in to both the SecurID and CRYP-
TOCard systems was spent inputting data into forms, and
copying values between devices–a process that is limited by
the human’s typing and reading abilities. For Snap2Pass,
most of the time was machine bounded. Our application
required approximately two seconds on average to load the
phone’s camera module from an idle state. Most of the re-
maining time was spent in the ZXing libary trying to locate
and decode the QR code. A visually apparent challenge for
the library was auto-adjusting the aperture to read infor-
mation from an active display as opposed to a passive one.
These bottlenecks can be improved upon both in software
and with upgraded device profiles, as opposed to end-user
efforts. Notably, these tests were performed using an HTC
G1, which newer devices like the Nexus One already out-
perform significantly.

Both the SecurID and CRYPTOCard systems involve
human-entered form data, a process that is prone to errors.
In our user study, one out of twenty logins for both systems
resulted in a failed login, essentially doubling the amount
of time required to log in. Once the user has authenticated
with his phone, our scheme does not suffer this shortcom-
ing, as all data is parsed, calculated, and submitted by the
devices directly.

10. RELATED WORK

10.1 Mobile/Web Authentication
Using cell phone for authenticating people is an old idea.

Wu et al. [22] and Oprea et al. [15] use phones to help es-
tablish a secure session on an insecure device. Snap2Pass
addresses a different threat scenario where the user is con-
tacting a remote server on his own PC. Our threat model is
very common and is simpler than in [22, 15] which enables

Figure 7: Average login time required across three
secure authentication schemes.

us to design a more efficient solution that is easier for the
user.

Phoolproof [16] is designed as an anti-phishing authenti-
cation mechanism. With Phoolproof, Parno et al. require
custom software on the PC as well as a bluetooth connec-
tion. Snap2Pass in contrast, requires no modification to
the PC and provides security using information available
on smartphones that was not available at the time Phool-
proof was designed.

Aloul and Zahidi discuss the use of one time passwords
generated on a mobile phone for use with ATMs [2]. By
using modern smart phones, we are able to provide a system
that is easier to use without compromising security.

Bellovin et al. [4] propose EKE, a protocol for shared key
exchange, which has been refined further. In contrast, we
rely on QR codes over SSL to transfer the shared secret
between the PC browser and the phone to manage account
credentials.

10.2 Device Pairing
Mccune et al. [13] have previously combined phone cam-

eras and two dimensional barcodes for transmitting public
keys from one device to another. Other clever approaches to
device pairing use the accelerometer for generating a shared
key [12, 10] or for proving proximity [5].

In Snap2Pass and Snap2Pay, we present a novel system
and applications that are based on using a visual commu-
nication channel, to present and transfer a challenge from
one device to another. More importantly, the visual channel
contains a reference to a communication endpoint that the
mobile device uses to respond to the challenge. The com-
bined effect is that the act of scanning a barcode becomes
a user interaction with the site hosting that barcode.

In [17], Pierce et al. explore the possible uses of pair-
ing a mobile with a PC, presenting several useful utilities.
Their model uses a centrally managed account to discover
services, as opposed to our ad-hoc pairing technique.

11. CONCLUSIONS
We described Snap2Pass, an easy-to-use authentication

system that defeats many of the attacks on traditional pass-



word schemes on the Web. Snap2Pass is implemented as
a custom OpenID provider, thereby immediately enabling
usage on the tens of thousands of websites that accept
OpenID-based authentication, without any server-side code
changes. We have extended the OpenID protocol so that
the user can simply snap a QR code presented by a relying
party without having to enter user credentials on the login
page.

We also presented Snap2Pay, which allows consumers to
use one-time credit card numbers with just a snap of a QR
code. One-time credit card numbers are useful for reducing
the risk of interacting with small retailers or questionable
sites on the Internet. Snap2Pay eliminates the manual la-
bor involved, which has so far limited the adoption of the
technique. Similarly, Verified by Visa and Mastercard Se-
cureCode are single sign-on services which have not been
adopted because they are highly vulnerable to phishing.
We showed in this paper how the Snap2Pass technology
improves both their usability and security.

Our user studies show that the system is fast to use and
easy to learn. Even without much experience with smart-
phones, users can easily use Snap2Pass after seeing it done
only once. The comparison with RSA tokens indicates that
users tend to perceive more cumbersome techniques to be
more secure; however, users care more about ease of use
than security. Snap2Pass has the advantage that it is both
secure and easy to use.

Snap2Pass can be used in an off-the-shelf PC browser
with no modifications, and works well with all popular
browsers today. We have an open-source implementation
of Snap2Pass at http://snap2.stanford.edu.

12. REFERENCES
[1] T. I. A. D. C. (ADC). Consumer password worst

practices, 2009.
www.imperva.com/download.asp?id=239.

[2] F. Aloul and S. Zahidi. Two factor authentication
using mobile phones.

[3] M. Balakrishnan, I. Mohomed, and
V. Ramasubramanian. Where’s that phone?:
geolocating ip addresses on 3g networks. In IMC ’09:
Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference, pages 294–300,
New York, NY, USA, 2009. ACM.

[4] S. M. Bellovin and M. Merritt. Encrypted key
exchange: Password-based protocols secure against
dictionary attacks. In IEEE SYMPOSIUM ON
RESEARCH IN SECURITY AND PRIVACY, pages
72–84, 1992.

[5] Bump technologies. bumptechnologies.com.

[6] M. Cova, C. Kruegel, and G. Vigna. There is no free
phish: An analysis of ”free” and live phishing kits. In
Proc. of 2nd Usenix wOOt ’08, 2008.

[7] R. Dhamija, D. Tygar, and M. Hearst. Why phishing
works. In Proc. of CHI 2006, pages 581–590, 2006.

[8] D. Florencio and C. Herley. A large-scale study of web
password habits. In WWW ’07: Proceedings of the
16th international conference on World Wide Web,
pages 657–666, New York, NY, USA, 2007. ACM.

[9] C. Jackson, D. Boneh, and J. Mitchell. Transaction
generators: Root kits for the web. In proceedings of
the 2nd USENIX Workshop on Hot Topics in

Security, 2007.

[10] D. Kirovski, M. Sinclair, and D. Wilson. The martini
synch. Technical report, Microsoft Research Technical
Report, MSR-TR-2007-123, 2007.

[11] Maxmind. maxmind.com.

[12] R. Mayrhofer and H. Gellersen. Shake well before use:
Authentication based on accelerometer data. In 5th
International Conference on Pervasive Computing,
volume 4480 of LNCS, pages 144–161, 2007.

[13] J. M. Mccune, A. Perrig, and M. K. Reiter.
Seeing-is-believing: Using camera phones for
human-verifiable authentication. In In IEEE
Symposium on Security and Privacy, pages 110–124,
2005.

[14] S. Murdoch and R. Anderson. Verified by visa and
mastercard securecode: or, how not to design
authentication. In Proc. of Financial Cryptography,
2010.

[15] A. Oprea, D. Balfanz, G. Durfee, and D. Smetters.
Securing a remote terminal application with a mobile
trusted device. In Proc. of ACSAC’04, pages 438–447,
2004.

[16] B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing
prevention. In Proceedings of the 10th International
Conference on Financial Cryptography and Data
Security (FC’06), 2006.

[17] J. S. Pierce and J. Nichols. An infrastructure for
extending applications’ user experiences across
multiple personal devices. In UIST ’08: Proceedings
of the 21st annual ACM symposium on User interface
software and technology, pages 101–110, New York,
NY, USA, 2008. ACM.

[18] M. V. Rafter. A breakout year for openid, 2009.
technology.inc.com/security/articles/200902/

openID.html.

[19] B. Schneier. Unauthentication, 2009.
www.schneier.com/blog/archives/2009/09/

unauthenticatio.html.

[20] D. Steeves. Securing online transactions with a
trusted digital identity. First TIPPI workshop, 2005.

[21] visa. Verified by visa, 2000.

[22] M. Wu, S. Garfinkel, and R. Miller. Secure web
authentication with mobile phones. In DIMACS
Workshop on Usable Privacy and Security Software,
2004.

[23] Xep-0206: Xmpp over bosh.
xmpp.org/extensions/xep-0206.html.


