
Chapter 13

Neural Nets and Deep
Learning

In Sections 12.2 and 12.3 we discussed the design of single “neurons” (percep-
trons). These take a collection of inputs and, based on weights associated with
those inputs, compute a number that, compared with a threshold, determines
whether to output “yes” or “no.” These methods allow us to separate inputs
into two classes, as long as the classes are linearly separable. However, most
problems of interest and importance are not linearly separable. In this chapter,
we shall consider the design of neural nets, which are collections of perceptrons,
or nodes, where the outputs of one rank (or layer of nodes becomes the inputs
to nodes at the next layer. The last layer of nodes produces the outputs of
the entire neural net. The training of neural nets with many layers requires
enormous numbers of training examples, but has proven to be an extremely
powerful technique, referred to as deep learning, when it can be used.

We also consider several specialized forms of neural nets that have proved
useful for special kinds of data. These forms are characterized by requiring that
certain sets of nodes in the network share the same weights. Since learning all
the weights on all the inputs to all the nodes of the network is in general a
hard and time-consuming task, these special forms of network greatly simplify
the process of training the network to recognize the desired class or classes of
inputs. We shall study convolutional neural networks (CNN’s), which are spe-
cially designed to recognize classes of images. We shall also study recurrent neu-
ral networks (RNN’s) and long short-term memory networks (LSTM’s), which
are designed to recognize classes of sequences, such as sentences (sequences of
words).

509

510 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

13.1 Introduction to Neural Nets

We begin the discussion of neural nets with an extended example. After that,
we introduce the general plan of a neural net and some important terminology.

Example 13.1 : The problem we discuss is to learn the concept that “good”
bit-vectors are those that have two consecutive 1’s. Since we want to deal with
only tiny example instances, we shall assume bit-vectors have length four. Our
training examples will thus have the form ([x1, x2, x3, x4], y), where each of the
xi’s are bits, 0 or 1. There are 16 possible training examples, and we shall
assume we are given some subset of these as our training set. Notice that eight
of the possible bit vectors are good – they do have consecutive 1’s, and there
are also eight “bad” examples. For instance, 0111 and 1100 are good; 1001 and
0100 are bad.1

To start, let us look at a neural net that solves this simple problem exactly.
How we might design this net from training examples is the true subject for
discussion, but this net will serve as an example of what we would like to
achieve. The net is shown in Fig. 13.1.

x 1

x 2

x 3

x 4

x 1

x 2

x 3

x 4

0.5 y

1

1

2.5

1.5

1

1

2

0

0

0
1

1

Figure 13.1: A neural net that tells whether a bit-vector has consecutive 1’s

The net has two layers, the first consisting of two nodes, and the second
with a single node that produces the output y. Each node is a perceptron,
exactly as was described in Section 12.2. In the first layer, the first node is
characterized by weight vector [w1, w2, w3, w4] = [1, 2, 1, 0] and threshold 2.5.
Since each input xi is either 0 or 1, we note that the only way to reach a sum
∑4

i=1
xiwi as high as 2.5 is if x2 = 1 and at least one of x1 and x3 is also 1.

The output of this node is 1 if and only if the input is one of 1100, 1101, 1110,
1111, 0110, or 0111. That is, it recognizes those bit-vectors that either begin
with two 1’s or have two 1’s in the middle. The only good inputs it does not

1We shall show bit vectors as bit strings in what follows, so we can avoid the commas
between components, each of which is 0 or 1.

13.1. INTRODUCTION TO NEURAL NETS 511

recognize are those that end with 11 but do not have 11 elsewhere. these are
0011 and 1011.

Fortunately, the second node in the first layer, with weights [0, 0, 1, 1] and
threshold 1.5 gives output 1 whenever x3 = x4 = 1, and not otherwise. This
node thus recognizes the inputs 0011 and 1011, as well as some other good
inputs that are also recognized by the first node.

Now, let us turn to the second layer, with a single node; that node has
weights [1, 1] and threshold 0.5. It thus behaves as an “OR-gate.” It gives
output y = 1 whenever either or both of the nodes in the first layer have output
1, but gives output y = 0 if both of the first-layer nodes give output 0. Thus,
the neural net of Fig. 13.1 gives output 1 for all the good inputs but none of
the bad inputs. ✷

x 1

x 2

x 3

x 4

x 1

x 2

x 3

x 4

y

1

1

1

2

0

0

0
1

1

1

1

−0.5

1
−2.5

1 −1.5

Figure 13.2: Making the threshold 0 for all nodes

It is useful in many situations to assume that nodes have a threshold of
0. Recall from Section 12.2.4 that we can always convert a perceptron with a
nonzero threshold t to one with a 0 threshold if we add an additional input.
That input always has value 1 and a weight equal to −t. For example, we can
convert the net of Fig. 13.1 to that in Fig. 13.2.

13.1.1 Neural Nets, in General

Example 13.1 and its net of Fig. 13.1 is much simpler than anything that would
be a useful application of neural nets. The general case is suggested by Fig. 13.3.
The first, or input layer, is the input, which is presumed to be a vector of some
length n. Each component of the vector [x1, x2, . . . , xn] is an input to the net.
There are one or more hidden layers and finally, at the end, an output layer,
which gives the result of the net. Each of the layers can have a different number
of nodes, and in fact, choosing the right number of nodes at each layer is an

512 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

important part of the design process for neural nets. Especially, note that the
output layer can have many nodes. For instance, the neural net could classify
inputs into many different classes, with one output node for each class.

.

.

.

.

.

.

.

.

.

. . .

x

Hidden layers
Output
layer

x

1

2

.

.

.

x n
y

y

y 1

2

k

Input
layer

Figure 13.3: The general case of a neural network

Each layer, except for the input layer, consists of one or more nodes, which
we arrange in the column that represents that layer. We can think of each node
as a perceptron. The inputs to a node are outputs of some or all of the nodes in
the previous layer. So that we can assume the threshold for each node is zero,
we can also allow a node to have an input that is a constant, typically 1, as
we suggested in Fig. 13.2. Associated with each input to each node is a weight.
The output of the node depends on

∑

xiwi, where the sum is over all the inputs
xi, and wi is the weight of that input. Sometimes, the output is either 0 or 1;
the output is 1 if that sum is positive and 0 otherwise. However, as we shall
see in Section 13.2, it is often convenient, when trying to learn the weights for
a neural net that solves some problem, to have outputs that are almost always
close to 0 or 1, but may be slightly different. The reason, intuitively, is that
it is then possible for the output of a node to be a continuous function of its
inputs. We can then use gradient descent to converge to the ideal values of all
the weights in the net.

13.1. INTRODUCTION TO NEURAL NETS 513

13.1.2 Interconnections Among Nodes

Neural nets can differ in how the nodes at one layer are connected to nodes
at the layer to its right. The most general case is when each node receives as
inputs the outputs of every node of the previous layer. A layer that receives
all outputs from the previous layer is said to be fully connected. Some other
options for choosing interconnections are:

1. Random. For some m, we pick for each node m nodes from the previous
layer and make those, and only those, be inputs to this node.

2. Pooled. Partition the nodes of one layer into some number of clusters. In
the next layer, which is called a pooled layer, there is one node for each
cluster, and this node has all and only the member of its cluster as inputs.

3. Convolutional. This approach to interconnection, which we discuss in
more detail in the next section and Section 13.4, views the nodes of each
layer as arranged in a grid, typically two-dimensional. In a convolutional
layer, a node corresponding to coordinates (i, j) receive as inputs the
nodes of the previous layer that have coordinates in some small region
around (i, j). For example, the node (i, j) at one convolutional layer may
have as inputs those nodes from the previous layer that correspond to
coordinates (p, q), where i ≤ p ≤ i+ 2 and j ≤ q ≤ j + 2 (i.e., the square
of side 3 whose lower-left corner is the point (i, j).

13.1.3 Convolutional Neural Networks

A convolutional neural network, or CNN, contains one or more convolutional
layers. There can also be nonconvolutional layers, such as fully connected layers
and pooled layers. However, there is an important additional constraint: the
weights on the inputs must be the same for all nodes of a single convolutional
layer. More precisely, suppose that each node (i, j) in a convolutional layer
recieves (i + u, j + v) as one of its inputs, where u and v are small constants.
Then there is a weight w associated with u and v (but not with i and j). For
any i and j, the weight on the input to the node for (i, j) coming from the
output of the node i+ u, j + v) from the previous layer must be w.

This restriction makes training a CNN much more efficient than training a
general neural net. The reason is that there are many fewer parameters at each
layer, and therefore, many fewer training examples can be used, than if each
node or each layer has its own weights for the training process to discover.

CNN’s have been found extremely useful for tasks such as image recognition.
In fact, the CNN draws inspiration from the way the human eye processes
images. The neurons of the eye are arranged in layers, similarly to the layers
of a neural net. The first layer takes inputs that are essentially pixels of the
image, each pixel the result of a sensor in the retina. The nodes of the first
layer recognize very simple features, such as edges between light and dark.
Notice that a small square of pixels, say 3-by-3, might exhibit an edge at a

514 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

particular angle, e.g., if the upper left corner is light and the other eight pixels
dark. Moreover, the algorithm for recognizing an edge of a certain type is the
same, regardless of where in the field of vision this little square appears. That
observation justifies the CNN constraint that all the nodes of a layer use the
same weights. In the eye, additional layers combine results from the previous
layers to recognize more and more complex structures: long boundaries, regions
of similar color, and finally faces and all the familiar objects that we see daily.

We shall have more to say about convolutional neural networks in Sec-
tion 13.4. Moreover, CNN’s are only one example of a kind of neural network
where certain families of nodes are constrained to have the same weights. For
example, in Section 13.5, we shall consider recurrent neural networks and long
short-term memory networks, which are specially adapted to recognizing prop-
erties of sequences, such as sentences (sequences of words).

13.1.4 Design Issues for Neural Nets

Building a neural net to solve a given problem is partially art and partially
science. Before we can begin to train a net by finding the weights on the inputs
that serve our goals best, we need to make a number of design decisions. These
include answering the following questions:

1. How many hidden layers should we use?

2. How many nodes will there be in each of the hidden layers?

3. In what manner will we interconnect the outputs of one layer to the inputs
of the next layer?

Further, in later sections we shall see that there are other decisions that need
to be made when we train the neural net. These include:

4. What cost function should we minimize to express what weights are best?

5. How should we compute the outputs of each gate as a function of the
inputs? We have suggested that the normal way to compute output is to
take a weighted sum of inputs and compare it to 0. But there are other
computations that serve better in common circumstances.

6. What algorithm do we use to exploit the training examples in order to
optimize the weights?

13.1.5 Exercises for Section 13.1

!! Exercise 13.1.1 : Prove that the problem of Example 13.1 cannot be solved
by a perceptron; i.e., the good and bad points are not linearly separable.

13.2. DENSE FEEDFORWARD NETWORKS 515

! Exercise 13.1.2 : Consider the general problem of identifying bit-vectors of
length n having two consecutive 1’s. Assume a single hidden layer with some
number of gates. What is the smallest number of gates you can have in the
hidden layer if (a) n = 5 (b) n = 6?

! Exercise 13.1.3 : Design a neural net that functions as an exclusive-or gate,
that is, it takes two inputs and gives output 1 if exactly one of the inputs is
1 gives output 0 otherwise. Hint : remember that both weights and thresholds
can be negative.

! Exercise 13.1.4 : Prove that there is no single preceptron that behaves like
an exclusive-or gate.

! Exercise 13.1.5 : Design a neural net to compute the exclusive-or of three
inputs; that is, output 1 if an odd number of the three inputs is 1 and output
0 if an even number of the inputs are 1.

13.2 Dense Feedforward Networks

In the previous section, we simply exhibited a neural net that worked for the
“consecutive 1’s” problem. However, the true value of neural nets comes from
our ability to design them given training data. To design a net, there are many
choices that must be made, such as the number of layers and the number of
nodes for each layer, as was discussed in Section 13.1.4. These choices can
be more art than science. The computational part of training, which is more
science than art, is primarily the choice of weights for the inputs to each node.

The techniques for selecting weights usually involve convergence using gra-
dient descent. But gradient descent requires a cost function, which must be a
continuous function of the weights. The nets discussed in Section 13.1.4, on the
other hand, use perceptrons whose output is either 0 or 1, so the outputs are
not normally continuous functions of the inputs. In this section, we shall dis-
cuss the various ways one can modify the behavior of the nodes in a net so the
outputs become continuous functions of the inputs, and therefore a reasonable
cost function applied to the outputs will also be continuous.

13.2.1 Linear Algebra Notation

We can succinctly describe the neural network we used for the consecutive
1’s problem using linear algebra notation. The input nodes form a vector2

x = [x1, x2, x3, x4], while the hidden nodes form a vector h = [h1, h2]. The
4 edges connecting the input to hidden node 1 form a weight vector w1 =
[w11, w12, w13, w14], and similarly we have weight vector w2 for hidden node 2.

2We assume all vectors are column vectors by default. However, it is often more convenient
to write row vectors, and we shall do so in the text. But in formulas, we shall use the transpose
operator when we actually want to use the vector as a row rather than a column.

516 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

Why Use Linear Algebra?

Notational brevity is one reason to use linear algebra notation for neu-
ral networks. Another is performance. It turns out that graphics pro-
cessing units (GPU’s) have circuitry that allows for highly parallelized
linear-algebra operations. Mutiplying a matrix and a vector using a sin-
gle linear algebra operator is much faster than coding the same operator
using nested loops. Modern deep-learning frameworks (e.g., TensorFlow,
PyTorch, Caffe) harness the power of GPU’s to dramatically speed up
neural network computations.

The threshold inputs to the hidden layer nodes (i.e., the negatives of the thresh-
olds) form a 2-vector b = [b1, b2], often called the bias vector. The perceptron
applies the nonlinear step function to produce its output, defined as:

step(z) =

{

1 when z > 0

0 otherwise

Each hidden node hi can now be described using the expression:

hi = step(wT

i x+ bi) for i = 1, 2

We could organize the weight vectors w1 and w2 into a 2× 4 weight matrix
W , where the ith row of W is wT

i
. The hidden nodes can thus be described

using the expression:

h = step(Wx+ b)

In the case of a vector input, the step function just operates element-wise on
the vector to produce an output vector of the same length. We can use a similar
arrangement to describe the transformation that produces the final output from
the hidden layer. In this case, the final output is a scalar y, so instead of a weight
matrix W we need only a weight vector u = [u1, u2] and a single bias c. We
thus have:

y = step(uTh+ c)

Linear-algebra notation works just as well when we have larger inputs and
many more nodes in one hidden layer. We just need to scale the weight matrix
and bias vector appropriately. That is, the matrix W has one row for each
node in the layer and one column for each output from the previous layer (or
for each input, if this is the first layer); the bias vector has one component
for each node. It is also easy to handle the case where there is more than one
node in the output layer. For example, in a multiclass classification problem, we
might have an output node yi corresponding to target class i. For a given input,
the outputs specify the probability that the input belongs to the corresponding

13.2. DENSE FEEDFORWARD NETWORKS 517

class. This arrangement results in an output vector y = [y1, y2, . . . , yn], where
n is number of classes. The simple network from the prior section had a boolean
output, corresponding to two output classes (true and false), so we could have
modeled the output equally well as a 2-vector. In the case of a vector output,
we connect the hidden and output layers by a weight matrix of appropriate
dimensions in place of the weight vector we used for the example.

The perceptrons in our example used a nonlinear step function. More gen-
erally, we can use any other nonlinear function, called the activation function,
following the linear transformation. We describe commonly used activation
functions starting in Section 13.2.2.

Our simple example used a single hidden layer of nodes between the input
and output layers. In general, we can have many hidden layers, as was sugested
in Fig. 13.3. Each hidden layer introduces an additional matrix of weights and
vector of biases, as well as its own activation function. This kind of network is
called a feedforward network, since all edges are oriented “forward,” from input
to output, without cycles.

Suppose there are ℓ hidden layers and an additional output layer, numbered
ℓ + 1. Let the weight matrix for the ith layer be Wi and let the bias vector
for that layer be bi. The weights W1,W2, . . . ,Wl+1 and biases b1,b2, . . . ,bl+1

constitute the parameters of the model. Our objective is to learn the best values
for these parameters to achieve the task at hand. We will soon describe how to
go about learning the model parameters.

13.2.2 Activation Functions

A node (perceptron) in a neural net is designed to give a 0 or 1 (yes or no)
output. Often, we want to modify that output is one of several ways, so we apply
an activation function to the output of a node. In some cases, the activation
function takes all the outputs of a layer and modifies them as a group. the
reason we need an activation function is as follows. The approach we shall use
to learn good parameter values for the network is gradient descent. Thus, we
need activation functions that “play well” with gradient descent. In particular,
we look for activation functions with the following properties:

1. The function is continuous and differentiable everywhere (or almost ev-
erywhere).

2. The derivative of the function does not saturate (i.e., become very small,
tending towards zero) over its expected input range. Very small deriva-
tives tend to stall out the learning process.

3. The derivative does not explode (i.e., become very large, tending towards
infinity), since this would lead to issues of numerical instability.

The step function does not satisfy conditions (2) and (3). Its derivative explodes
at 0 and is 0 everywhere else. Thus the step function does not play well with
gradient descent and is not a good choice for a deep neural network.

518 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

13.2.3 The Sigmoid

Given that we cannot use the step function, we look for alternatives in the
class of sigmoid functions – so called because of the S-shaped curve that these
functions exhibit. The most commonly used sigmoid function is the logistic

sigmoid :

σ(x) =
1

1 + e−x
=

ex

1 + ex

Notice that the sigmoid has the value 1/2 at x = 0. For large x, the sigmoid
approaches 1, and for large, negtive x, the sigmoid approaches 0.

The logistic sigmoid, like all the functions we shall discuss, are applied to
vectors elementwise, so if x = [x1, x2, . . . , xn] then

σ(x) = [σ(x1), σ(x2), . . . , σ(xn)]

The logistic sigmoid has several advantages over the step function as a way
to define the output of a perceptron. The logistic sigmoid is continuous and dif-
ferentiable, so it enables us to use gradient descent to discover the best weights.
Since its value is in the range [0, 1], it is possible to interpret the outputs of the
network as a probability. However, the logistic sigmoid saturates very quickly
as we move away from the “critical region” around 0. So the derivative goes
towards zero and gradient-based learning can stall out. That is, weights almost
stop changing, once they get away from 0.

In Section 13.3.3, when we describe the backpropagation algorithm, we shall
see that we need the derivatives of activation functions and loss functions. As
an exercise, you can verify that if y = σ(x), then

dy

dx
= y(1− y)

13.2.4 The Hyperbolic Tangent

Closely related to sigmoid is the hyperbolic tangent function, defined by:

tanh(x) =
ex − e−x

ex + e−x

Simple algebraic manipulation yields:

tanh(x) = 2σ(2x)− 1

So the hyperbolic tangent is just a scaled and shifted version of the sigmoid.
It has two desirable properties that make it attractive in some situations: its
output is in the range [−1, 1] and is symmetric around 0. It also shares the
good properties and the saturation problem of the sigmoid. You may show that
if y = tanh(x) then

dy

dx
= 1− y2

13.2. DENSE FEEDFORWARD NETWORKS 519

6 4 2 0 2 4 6

0.5

1.0

3 2 1 1 2 3

1.0

0.5

0.5

1.0

(a) (b)

Figure 13.4: The logistic sigmoid (a) and hyperbolic tangent (b) functions

Figure 13.4 shows the logistic sigmoid and hyperbolic tangent functions.
Note the difference in scale along the x-axis between the two charts. It is easy
to see that the functions are identical after shifting and scaling.

13.2.5 Softmax

The softmax function differs from sigmoid functions in that it does not operate
element-wise on a vector. Rather, the softmax function applies to an entire
vector. If x = [x1, x2, . . . , xn], then its softmax µ(x) = [µ(x1), µ(x2), . . . , µ(xn)]
where

µ(xi) =
exi

∑

j e
xj

Softmax pushes the largest component of the vector towards 1 while pushing all
the other components towards zero. Also, all the outputs sum to 1, regardless
of the sum of the components of the input vector. Thus, the output of the
softmax function can be intepreted as a probability distribution.

A common application is to use softmax in the output layer for a classi-
fication problem. The output vector has a component corresponding to each
target class, and the softmax output is interpreted as the probability of the
input belonging to the corresponding class.

Softmax has the same saturation problem as the sigmoid function, since one
component gets larger than all the others. There is a simple workaround to this
problem, however, when softmax is used at the output layer. In this case, it is
usual to pick cross entropy as the loss function, which undoes the exponentiation
in the definition of softmax and avoids saturation. Cross entropy is explained in

520 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

Accuracy of Softmax Calculation

The denominator of the softmax function involves computing a sum of the
form

∑

j e
xj . When the xj ’s take a wide range of values, their exponents

exj take on an even wider range of values – some tiny and some very large.
Adding very large and very small floating point numbers leads to numerical
inaccuracy issues in fixed-width floating point representations (such as 32-
bit or 64-bit). Fortunately, there is a trick to avoid this problem. We
observe that

µ(xi) =
exi

∑

j e
xj

=
exi−c

∑

j e
xj−c

for any constant c. We pick c = maxj xj , so that xj − c ≤ 0 for all j.
This ensures that exj−c is always between 0 and 1, and leads to a more
accurate calculation. Most deep learning frameworks will take care to
compute softmax in this manner.

Section 13.2.9. We address the problem of differentiating the softmax function
in Section 13.3.3.

13.2.6 Recified Linear Unit

The rectified linear unit, or ReLU, is defined as:

f(x) = max(0, x) =

{

x, for x ≥ 0

0, for x < 0

The name of this function derives from the analogy to half-wave rectification in
electrical engineering. The function is not differentiable at 0 but is differentiable
everywhere else, including at points arbitrarily close to 0. In practice, we “set”
the derivative at 0 to be either 0 (the left derivative) or 1 (the right derivative).

In modern neural nets, a version of ReLU has replaced sigmoid as the de-
fault choice of activation function. The popularity of ReLU derives from two
properties:

1. The gradient of ReLU remains constant and never saturates for positive
x, speeding up training. It has been found in practice that networks
that use ReLU offer a significat speedup in training compared to sigmoid
activation.

2. Both the function and its derivative can be computed using elementary
and efficient mathematical operations (no exponentiation).

ReLU does suffer from a problem related to the saturation of its derivative
when x < 0. Once a node’s input values become negative, it is possible that the

13.2. DENSE FEEDFORWARD NETWORKS 521

3 2 1 1 2 3

1

1

2

3

3 2 1 1 2 3

1

1

2

3

(a) (b)

Figure 13.5: The ReLU (a) and ELU (b), with α = 1 functions

node’s output get “stuck” at 0 through the rest of the training. This is called
the dying ReLU problem.

The Leaky ReLU attempts to fix this problem by defining the activation
function as follows:

f(x) =

{

x, for x ≥ 0

αx, for x < 0

where α is typically a small positive value such as 0.01. The Parametric ReLU

(PReLU) makes α a parameter to be optimized as part of the learning process.
An improvement on both the original and leaky ReLU functions is Expo-

nential Linear Unit, or ELU. This function is defined as:

f(x) =

{

x, for x ≥ 0

α(ex − 1), for x < 0

where α ≥ 0 is a hyperparameter. That is, α is held fixed during the learning
process, but we can repeat the learning process with different values of α to
find the best value for our problem. The node’s value saturates to −α for
large negative values of x, and a typical choice is α = 1. ELU’s drive the
mean activation of nodes towards zero, which appears to speed up the learning
process compared to other ReLU variants.

13.2.7 Loss Functions

A loss function quantifies the difference between a model’s predictions and the
output values observed in the real world (i.e., in the training set). Suppose

522 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

the observed output corresponding to input x is ŷ and the predicted output is
y. Then a loss fucntion L(y, ŷ) quantifies the prediction error for this single
input. Typically, we consider the loss over a large set of observations, such
as the entire training set. In that case, we usually average the losses over all
training examples.

We shall consider separately two cases. In the first case, there is a single
output node, and it produces a real value. In this case we study “regression
loss.” In the second case, there are several output nodes, each of which indicates
that the input is a member of a particular class; we study this matter under
“classification loss” in Section 13.2.9.

13.2.8 Regression Loss

Suppose the model has a single continuous-valued output, and (x, ŷ) is a training
example. For the same input x, suppose the predicted output of the neural net
is y. Then the squared error loss L(y, ŷ) of this prediction is:

L(y, ŷ) = (y − ŷ)2

In general, we compute the loss for a set of predictions. Suppose the observed
(i.e., training set) input-output pairs are T = {(x1, ŷ1), (x2, ŷ2), . . . , (xn, ŷn)},
while the corresponding input-output pairs predicted by the model are P =
{(x1, y1), (x2, y2), . . . , (xn, yn)}. The mean squared error (MSE) for the set is:

L(P, T) =
1

n

n
∑

i=1

(yi − ŷi)
2

Note that the mean squared error is just square of the RMSE. It is convenient
to omit the square root to simplify the derivative of the function, which we shall
use during training. In any case, when we minimize MSE we also automatically
minimize RMSE.

One problem with MSE is that it is very sensitive to outliers due the squared
term. A few outliers can contribute very highly to the loss and swamp out the
effect of other points, making the training process susceptible to wild swings.
One way to deal with this issue is to use the Huber Loss. Suppose z = y − ŷ,
and δ is a constant. The Huber Loss Lδ is given by:

Lδ(z) =

{

z2 if |z| ≤ δ

2δ(|z| − 1

2
δ) otherwise

Figure 13.6 contrasts the squared error and Huber loss functions.

In the case where we have a vector y of outputs rather than a single output,
we use ‖y − ŷ‖ in place of |y − ŷ| in the definitions of mean squared error and
Huber loss.

13.2. DENSE FEEDFORWARD NETWORKS 523

5 4 3 2 1 1 2 3 4 5

5

10

15

20

25

Figure 13.6: Huber Loss (solid line, δ = 1) and Squared Error (dotted line) as
functions of z = y − ŷ

13.2.9 Classification Loss

Consider a multiclass classification problem with target classes C1, C2, . . . , Cn.
Suppose each point in the training set is of the form (x,p) where x is the input
and p = [p1, p2, . . . , pn] is the output. Here pi gives the probability that the
input x belongs to class Ci, with

∑

i pi = 1. In many cases, we are certain that
an input belongs to a particular class Ci; in this case pi = 1 and pj = 0 for
i 6= j. In general, we may interpret pi as our level of certainty that input x
belongs to class Ci, and p as a probability distribution over the target classes.

We design our neural network to produce as output a vector

q = [q1, q2, . . . , qn]

of probabilities, with
∑

i qi = 1. As before, we interpret q as a probability
distribution over the target classes, with qi denoting the model’s probability
that input x belongs to target class Ci. In Section 13.2.5 we described a sim-
ple method to produce such a probability vector as output: use the softmax
activation function in the output layer of the network.

Since both the labeled output and the model’s output are probability dis-
tributions, it is natural to look for a loss function that quantifies the distance
between two probability distributions. Recall the definition of entropy from
Section ??. That is, H(p), the entropy of a discrete probability distribution p
is:

H(p) = −

n
∑

i=1

pi log pi

Imagine an alphabet of n symbols, and messages using these symbols. Sup-
pose at each location in the message, the probability that symbol i appears is

524 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

pi. Then a key result from information theory is that if we encode messages
using an optimal binary code, the average number of bits per symbol needed to
encode messages is H(p).

Suppose we did not know the symbol probability distribution p when we
design the coding scheme. Instead, we believe that symbols appear following
a different probability distribution q. We might ask what the average number
of bits per symbol will be if we use this suboptimal encoding scheme. A well-
known result from information theory states that the average number of bits in
this case is the cross entropy H(p,q), defined as:

H(p,q) = −

n
∑

i=1

pi log qi

Note that H(p,p) = H(p), and in general H(p,q) ≥ H(p). The difference
between the cross entropy and the entropy is the average number of additional
bits needed per symbol. It is a reasonable measure of the distance between the
distributions p and q, called the Kullblack-Liebler divergence (KL-divergence)
and denoted D(p‖q):

D(p‖q) = H(p,q)−H(p) =

n
∑

i=1

pi log
pi
qi

Even though KL-divergence is often regarded as a distance, it is not truly
a distance measure because it is not commutative. However, it is perfectly
adequate as a loss function for our purposes, since there is in fact an inherent
assymmetry in the situation: p is the ground truth while q is the predicted
output. Notice that minimizing the KL-divergence loss of a model is equivalent
to minimizing the cross-entropy loss, since the term H(p) depends only on the
input and is independent of the model that is learned.

In practice, cross entropy is the most commonly used loss function for clas-
sification problems. Networks designed for classification often use a softmax
activation function in the output layer. These choices are so common that
many implementations, such as TensorFlow, offer a single function that com-
bines softmax with cross entropy. In addition to convenience, one reason to do
so is that the combined function is more stable numerically, and its derivative
also takes a simple form, as we show in Section 13.3.3.

13.2.10 Exercises for Section 13.2

Exercise 13.2.1 : Show that for the logistic sigmoid σ, if y = σ(x), then

dy

dx
= y(1− y)

Exercise 13.2.2 : Show that if y = tanh(x) then

dy

dx
= 1− y2

13.3. BACKPROPAGATION AND GRADIENT DESCENT 525

Exercise 13.2.3 : Show that tanh(x) = 2σ(2x)− 1.

Exercise 13.2.4 : Show that σ(x) = 1− σ(−x).

Exercise 13.2.5 : Show that for any vector [v1, v2, . . . , vk],
∑k

i=1
µ(vi) = 1.

1yx 1

x 2

x 3

x 4

y

3y

2

1

=1

=0

=1

=0

1

2

3

−4

1

−1

2

3

−2

−2

1 −2

1
1

1

4
1

1

2

2

3

Figure 13.7: Neural net for Exercise 13.2.6

Exercise 13.2.6 : In Fig. 13.7 is a neural net with paricular values shown
for all the weights and inputs. Suppose that we use the sigmoid function to
compute outputs of nodes at the first layer, and we use softmax to compute the
outputs of the nodes in the output layer.

(a) Compute the values of the outputs for each of the five nodes.

! (b) Assuming each of the weights and each of the xi’s is a variable, express
the output of the first (top) output node in terms of the weights and the
xi’s,

! (c) Find the derivative of your function from part (b) with respect to the
weight on the first (top) input to the first (top) node in the first layer.

13.3 Backpropagation and Gradient Descent

We now turn to the problem of training a deep network. Training a network
means finding good values for the parameters (weights and thresholds) of the
network. Usually, we shall have access to a training set of labeled input/output
pairs. The training process tries to find parameter values that minimize the
average loss on the training set. The hope is that the training set is represen-
tative of the data the model will encounter in the future, and therefore, the
average loss on the training set is a good measure of the average error on all
possible inputs. We must be careful, however; since deep networks have many

526 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

parameters, it is possible to find parameters that yield low training loss but
nevertheless perform poorly in the real world. This phenomenon is called over-
fitting, a problem we have mentioned several times, starting in Section 9.4.4.

For the moment, we assume that our goal is to find parameters that minimize
the expected loss on the training set. This goal is achieved by gradient descent.
There is an elegant algorithm called backpropagation that allows us to compute
these gradients efficiently. Before we describe backpropagation, we need a few
preliminaries.

13.3.1 Compute Graphs

A compute graph captures the data flow of a deep network. Formally, a compute
graph is a directed, acyclic graph (DAG). Each node in the compute graph has
an operand and, optionally, an operator. The operand can be a scalar, a vector,
or a matrix. The operator is a linear-algebra operator (such as + or ×), an
activation function (such as σ) or a loss function (such as MSE). When a node
has both an operand and an operator, the operator is written above the operand.

When a node has only an operand, its output is the value associated with
the operand. The output of a node with an operator is the result of applying
its operator to its immediate predecessors in the graph and then assigning the
result to the operand. In general, the operator can be an arbitrary expression
that uses its inputs to produce an output.3

Example 13.2 : Figure 13.8 shows the compute graph for a single-layer dense
network described by y = σ(Wx+b) where x is the input and y is the output.
We then compute an MSE loss against the training-set output ŷ. That is, we
have a single layer of n nodes. The vector y is of length n and represents the
outputs of each of these nodes. There are k inputs, and (x, ŷ) represents one
training example. Matrix W represents the weights on the inputs of the nodes;
that is, Wij is the weight for input j at the ith node. Finally, b represents the
n biases, so its ith element is the negative of the threshold of the ith node.

u v y

y

x

W b

L
MSEσ

Figure 13.8: Compute graph for a single-layer dense network

For the graph in Fig. 13.8, we have:

3Sometimes the order of operands to the operator matters. We shall ignore that detail
here and assume it is understood from the context.

13.3. BACKPROPAGATION AND GRADIENT DESCENT 527

u = Wx
v = u+ b
y = σ(v)
L = MSE(y, ŷ)

Each of these steps corresponds to one of the four nodes in the middle row,
in order from the left. The first step corresponds to the node with operand
u and operator ×. Here is an example where it must be understood that the
node labeled W is the first argument. If necessary, we could label each incoming
edge with a number to indicate its order, but in this case the order should be
obvious, since a column vector x could not multiply a matrix W unless the
matrix happened to have only one row. The second step corresponds to the
node with operator + and operand v. Here, the order of arguments does not
matter, since + on vectors is commutative. ✷

13.3.2 Gradients, Jacobians, and the Chain Rule

The goal of the backpropagation algorithm is to compute the gradient of the
loss function with respect to the parameters of the network. Then, we can
adjust the parameters slightly in the directions that will reduce the loss, and
repeat the process until we reach a selection of parameter values for which little
improvement in the loss is possible. Recall the definition of the gradient: given a
function f : RN → R from a real-valued vector to a scalar, if x = [x1, x2, . . . , xn]
and y = f(x) then the gradient of y with respect to x, denoted by ∇xy is given
by

∇xy =
[∂y

∂x1

,
∂y

∂x2

, . . . ,
∂y

∂xn

]

Example 13.3 : We could let function f be the loss function, e.g., the squared-
error loss, which we denote L. This loss is a scalar-valued function of the output
y:

L(y) = ‖y − ŷ‖2 =
n
∑

i=1

(yi − ŷi)
2

So we can easily write down the gradient of L with respect to y:

∇yL = [2(y1 − ŷ1), (y2 − ŷ2), . . . , 2(yn − ŷn)] = 2(y − ŷ)

✷

The generalization of the gradient to vector-valued functions is called the
Jacobian. Suppose we have a function f : R

m → R
n and y = f(x). The

Jacobian Jx(y) is given by:4

4The Jacobian is sometimes defined as the transpose of our definition. The formulations
are equivalent. Recall that we are assuming all vectors are column vectors unless transposed,
but we show them as row vectors so they can be written in-line.

528 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

Jx(y) =











∂y1

∂x1

. . . ∂yn

∂x1

...
. . .

...

∂y1

∂xm
. . . ∂yn

∂xm











We shall make use of the chain rule for derivatives from calculus. If y = g(x)
and z = f(y) = f(g(x)), then the chain rule says:

dz

dx
=

dz

dy

dy

dx

Also, if z = f(u, v) where u = g(x) and v = h(x), then

dz

dx
=

∂z

∂u

du

dx
+

∂z

∂v

dv

dx

For functions of vectors, we can restate the chain rule in terms of gradients and
Jacobians. Suppose y = g(x) and z = f(y) = f(g(x)) then:

∇xz = Jx(y)∇yz

If z = f(u,v) where u = g(x) and v = h(x), then

∇xz = Jx(u)∇uz + Jx(v)∇vz

13.3.3 The Backpropagation Algorithm

The goal of the backpropagation algorithm is to compute the gradient of the loss
function with respect to the parameters of the network. Consider the compute
graph from Fig. 13.8. Here the loss function L is the MSE function. We shall
use the notation g(z) to stand for ∇z(L), that is, the gradient of the the loss
function L with respect to some vector z. We already know the gradient of L
with respect to the output y:

g(y) = ∇y(L) = 2(y − ŷ)

We work backwards through the compute graph, applying the chain rule at
each stage. At each point we pick a node all of whose successors have already
been processed. Suppose a is such a node, and suppose it has just one immediate
successor b in the graph (note that in the simple compute graph of Fig. 13.8,
each node has just one immediate successor). Since we have already processed
node b, we have already computed g(b). We can now compute g(a) using the
chain rule:

g(a) = Ja(b)g(b)

In the case where node a has more than one successor node, we use the more
general sum version of the chain rule. That is, g(a) would be the sum of the
above terms for each successor b of a.

13.3. BACKPROPAGATION AND GRADIENT DESCENT 529

Since we shall need to compute these gradients several times, once for each
iteration of gradient descent, we can avoid repeated computation by adding
additional nodes to the compute graph for backpropagation: one node for each
gradient computation. In general, the Jacobian Ja(b) is a function of both
a and b, and so the node for g(a) will have arcs to it from the nodes for a,
b and g(b). Popular frameworks for deep learning (e.g., TensorFlow) know
how to compute the functional expression for the Jacobians and gradients of
commonly used operators such as those that appear in Fig. 13.8. In that case,
the developer needs only to provide the compute graph and the framework
will add the new nodes for backpropagation. Figure 13.9 shows the resulting
compute graph with added gradient nodes.

g(W) g(v) g(y)

u v y
σ

L
MSE

y(b)g

g(u)

W

x b

Figure 13.9: Compute graph with gradient nodes

Example 13.4 : We shall work out the functional expressions for the gradients
of all the nodes in Fig. 13.8. We already know g(y). So the next node we choose
to process is v.

g(v) = ∇v(L) = Jv(y)∇y(L) = Jv(y)g(y)

We know that y = σ(v). Since σ is an element-wise operator, the Jacobian
Jv(y) takes a particularly simple form. Using the derivative for the logistic
sigmoid function from Section 13.2.2, we see that

∂yi
∂vj

=

{

yi(1 − yi) if i = j

0 otherwise

The Jacobian is therefore a diagonal matrix:

Jv(y) =











y1(1− y1) 0 . . . 0
0 y2(1 − y2) . . . 0
...

...
. . .

...
0 0 . . . yn(1− yn)











530 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

Suppose s = [s1, s2, . . . , sn] is a vector defined by si = yi(1 − yi) (i.e., the
diagonal of the Jacobian matrix). We can express g(v) simply as

g(v) = s ◦ g(y)

where a ◦ b is the vector resulting from the element-wise product of a and b.5

Now that we have g(v), we can compute g(b) and g(u). We have g(b) =
Jb(v)g(v) and g(u) = Ju(v)g(v). Since

v = u+ b

it is straightforward to verify that

Jb(v) = Ju(v) = In

where In is the n× n identity matrix. So we have

g(b) = g(u) = g(v)

We finally come to the matrix W . Recall that u = Wx. There is a potential
problem here, because all the machinery we have set up works for vectors, while
W is a matrix. But recall from Section 13.2.1 that we assembled the matrix W
from a set of vectors w1,w2, . . . ,wn, where wT

i
is the ith row of W . The trick

is to consider each of these vectors separately and compute its gradient using
the usual formula.

g(wi) = Jwi
(u)g(u)

We know that ui = wT

i
x and none of the other uj ’s have any dependency on

wi for i 6= j. Therefore, the Jacobian Jwi
(u) is zero everywhere except the ith

column, which is equal to x. Thus we have

g(wi) = g(ui)x

✷

Example 13.5 : As we mentioned, neural networks for classification often use
a softmax activation in the final layer followed by a cross-entropy loss. We will
now compute the gradient of the combined operator.

Suppose the input to the combined operator is y; let q = µ(y), and let l =
H(p,q), where p represents the true probability vector for the corresponding
training example. We have:

log(qi) = log(
eyi

∑

j e
yj
)

= yi − log(
∑

j

eyj)

5This operation sometimes called the Hadamard product, so as not to confuse it with the
more usual dot product, which is the sum of the components of the Hadamard product.

13.3. BACKPROPAGATION AND GRADIENT DESCENT 531

Therefore, noting that
∑

i pi = 1, we have:

l = H(p,q)

= −
∑

i

pi log qi

= −
∑

i

pi(yi − log(
∑

j

eyj))

= −
∑

i

piyi − log(
∑

j

eyj)
∑

i

pi

= −
∑

i

piyi − log(
∑

j

eyj)

Differentiating, we get:

∂l

∂yk
= −pk +

eyk

∑

j e
yj

= −pk + µ(yk)

= qk − pk

Therefore, we end up with the rather neat result:

∇yl = q− p

This combined gradient does not saturate or explode, and leads to good learning
behavior. That observation explains why softmax and cross entropy loss work
so well together in practice. ✷

13.3.4 Iterating Gradient Descent

Given a set of training examples, we run the compute graph in both directions
for each example: forward (to compute the loss) and backwards (to compute
the gradients). We average the loss and gradients across the training set to
compute the average loss and the average gradient for each parameter vector.

At each iteration we update each parameter vector in the direction opposite
to its gradient, so the loss will tend to decrease. Suppose z is a parameter
vector. We set:

z← z− ηg(z)

Here η is a hyperparameter, the learning rate. We stop gradient descent either
when the loss between successive iterations changes by only a tiny amount (i.e.,
we have reached a local minimum) or after a fixed number of iterations.

It is important to pick the learning rate carefully. Too small a value means
gradient descent might take a very large number of iterations to converge. Too
large a value might cause large oscillations in the parameter values and never

532 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

lead to convergence. Usually picking the right learning rate is a matter of trial
and error. It is also possible and common to vary the learning rate. Start with
an initial learning rate η0. Then, at each iteration, multiply the learning rate
by a factor β (0 < β < 1) until the learning rate reaches a sufficiently low value.

When we have a large training set, we may not want to use the entire
training set for each iteration, as it might be too time-consuming. So for each
iteration we randomly sample a “minibatch” of training examples. This variant
is called stochastic gradient descent,” as was discussed in Section 12.3.5, since
we estimate the gradients using a different sample of the training set at each
iteration.

We have left open the question of how the parameter values are initialized
before we start gradient descent. The usual approach is to choose them at
random. Popular approachaes include sampling each entry uniformly at ran-
dom in [−1, 1], or choosing randomly using a normal distribution. Notice that
initializing all the weights to the same value would cause all nodes in a layer
to behave the same way, and thus we would never reap the benefit of having
different nodes in a layer recognize different features of the input.

13.3.5 Tensors

Previously, we have imagined that the inputs to a neural net are one-dimensional
vectors. But there is no reason why we cannot view the input as having a higher
dimension.

Example 13.6 : A grey-scale photo might be represented by a two-dimensional
array of real numbers, corresponding to the intensity of each pixel. Each pixel
of a color image typically requires 3 dimensions. That is, each pixel itself is
a vector with three components, say for the intensity of the pixel in the red,
green, and blue colors. One useful way to view a color image as input to a
neural net is to think of each training example as a two-dimensional array of
pixels, where the value of each pixel is not a real number, as we have heretofore
imagined, but a vector with three dimensions, one for each of the three colors.
✷

Similarly, we have viewed each layer of a neural net as a column of nodes.
But there is no reason we cannot imagine the nodes in a layer to be organized
as a two-dimensional array or even an array of dimension greater than two.
Finally, we have viewed the input values as real numbers and similarly viewed
the values produced by each node as a real number. But we could also think of
the values attached to each input or output of a node as a vector or a higher-
dimensional structure. The natural generalization of vectors and matrices is
the tensor, which is an n-dimensional array of scalars.

Unfortunately, the backpropagation algorithm we described works for vec-
tors, not higher-dimensional tensors. In such cases, we resort to the same trick
we used in Section 13.3.3, where we unrolled the matrix W into collection of

13.3. BACKPROPAGATION AND GRADIENT DESCENT 533

vectors. Just as we regard an m× n matrix as a set of m n-vectors, we can re-
gard a 3-dimensional tensor of dimensionality l×m×n as a set of lm n-vectors,
and similarly for tensors of higher dimension.

Example 13.7 : This example is based on the MNIST dataset.6 This dataset
consists of 28× 28 monochrome images, each represented by a two-dimensional
square bit array whose sides are of length 28. Our goal is to build a neural net
that determines whether an image corresponds to a handwritten digit (0-9) and
if so which one. Consider a single image X , which is a 28× 28 matrix. Suppose
the first layer of our network is a dense layer7 consisting of 49 hidden nodes,
which we shall imagine is arranged in a 7× 7 array. We model the hidden layer
as a 7× 7 matrix H , where the output of the node in row i and column j is hij .

We can model the weights for each of the 28 × 28 inputs and each of the
7×7 nodes as a weight tensor W with dimensions 7×7×28×28. That is, Wijkl

represents the weight for the input pixel in row i and column j of the image to
the node whose position in the array of nodes is row k and column l. Then:

hij =
28
∑

k=1

28
∑

l=1

wijklxkl for 1 ≤ i, j ≤ 7

where we omit the bias term for simplicity (i.e., we assume all thresholds of all
nodes are 0.

An equivalent way to think about this structure to flatten the input X into
a vector x of length 784 (since 28 × 28 = 784) and the hidden layer H into a
vector h of length 49. We flatten the weight tensor W as follows: the last two
dimensions are flattened into a single dimension to match x, and its first two
dimensions are flattened into a single dimension to match the hidden vector h,
resulting in a 49 × 784 weight matrix. Suppose as in Section 13.2.1, we have
wT

i
denote the ith row of this new weight matrix. We can now write:

hi = wT

i x for 1 ≤ i ≤ 49

It’s straightforward to see that there is a 1-to-1 mapping between the hidden
nodes in the old and new arrangements. Moreover, the output of each hidden
node is determined by a dot product, just as in Section 13.2.1. Thus the tensor
notation is just a convenient way to group vectors. ✷

Thus the tensors used in neural networks have little in common with the
tensors used in Physics and other mathematical sciences. A tensor in our con-
text is just a nested collection of vectors. The only tensor operation we shall
need is the flattening of a tensor by merging dimensions as in Example 13.7. We
can use the backpropagation algorithm described in Section 13.3.3 for tensors
once we have flattened them approriately.

6See yann.lecun.com/exdb/mnist/.
7In reality, the first network layer for this problem is likely to be a convolutional layer.

See Section 13.4

534 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

13.3.6 Exercises for Section 13.3

Exercise 13.3.1 : This exercise uses the neural net from Fig. 13.7. However,
assume that the weights on all inputs are variables rather than the constants
shown. Note, however, that some inputs do not feed one of the nodes in the
first layer, so these weights are fixed at 0. Assume that the input vector is x,
the output vector is y, and the output of the two nodes in the hidden layer is
the vector z. Also, let the matrix and bias vector connecting x to z be W1 and
b1, while the matrix and bias vector connecting z to y are W2 and b2. Assume
that the activation function at the hidden layer is the hyperbolic tangent, and
the activation function at the output is the identity function (i.e., no change to
the outputs is made). Finally, assume the loss function is mean-squared error,
where ŷ is the true output vector for a given input vector x. Draw the compute
graph that shows how y is computed from x.

Exercise 13.3.2 : For the network described in Exercise 13.3.1:

(a) What is Jy(z)?

(b) What is Jz(x)?

(c) Express g(x) in terms of g(tanh (z)).

(d) Express g(x) in terms of the loss function.

(e) Draw the compute graph with gradient computation for the entire net-
work.

13.4 Convolutional Neural Networks

Consider a fully-connected network layer for processing 224× 224 images, with
each pixel encoded using 3 color values (often called channels – the values of
intensity for red, green, and blue)).8 The number of weight parameters in the
connection layer for each output node is 224 × 224 × 3 = 150, 528. Suppose
we had 224 nodes in the output layer. We would end up with a total of over
33 million parameters! Given that our training set of images is usually of the
order of tens or hundreds of thousands of images, the huge number of parameters
would quickly lead to overfitting even using just a single layer.

A Convolutional Neural Network (CNN) greatly reduces the number of pa-
rameters by taking advantage of the properties of image data. CNN’s introduce
two new varieties of network layers: convolutional layers and pooling layers.

8This is the size of most of the images on ImageNet, for example.

13.4. CONVOLUTIONAL NEURAL NETWORKS 535

13.4.1 Convolutional Layers

Convolutional layers make use of the fact that image features often are described
by small contiguous areas in the image. For example, at the first convolutional
layer, we might recognize small sections of edges in the image. At later layers,
more complex structures, such as features that look like flower petals or eyes
might be recognized. The idea that simplifies the calculation is the fact that
the recognition of features such as edges does not depend on where in the image
the edge is. Thus, we can train a single node to recognize a small section of
edge, say an edge through a 5-by-5 region of pixels. This idea benefits us in
two ways.

1. The node in question needs only inputs from 25 pixels corresponding to
any 5-by-5 square, not inputs from all 224-by-224 pixels. That saves us a
lot in the representation of the trained CNN.

2. The number of weights that we need to learn in the training process is
greatly reduced. For each node in the layer, we require only one weight
for each input to that node – say 75 weights if a pixel is represented by
RGB values, not the 150,528 weights that we suggested above would be
needed for an ordinary, fully connected layer.

We shall think of the nodes in a convolutional layer as filters for learning
features. A filter examines a small spatially contiguous area of the image –
traditionally, a small square area such as a 5 × 5 square of pixels. Moreover,
since many features of interest may occur anywhere in the input image (and
possibly in more than one location), we apply the same filter at many locations
on the input.

To keep things simple, suppose the input consists of monochromatic images,
that is, grey-scale images whose pixels are each a single value. Each image is
thus encoded by a 2-dimensional pixel array of size 224× 224. A 5× 5 filter F
is encoded by a 5× 5 weight matrix W and single bias parameter b. When the
filter is applied on a similarly-sized square region of input image X with the
top left corner of the filter aligned with the image pixel xij , the response of the
filter at this position, denoted rij , is given by:

rij =
4

∑

k=0

4
∑

l=0

xi+k,j+lwkl + b (13.1)

We now slide the filter along the length and width of the input image, applying
the filter at each position, so that we capture every possible 5× 5 square region
of pixels in the image. Notice that we can apply the filter at input locations
1 ≤ i ≤ 220 and 1 ≤ j ≤ 220, although it does not “fit” at positions with a
higher i or j. The resulting set of responses rij are then passed through an
activation function to form the activation map R of the filter. In most cases,
the activation function is ReLU or one of its variants. When trained, i.e., the

536 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

weights wij of the filter are determined, the filter will recognize some feature of
the image, and the activation map tells whether (or to what degree) this feaure
is present at each position of the image.

Example 13.8 : In Fig. 13.10(b), we see a 2 × 2 filter, which is to be applied
to the 4 × 4 image in Fig. 13.10(b). To do so, we lay the filter over all nine of
the 2× 2 squares of the image. In the figure, we suggest the filter being placed
over the 2 × 2 square in the upper-right corner. After overlaying the filter, we
multiply each of the filter elements by the corresponding image element and
then take the sum of the products. In principle, we then need to add in a bias
term, but in this example, we shall assume the bias is 0.

1 0 1 0

0 1 0 1

1 1 0 0

0 0 0 1

1 0

0 −1

0 0 0
(b) 2−by−2 filter

1 1 −1

(a) 4−by−4 image (c) 3−by−3 response

−1 1 0

Figure 13.10: Applying a filter to an image

Another way to look at this process is that we turn the filter into a vector
by concatenating its rows, in order, and we do the same to the square of the
image. Then, we take the dot product of the vectors. For instance, the filter
can be thought of as the vector [1, 0, 0,−1], and the square in the upper-left
corner of the image can be thought of as the vector [1, 0, 0, 1]. The dot product
of these vectors is 1× 1+ 0× 0+ 0× 0+ (−1)× 1 = 0. Thus, the result, shown
in Fig. 13.10(c), has a 0 for its upper-left entry.

For another example, if we slide the filter down one row, the dot product of
the filter as a vector and the vector formed from the first two elements of the
second and third rows of the image is 1 × 0 + 0 × 1 + 0 × 1 + (−1)× 1 = −1.
Thus, the first element of the second row of the convolution is −1. ✷

When we deal with color images, the input has three channels. That is, each
pixel is represented by three values, one for each color. Suppose we have a color
image of size 224 × 224 × 3. The filter’s output will also have three channels,
and so the filter is now encoded by a 5 × 5 × 3 weight matrix W and single
bias parameter b. The activation map R still remains 5× 5, with each response
given by:

rij =

4
∑

k=0

4
∑

l=0

3
∑

d=1

xi+k,j+l,dwkld + b (13.2)

In our example, we imagined a filter of size 5. In general, the size of the filter is
a hyperparameter of the convolutional layer. Filters of size 3, 4, or 5 are most

13.4. CONVOLUTIONAL NEURAL NETWORKS 537

commonly used. Note that the filter size specifies only the width and height of
the filter; the number of channels of the filter always matches the number of
channels of the input.

The activation map in our example is slightly smaller than the input. In
many cases, it is convenient to have the activation map be of the same size as the
input. We can expand the repsonse by using zero padding: adding additional
rows and columns of zeros to pad out the input. A zero padding of p corresponds
to adding p rows of zeros each to the top and bottom, and p columns to the left
and right, increasing the dimensionality of the input by 2p along both width
and height. A zero padding of 2 in our example would augment the input size
to 228× 228 and result in an activation map of size 224× 224, the same size as
the original input image.

The third hyperparameter of interest is stride. In our example, we assumed
that we apply the filter at every possible point in the input image. We could
think instead of sliding the filter one pixel at a time along the width and height
of the input, corresponding to a stride s = 1. Instead, we could slide the
filter along the width and the height of image two or three pixels at a time,
corresponding to a stride s of 2 or 3. The larger the stride, the smaller the
activation map compared to the input.

Suppose the input is an m×m square of pixels, the output an n×n square,
filter size is f , stride is s, and zero padding is p. It is easily seen that:

n = (m− f + 2p)/s+ 1 (13.3)

In particular, we must be careful to pick hyperparameters such that s evenly
divides m− f + 2p; else we would have an invalid arrangement for the convo-
lutional layer, and most software implementations would throw an exception.

We can intuitively think of a filter as looking for an image feature, such as
a splotch of color or an edge. Classifying an image usually requires identifying
many features. We therefore use many filters, ideally one for each useful feature.
During the training of the CNN, we hope that each filter will learn to identify
one of these features. Suppose we use k filters; to keep things simple, we
constrain all filters to use same size, stride, and zero padding. Then the output
contains k activation maps. The dimensionality of the output layer is therefore
n× n× k, where n is given by Equation 13.3.

The set of k filters together constitute a convolutional layer. Given input
with d channels, a filter of size f requires df2+1 parameters (df2 weight param-
eters and 1 bias parameter). Therefore, a convolutional layer of k such filters
uses k(df2 + 1) parameters.

Example 13.9 : Continuing the ImageNet example, suppose the input consists
of 224×224×3 images, and we use a convolutional layer of 64 filters, each of size
5, stride 1, and zero padding 2. The size of the output layer is 224× 224× 64.
Each filter needs 3×5×5+1 = 76 parameters (including one for the threshold)
and the convolutional layer contains 64 × 76 = 4864 parameters – orders of
magnitude smaller than the number of parameters for a fully connected layer
with the same input and output sizes. ✷

538 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

13.4.2 Convolution and Cross-Correlation

This subsection is a short detour to explain why Convolutional Neural Networks
are so named. It is not a pre-requisite for any of the other material in this
chapter.

The convolutional layer is named because of the resemblance it bears to the
convolution operation from functional analysis, which is often used in signal
processing and probability theory. Given functions f and g, usually defined
over the time domain, their convolution (f ∗ g)(t) is defined as:

(f ∗ g)(t) =

∫

∞

−∞

f(τ)g(t− τ)dτ =

∫

∞

−∞

f(t− τ)g(τ)dτ

Here we are interested in the discrete version of convolution, where f and g are
defined over the integers:

(f ∗ g)(i) =

∞
∑

k=−∞

f(k)g(i− k) =

∞
∑

k=−∞

f(i− k)g(k)

Often convolution is viewed as using function g to transform function f . In
this context, the function g is sometimes called the kernel. When the kernel is
finite, so g(k) is only defined for k = 0, 1, . . . ,m− 1, the definition simplifies to:

(f ∗ g)(i) =

m−1
∑

k=0

f(i− k)g(k)

We can extend the definition to 2-dimensional functions:

(f ∗ g)(i, j) =
m−1
∑

k=0

m−1
∑

l=0

f(i− k, j − l)g(k, l)

Let us define h to be the kernel obtained by flipping g, i.e., h(i, j) = g(−i,−j)
for i, j ∈ {0, . . . ,m− 1}. It can verified that the convolution f ∗h of f with the
flipped kernel h is given by:

(f ∗ h)(i, j) =

m−1
∑

k=0

m−1
∑

l=0

f(i+ k, j + l)g(k, l) (13.4)

Note the similarity of Equation 13.4 to Equation 13.1, ignoring the bias term b.
The operation of the convolutional layer can be thought of as the convolution of
the input with a flipped kernel. This similarity is the reason why convolutional
layers are so named, and filters are sometimes called kernels.

The cross-correlation f ⋆ g is defined by (f ⋆ g)(x, y) = (f ∗ h)(x, y) where
h is the flipped version of g. Thus the operation of the convolutional layer can
also be seen as the cross-correlation of the input with the filter.

13.4. CONVOLUTIONAL NEURAL NETWORKS 539

13.4.3 Pooling Layers

A pooling layer takes as input the output of a convolutional layer and produces
an output with smaller spatial extent. The size reduction is accomplished by
using a pooling function to compute aggregates over small contiguous regions
of the input. For example we might use max pooling over nonoverlapping 2× 2
regions of the input; in this case there is an output node corresponding to
every nonoverlapping 2× 2 region of the input, with the output value being the
maximum value among the 4 inputs in the region. The aggregation operates
independently on each channel of the input. The resulting output layer is 25%
the size of the input layer. There are three elements in defining a pooling layer:

1. The pooling function, which is most commonly the max function but could
in theory be any aggregate function, such as average.

2. The size f of each pool, which specifies that each pool uses an f×f square
of inputs.

3. The stride s between pools, analogous to the stride used in the convolu-
tional layer.

The most common use cases in practice are f = 2 and s = 2, which specifies
nonoverlapping 2 × 2 regions, and f = 3, s = 2, which specifies 3 × 3 regions
with some overlap. Higher values of f lead to too much loss of information in
practice. Note that the pooling operation shrinks the height and width of the
input layer, but preserves the number of channels. It operates independently
on each channel of its input. Note that unlike the convolution layer, it is not
common practice to use zero padding for the max pooling layer.

Pooling is appropriate if we we believe that features are approximately in-
variant to small translations. For example, we might care about the relative
locations of features such as legs or wings and not their exact locations. In
such cases pooling can greatly reduce the size of the hidden layer that forms
the input to the subsequent layers of the network.

Example 13.10 : Suppose we apply max pooling with size = 2 and stride =
2 to the 224 × 224 × 64 output of the convolutional layer from Example 13.9.
The resulting output is of size 112× 112× 64. ✷

13.4.4 CNN Architecture

Now that we have seen the building blocks of Convolutional Neural Networks,
we can put them together to build deep networks. A typical CNN alternates
convolutional and pooling layers, ending with one or more fully-connected layers
that produce the final output.

Example 13.11 : For instance, Fig. 13.11 is a simple network architecture for
classifying ImageNet images into one of 1000 image classes, loosely inspired by

540 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

VGGnet.9 This simple network strictly alternates convolutional and pooling
layers. In practice, high-performing networks are finely tuned to their task,
and may stack convolutional layers directly on top of one another with the
occasional pooling layer in between. Moreover, there is often more than one
fully-connected layer before the final output. The input to the first layer is the
224-by-224, 3-channel image. The input to each subsequent layer is the output
of the previous layer.

Layer Type Size Stride Pad Filter Count Output Size

Convolution 3 1 1 64 224× 224× 64
Max Pool 2 2 0 64 112× 112× 64
Convolution 3 1 1 128 112× 112× 128
Max Pool 2 2 0 128 56× 56× 128
Convolution 3 1 1 256 56× 56× 256
Max Pool 2 2 0 256 28× 28× 256
Convolution 3 1 1 512 14× 14× 512
Max Pool 2 2 0 512 14× 14× 512
Convolution 3 1 1 1024 14× 14× 1024
Max Pool 2 2 0 1024 7× 7× 1024
Fully Connected 1× 1× 1000

Figure 13.11: Layers of a Convolutional Neural Network

The first layer is a convolutional layer, consisting of 64 filters, each with
three channels, as would be the case for any color-image processor. The filters
are 3-by-3, and the stride is 1, so every 3-by-3 square of the image is an input
to the filter. There is one unit of zero-padding, so the number of outputs of
this layer equals the number of inputs. Further, notice that we can view the
output as another 224-by-224 array. Each element of this array consists of 64
filters, each of which is a 3-channel pixel.

The output of the first layer is fed to a max-pool layer, in which we divide
the 224-by-224 array into 2-by-2 squares (because both the size and stride are
2). Thus, the 224-by-224 array has become a 112-by-112 array, and there are
still the same 64 filters.

At the third layer, which is again convolutional, we take the 112-by-112
array of pixels from the second layer as input. This layer has more filters
than the first layer – 128 to be exact. The intuitive reason for the increase is
that the first layer recognizes very simple structures, like edges, and there are
not too many different simple structures. However, the third layer should be
recognizing somewhat more complex features, and these features can involve a
6-by-6 square of the input image, because of the pooling done at the second
layer. Similarly, each subsequent convolutional layer takes inputs from the

9K. Simonyan and A. Zussman,“Very Deep Convolutional Networks for Large-Scale Image
Recognition,” arXiv:1409–1556v6.

13.4. CONVOLUTIONAL NEURAL NETWORKS 541

How Many Nodes in a Convolutional Layer?

We have referred to a node of a convolutional layer as a “filter.” That
filter may be a single node, or as in Example 13.11, a set of several nodes,
one for each channel. When we train the CNN, we determine weights for
each filter, so there are relatively few nodes. For instance, in the first layer
in Example 13.11, there are 192 nodes, three for each of the 64 filters.
However, when we apply the trained CNN to an input, we apply each
filter to every pixel in the input. Thus, in Example 13.11, each of the 64
filters of the first layer is applied to 224 × 224 = 50, 176 pixels. The key
point to remember is that although a CNN has a succinct representation,
the application of the represented neural net to data requires a significant
amount of computation. The same, by the way, can be said for the other
specialized forms of neural net that we discuss in Section 13.5.

previous pooling layer and its filters can represent structures of progressively
larger sizes and complexities. Thus, the number of filters has been chosen to
double at each convolution layer.

Finally, the eleventh, and last, layer is a fully connected layer. It has 1000
nodes, corresponding to the 1000 images classes we are trying to learn how to
recognize. Being fully connected, each of these 1000 nodes takes all 7× 7× 3 =
147 outputs from the 10th layer; the factor 3 is from the fact that all filters of
the previous layers have three channels. ✷

Designing CNN’s and other deep network architectures is still more art than
science. Over the past few years, however, some rules of thumb have emerged
that are worth keeping in mind:

1. Deep networks that use many convolutional layers, each using many small
filters, are better than shallow networks that use large filters.

2. A simple pattern is to use convolutional layers that preserve the spatial
extent of their input by zero padding, and have size reduction done ex-
clusively by pooling layers.

3. Smaller strides work better in practice than larger strides.

4. It’s very useful to have the input size evenly divisible by 2 many times.

13.4.5 Implementation and Training

An examination of Equation 13.1 (generalized so the filter is f × f rather than
5-by-5) suggests that we can express each entry in the output of the convolution
as the dot product of vectors, followed by a scalar sum. To do so, we must flatten

542 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

the filter F and the corresponding region in the input into vectors. Consider
the convolution of an m×m×1 tensor X (i.e., X is actually an m×m matrix)
with an f × f filter F and bias b, to produce as output the n × n matrix Z.
We now explain how to implement the convolution operation using a single
vector-matrix multiplication.

We first flatten the filter F into a f2 × 1 vector g. We then create matrix
Y from X as follows: each square f × f region of X is flattened into a f2 × 1
vector, and all these vectors are lined up as columns to form a single f2 × n2

matrix Y . Construct the n2 × 1 vector b so that all its entries are equal to the
bias b. Then

z = Y Tg + b

yields a n2 × 1 vector z. Moreover, each element of z is a single element in the
convolution. Therefore, we can rearrange the entries in z into an n× n matrix
Z that gives the output of the convolution.

Notice that the matrix Y is larger than the input X (approximately by a
factor of f2), because each entry of X is repeated many times in Y . Thus,
this implementation uses a lot of memory. However, multiplying a matrix and
a vector is extremely fast on modern hardware such as Graphics Processing
Units (GPU’s), and so it is the method used in practice.

This approach to computing convolutions can easily be extended to the case
of inputs with more than one channel. Moreover, we can also handle the case
where we have k filters rather than just 1. We then need to replace the vector
g with a df2 × k matrix G and use a larger matrix Y (df2 × n2). We also need
to use an n2 × k bias matrix B, where each column repeats the bias term of
the corresponding filter. Finally, the output of the convolution is expressed by
an n2 × k matrix C, with a column for the output of each filter, where:

C = Y TF +B

We have explained how to perform the forward pass through the convolu-
tional layer. During training, we shall need to backpropagate through the layer.
Since each entry in the output of convolution is a dot product of vectors followed
by a sum, we can use the techniques from Section 13.3.3 to compute deriva-
tives. It turns out that the derivative of a convolution can also be expressed as
a convolution, but we shall not go into the details here.

13.4.6 Exercises for Section 13.4

Exercise 13.4.1 : Suppose images are 512-by-512, and we use a filter that is
3-by-3.

(a) How many responses will be computed for this layer of a CNN?

(b) How much zero padding is necessary to produce an output of size equal
to the input?

13.5. RECURRENT NEURAL NETWORKS 543

(c) Suppose we do not do any zero padding. If the output of one layer is
input to the next layer, after how many layers will there be no output at
all?

Exercise 13.4.2 : Repeat Exercise 13.4.1(a) and (c) for the case when there is
a stride of three.

Exercise 13.4.3 : Suppose we have the output of an m-by-m convolutional
layer with k filters, each having d channels. These outputs are fed to a pooling
layer with size f and stride s. How many output values does the pooling layer
produce?

Exercise 13.4.4 : For this exercise, assume that inputs are single bits 0 (white)
and 1 (black). Consider a 3-by-3 filter, whose weights are wij , for 0 ≤ i ≤ 2 and
0 ≤ j ≤ 2, and whose bias is b. Suggest wieghts and bias so that the output of
this filter would detect the following simple features:

(a) A vertical boundary, where the left column is 0, and the other two columns
are 1.

(b) A diagonal boundary, where only the triangle of three pixels in the upper
right corner are 1.

(c) a corner, in which the 2-by-2 square in the lower right is 0 and the other
pixels are 1.

13.5 Recurrent Neural Networks

Just as CNN’s are a specialized family of neural networks for processing 2-
dimensional image data, recurrent neural networks (RNN’s) are networks spe-
cially designed for processing sequential data. Sequential data naturally arises
in many settings: a sentence is a sequence of words; a video is a sequence of
images; a stock market ticker is a sequence of prices.

Consider a simple example from the field of language processing. Each input
is a sentence, modeled as a sequence of words. After processing each prefix of
the sequence, we would like to predict the next word in the sentence; the output
at each step is a probability vector across words. Our example suggests two
key design considerations:

1. The output at each point depends on the entire prefix of the sentence
until that point, and not just the last word. The network needs to retain
some “memory” of the past.

2. The underlying language model does not change across positions in the
sequence, so we should use the same parameters (weights for each of the
nodes) at each position.

544 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

s

x

y

V

U

s

x

y

V

U

s

x

y

s s

x

y

V

U

W

n

n

n

W V

U

W W W

(b) The unrolled RNN of length (a) The basic unit of an RNN. n.

o o o
0

1

1

1

2

2

2

Figure 13.12: RNN architecture

These considerations lead naturally to a recurrent network model, where we
perform the same operation at each step, with the input to each step being
dependent upon the output from prior steps. Figure 13.12 shows the structure
of a typical recurrent neural network. The input is a sequence x1,x2, . . . ,xn,
and the output is also a sequence y1,y2, . . . ,yn. In our example, each input
xi represents a word, and each output yi is a probability vector for the next
word in the seentence. The input xi is typically encoded as a 1-hot vector –
a vector of length equal to the number of possible words,10 with a 1 in the
position corresponding to the input word and a 0 in all other positions. There
are two important difference between a general neural network and the RNN:

1. The RNN has inputs at all (or almost all) layers, and not just at the first
layer.

2. The weights at each of the first n layers are constrained to be the same;
these weights are the matrices U and W in Equation 13.5 below. Thus,
each of the first n layers has the same set of nodes, and correspond-
ing nodes from each of the layers share weights (and are thus really the
same node), just as nodes of a CNN representing different locations share
weights and are thus really the same node.

At each step t, we have a hidden state vector st that functions as the memory
in which the network encodes information about the prefix of the sequence it
has seen. The hidden state at time t is a function of the input at time t and
the hidden state at time t− 1:

st = f(Uxt +Wst−1 + b) (13.5)

10Since there could in principle be an infinite number of words, we might in practice devote
components of the vector only to the most common words or the words that are most impor-
tant in the application at hand. Other words would all be represented by a single additional
component of the vector.

13.5. RECURRENT NEURAL NETWORKS 545

Here f is a nonlinear activation function such as tanh or sigmoid. U and W are
matrices of weights, and b is a vector of biases. We define s0 to be a vector of
all zeros. The output at time t is a function of the hidden state at time t, after
being transformed by a parameter matrix V and an activation function g:

yt = g(V st + c)

In our example, g might be the softmax function to ensure that the output is a
valid probability vector.

The RNN in Figure 13.12 has an output at each time step. In some appli-
cations, such as machine translation, we need just a single output at the end of
each sentence. In such cases, the RNN’s single output is further processed by
one or more fully-connected layers to generate the final output.

It is simplest to assume that our RNN’s inputs are fixed-length sequences
of length n. In this case, we simply unroll the RNN to contain n time steps.
In practice, many applications have to deal with variable-length sequences e.g.,
sentences of varying lengths. There are two approaches to deal with this situa-
tion:

1. Zero-padding. Fix n to be the longest sequence we process, and pad out
shorter sequences to be length n.

2. Bucketing. Group sequences according to length, and build a separate
RNN for each length.

A combination of these two approaches is used. We can create a bucket for a
small number of different lengths, and assign a sequence to the bucket of the
shortest length that is at least as long as the sequence. Then, within a bucket
we use padding for sequences that are shorter than the maximum length for
that bucket.

13.5.1 Training RNN’s

We use backpropagation to train an RNN, just as we would any neural network.
Let us work through an example. Suppose our input consists of sequences of
length n. Our network uses the activation function tanh for the state update,
softmax for the output, and the loss function is cross-entropy. Since the network
has several outputs, one at each time-step, we seek to minimize the total error
e, defined as the sum of the losses ei at each time step i:

e =
n
∑

i=1

ei

To simplify notation, we use the following conventions. Suppose x and y are
vectors, and z is a scalar. We define:

dz

dx
= ∇xz

dy

dx
= Jx(y)

546 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

Moreover, supposeW is a matrix, andw is the vector obtained by concatenating
the rows of W . Then:

dz

dW
=

dz

dw
dy

dW
=

dy

dw

These conventions also extend naturally to partial derivatives.
We use backpropagation to compute the gradients of the error with respect

to the network parameters. We focus on de
dW

; the gradients for U and V are
similar, and left as exercises for the reader. It is clear that:

de

dW
=

n
∑

t=1

det
dW

Focusing on step t, we have:

det
dW

=
dst
dW

det
dst

We leave it as an exercise to verify that:

det
dst

= V T(yt − ŷt) (13.6)

Setting Rt =
dst
dW

, we note that st = tanh(zt), where zt = Wst−1 + Uxt + b,
we have:

Rt =
dst
dzt

dzt
dW

It is straightforward to verify that dst

dzt
is the diagonal matrix A defined by:

aij =

{

1− s2ti when i = j

0 otherwise

We should to be careful to note that zt is a function of W both directly and
indirectly, since st−1 also depends on W . So we must express dzt

dW
as a sum of

two terms:
dzt
dW

=
∂zt
∂W

+
∂zt
∂st−1

dst−1

dW

It is easily verified that:
∂zt

∂st−1

= WT

The form of ∂zt

∂W
is a little trickier. It is a matrix B with mostly zero entries,

the nonzero elements being entries from st−1. We leave the computation of B

13.5. RECURRENT NEURAL NETWORKS 547

as an exercise for the reader. Now, noting that dst−1

dW
is just Rt−1, we have the

recurrence:
Rt = A(B +WTRt−1)

Setting Pt = AB and Qt = AWT, we end up with:

Rt = Pt +QtRt−1 (13.7)

We can use this recurrence to set up an iterative evaluation of Rt, and thence
de
dW

. We initialize the iteration by setting R0 to the matrix with all zeros. This
iterative method for computing the gradients of an RNN is called Backpropa-

gation Through Time (BPTT), since it reveals the effects of earlier time-steps
on later time-steps.

13.5.2 Vanishing and Exploding Gradients

RNN’s are a simple and appealing model for learning from sequences, and
the BPTT algorithm is straightforward to implement. Unfortunately, RNN’s
have a fatal flaw that limits their use in many practical applications. They
are effective only at learning short-term connections between nearby elements
in the sequence and ineffective at learning long-distance connections. Long-
distance connections are crucial in many applications; for example, there can
be an arbitrary number of words or clauses separating a verb or a pronoun from
the subject with which it is associated.

In order to understand the cause of this limitation, let us unroll Equa-
tion 13.7:

Rt = Pt +QtRt−1

= Pt +Qt(Pt−1 +Qt−1Rt−2)

= Pt +QtPt−1 +QtQt−1Rt−2

. . .

Ultimately yielding:

Rt = Pt +

t−1
∑

j=0

Pj

t
∏

k=j+1

Qk (13.8)

From Equation 13.8, it is clear that the contribution of step i to Rt is given by:

Ri
t = Pi

t
∏

k=i+1

Qk (13.9)

Equation 13.9 includes the product of several matrices that look like diagonal
matrix A. Each entry in A is strictly less than 1. Just as the product of many
numbers, each strictly less than 1, approaches zero as we add more multipli-
cands, the term

∏t

k=i+1
Qk approaches zero for i ≪ t. In other words, the

gradient at step t is determined entirely by the preceding few time steps, with

548 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

very little contribution from much earlier time steps. This phenomenon is called
the problem of vanishing gradients.

Equation 13.9 results in vanishing gradients because we used the tanh ac-
tivation function for state update. If instead we use other activation functions
such as ReLU, we end up with the product of many matrices with large entries,
resulting in the problem of exploding gradients. Exploding gradients are easier
to handle than vanishing gradients, because we can clip the gradient at each
step to lie within a fixed range. However, the resulting RNN’s still have trouble
learning long-distance associations.

13.5.3 Long Short-Term Memory (LSTM)

The LSTM model is a refinement of the basic RNN model to address the prob-
lem of learning long-distance associations. In the past few years, LSTM has
become popular as the de-facto sequence-learning model, and has been used
with success in many applications. Let us understand the intuition behind the
LSTM model before we describe it formally. The main elements of the LSTM
model are:

1. The ability to forget information by purging it from memory. For example,
when analyzing a text we might want to discard information about a
sentence when it ends. Or when analyzing a the sequence of frames in a
movie, we might want to forget about the location of a scene when the
next scene begins.

2. The ability to save selected information into memory. For example, when
we process product reviews, we might want to save only words expressing
opinions (e.g., excellent, terrible) and ignore other words.

3. The ability to focus only on the aspects of memory that are immediately
relevant. For example, focus only on information about the characters of
the current movie scene, or only on the subject of the sentence currently
being analyzed. We can implement this focus by using a 2-tier archi-
tecture: a long-term memory that retains information about the entire
processed prefix of the sequence, and a working memory that is restricted
to the items of immediate relevance.

The RNN model has a single hidden state vector st at time t. The LSTM
model adds an additional state vector ct, called the cell state, for each time t.
Intuitively, the hidden state corresponds to working memory and the cell state
corresponds to long-term memory. Both state vectors are of the same length,
and both have entries in the range [−1, 1]. We may imagine the working memory
having most of its entries near zero with only the relevant entries turned “on.”

The architectural ingredient that enables the ability to forget, save, and
focus is the gate. A gate g is just a vector of the same length as a state vector

13.5. RECURRENT NEURAL NETWORKS 549

s; each of the gate’s entries is between 0 and 1. The Hadamard product11 s ◦ g
allows us to selectively pass through certain parts of the state while filtering out
others. Usually, a gate vector is created by a linear combination of the hidden
state and the current input. We then apply a sigmoid function to “squash” its
entries to lie between 0 and 1. In general, an LSTM may use several different
kinds of gate vectors, each for a different purpose. At time t, we can create a
gate g as follows:

g = σ(Wst−1 + Uxt + b)

Here W and U are weight matrices and b is a bias vector.
At time t, we first compute a candidate state update vector ht based on the

previous hidden state and the current input:

ht = tanh(Whst−1 + Uhxt + bh) (13.10)

Note that W , U , and b with subscript h are two weight matrices and a bias
vector that we learn and use for just the purpose of computing ht for each t.

We also compute two gates, the forget gate ft and the input gate it. The
forget gate determines which aspects of the long-term memory we retain. The
input gate determines which parts of the candidate state update to save into the
long-term memory. These gates are computed using different weight matrices
and bias vectors, which also must be learned. We indicate these matrices and
vector with subscripts f and i, respectively.

ft = σ(Wfst−1 + Ufxt + bf) (13.11)

it = σ(Wist−1 + Uixt + bi) (13.12)

We update the long-term memory using the gates and the candidate update
vector as follows:12

ct = ct−1 ◦ ft + ht ◦ it (13.13)

Now that we have updated the long-term memory, we need to update the work-
ing memory. We do this in two steps. The first step is to create an output gate

ot. The second step is to apply this gate to the long-term memory, followed by
a tanh activation:13

ot = σ(Wost−1 + Uoxt + bo) (13.14)

st = tanh(ct ◦ ot) (13.15)

11The Hadamard product of vectors [x1, x2, . . . , xn] and [yq, y2, . . . , yn] is the vector whose
components are the products of the corresponding components of the two argument vectors,
that is, [x1y1, x2y2, . . . , xnyn]. The same operation may be applied to any matrices that have
the same dimensions.

12Technically, an entry of 1 in the forget gate results in retaining the corresponding memory
entry; so the forget gate should really be called the remember gate. Similarly, the input gate
might be better named the save gate. Here we follow the naming convention commonly used
in the literature.

13Once again, the output gate might be better named the focus gate since it focuses the
working memory on certain aspects of the long-term memory.

550 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

Here, we use subscript o to indicate another pairs of weight matrices and a bias
vector that must be learned.

Finally, the output at time t is computed in exactly the same manner as the
RNN output:

yt = g(V st + d) (13.16)

where g is an activation function, V is a weight matrix and d is a bias vector.

Equations 13.10 through 13.16 describe the state update operations at a
single time step t of an LSTM. We can think of plain RNN as a special case
of LSTM. When we set the forget gate to all 0’s (so we throw away all prior
long-term memory) and the input gate to all 1’s (save the entire candidate state
update), and the output gate to all 1’s (working memory is same as long-term
memory), we get something that looks very close to an RNN, the only difference
being an extra tanh factor.

The ability to selectively forget allows LSTM’s to avoid the vanishing-
gradient problem at the expense of introducing many more parameters than
vanilla RNN’s. While we will not provide a rigorous proof here, we note that the
key to avoiding vanishing gradients is the long-term memory update in Equa-
tion 13.13. Several variations of the basic LSTM model have been proposed;
the most common variant is the gated recurrent Unit (GRU) model, which uses
a single state vector instead of two state vectors (long-term and short-term).
A GRU has fewer parameters than an LSTM and might be suitable in some
situations with smaller data sets.

13.5.4 Exercises for Section 13.5

Exercise 13.5.1 : In this exercise, you are asked to design the input weights
for one or more nodes of the hidden state of an RNN. The input is a sequence
of bits, 0 or 1 only.14 Note that you can use other nodes to help with the node
requested. Also note that you can apply a transformation to the output of the
node so a “yes” answer has one value and a “no” answer has another.

(a) A node to signal when the input is 1 and the previous input is 0.

! (b) A node to signal when the last three inputs have all been 1.

!! (c) A node to signal when the input is the same as the previous input.

! Exercise 13.5.2 : Verify Equation 13.6.

! Exercise 13.5.3 : Give the formulas for the gradients de
dU

and de
dV

for the gen-
eral RNN of Fig.13.12.

14We should understand that RNN’s, like any neural network, is to be learned from data,
not designed as we are suggesting you do here.

13.6. REGULARIZATION 551

13.6 Regularization

Thus far, we have presented our goal as one of minimizing loss (i.e., prediction
error) on the training set. Gradient descent and stochastic gradient descent
help us achieve this objective. In practice, the real objective of training is
to minimize the loss on new and hitherto unseen inputs. Our hope is that
our training set is representative of unknown future inputs, so a low loss on the
training set translates into good performance on new inputs. Unfortunately, the
trained model sometimes learns idiosyncrasies of the training data that allow
it have low training loss, but not generalize well to new inputs – the familiar
problem of overfitting.

How can we tell if a model has overfit? In general, we split the available
data into a training set and a test set. We train the model using only the
training-set data, withholding the test set. We then evaluate the performance
of the model on the test set. If the model performs much worse on the test set
than on the training set, we know the model has overfit. Assuming data points
are independent of one another, we can pick a fraction of the available data
points at random to form the test set. A common ratio for the training:test
split is 80:20. i.e, 80% of the data for training and 20% for test. We have to
be careful, however: in sequence-learning problems (e.g., modeling time series),
the state of the sequence at any point in time encodes information about the
past. In such cases the final piece of the sequence is a better test set.

Overfitting is a general problem that affects all machine-learning models.
However, deep neural networks are particularly susceptible to overfitting, be-
cause they use many more parameters (weights and biases) than other kinds of
models. Several techniques have been developed to reduce overfitting in deep
networks, usually by trading higher training error for better generalization. The
process is referred to as model regularization. In this section we describe some
of the most important regularization methods for deep learning.

13.6.1 Norm Penalties

Gradient descent is not guaranteed to learn parameters (weights and biases)
that reduce the training loss to an absolute minimum. In practice, the pro-
cedure learns parameters that correspond to a local minimum in the training
loss. There are usually many local minima, and some might lead to better gen-
eralization than others. In practice, it has been observed that solutions where
the learned weights have low absolute values tend to generalize better than
solutions with large weights.

We can force gradient descent to favor solutions with low weight values by
adding a term to the loss function. Suppose w is the vector of all the weight
values in the model, and L0 is loss function used by our model. We define a
new loss function L as follows:

L = L0 + α ‖w‖
2

(13.17)

552 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

The loss function L penalizes large weight values. Here α is a hyperparameter
that trades off between minimizing the original loss function L0 and the penalty
associated with the L2-norm of the weights. Instead of the L2-norm, we could
penalize the L1-norm of the weights:

L = L0 + α
∑

i

|wi| (13.18)

In practice, it is observed that the L2-norm penalty works best for most
applications. The L1-norm penalty is useful in some situations calling for model
compression, because it tends to produce models where many of the weights are
zero.

13.6.2 Dropout

Dropout is a technique that reduces overfitting by making random changes to
the underlying deep neural network. Recall that when we train using stochastic
gradient descent, at each step we sample at random a minibatch of inputs to
process. When using dropout, we also select at random a certain fraction (say
half) of all the hidden nodes from the network and delete them, along with
any edges connected to them. We then perform forward propagation and back-
propagation for the minibatch using this modified network, and update the
weights and biases. After processing the minibatch, we restore all the deleted
nodes and edges. When we sample the next minibatch, we delete a different
random subset of nodes and repeat the training process.

The fraction of hidden nodes deleted each time is a hyperparameter called
the dropout rate. When training is complete, and we actually use the full
network, we need to take into account that the full network contains a larger
number of hidden nodes than the networks used for training. We therefore need
to scale the weight on each outgoing edge from a hidden node by the dropout
rate.

Why does dropout reduce overfitting? Several hypotheses have been put
forward, but perhaps the most convincing argument is that dropout allows a
single neural network to behave effectively as a collection of neural networks.
Imagine that we have a collection of neural networks, each with a different
network topology. Suppose we trained each network independently using the
training data, and used some kind of voting or averaging scheme to create a
higher-level model. Such a scheme would perform better than any of the indi-
vidual networks. The dropout technique simulates this setup without explicitly
creating a collection of neural networks.

13.6.3 Early Stopping

In Section 13.6.1 we suggested iterating through training examples (or mini-
batches) until we reach a local minimum in the loss function. In practice, this
approach leads to overfitting. It has been observed that while the loss on the

13.7. SUMMARY OF CHAPTER 13 553

training set (the training loss) decreases through the training process, the loss
on the test set (the test loss) often behaves differently. The test loss falls dur-
ing the initial part of the training, and then many hit a minimum and actually
increase after a large number of training iterations, even as the training loss
keeps falling.

Intuitively, the point at when the test loss starts to increase is the point at
which the training process has started learning idiosyncrasies of the training
data rather than a generalizable model. A simple approach to avoiding this
problem is to stop the training when the test loss stops falling. There is, how-
ever, a subtle problem with this approach: we might inadvertently overfit to the
test data (rather than to the training data) by stopping training at the point
of minimum test loss. Therefore, the test error no longer is a reliable measure
of the true performance of the model on hitherto unseen inputs.

The usual solution is to use a third subset of inputs, the validation set, to
determine the point at which we stop training. We split the data not just into
training and test sets, but into three groups: training, validation, and test.
Both the validation and test sets are withheld from the training process. When
the loss on the validation set stops decreasing, we stop the training process.
Since the test set has played no role at all in the training process, the test error
remains a reliable indicator of the true performance of the model.

13.6.4 Dataset Augmentation

The accuracy of most machine-learning models increases when we provide ad-
ditional training data. Usually, larger training sets also lead to less overfitting.
When the actual training data available is limited, we can often create addi-
tional synthetic training examples by applying transformations or adding noise.

For example, consider the digit-classification problem we encountered in
Example 13.7. It is clear that if we rotate an image corresponding to a digit
by a few degrees, it still remains an image of the same digit. We can augment
the training data by systematically applying transformations of this kind. One
way to think of this process is as a way to encode additional domain knowledge
(e.g., a slightly distorted image of a cat is still an image of a cat).

13.7 Summary of Chapter 13

✦ Neural Nets : A neural net is a collection of perceptrons (nodes), usually
organized in layers, where the outputs from one layer provide inputs to
the next layers. The first (inout) layer takes external inputs, and the
last (output) layer indicates the class of the input. Other layers in the
middle are called hidden layers and generally are trained to recognize
intermediate concepts needed to determine the output.

✦ Types of Layers : Many layers are fully connected, meaning that each node
in the layer has all the nodes of the previous layer as inputs. Other layers

554 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

are pooled, meaning that the nodes of the previous layer are partitioned,
and each node of this layer takes as input only the nodes of one block
of the partition. Convolutional layers are also used, especially in image
processing applications.

✦ Convolutional Layers : Convolutional layers can be viewed as if their nodes
were organized into a two-dimensional array of pixels, with each pixel
represented by the same collection of nodes. The weights on corresponding
nodes from different pixels must be the same, so they are in effect the same
node, and we need learn only one set of weights for each family of nodes,
one from each pixel.

✦ Activation Functions : The output of a node in a neural net is determined
by first taking the weighted sum of its inputs, using the weights that are
learned during the process of training the net. An activation function
is then applied to this sum. Common activation functions include the
sigmoid function, the hyperbolic tangent, softmax, and various forms of
linear recified unit functions.

✦ Loss Functions : These measure the difference between the output of the
net and the correct output according to the training set. Commonly used
loss functions include squared-error loss, Huber loss, classification loss,
and cross-entropy loss.

✦ Training a Neural Net : We train a neural net by repeatedly computing
the output of the net on training examples and computing the average
loss on the training examples. Weights on the nodes are then adjusted by
propagating the loss backward through the net, using the backpropagation
algorithm.

✦ Backpropagation: By choosing our activation functions and loss functions
to be differentiable, we can compute a deriative of the loss function with
respect to every weight in the network. Thus, we can determine the
direction in which to adjust each weight to reduce the loss. Using the chain
rule, these directions can be computed layer-by-layer, from the output to
the input.

✦ Convolutional Neural Networks : These typically consist of a large num-
ber of convolutional layers, along with pooled layers and fully connected
layers. They are well suited to processing images, where the first convolu-
tional layers recognize simple features, such as boundries, and later layers
recognize progressively more complex features.

✦ Recurrent Neural Networks : These are designed to recognize sequences,
such as sentences (sequences of words). There is one layer for each position
in the sequence, and the nodes are divided into families, which each have
one node at each layer. The nodes of a family are constrained to have

13.8. REFERENCES FOR CHAPTER 13 555

the same weights, so the training process therefore needs to deal with a
relatively small number of weights.

✦ Long Short-Term Memory Networks : These improve on RNN’s by adding
a second state vector – the cell state – to enable some information about
the sequence to be retained, while most information is forgotten after a
while. In addition, we learn gate vectors that control what information is
retained from the input, the state, and the output.

✦ Avoiding Overfitting: There are a number of specialized techniques de-
signed to avoid overfitting a deep network. These include penalizing large
weights, randomly dropping some nodes each time we apply a step of
gradient descent, and use of a validation set to enable us to stop training
when the loss on the validation set bottoms out.

13.8 References for Chapter 13

For information on TensorFlow, see [12]. You can learn about Pytorch at [10]
and about Caffe at [1]. The MNIST database is described in [9].

Backpropagation as the way to train deep neural nets is from [11].
The idea of convolutional neural networks begins with [2], which defined

convolutional layers and pooling layers. However, it was [13] that introduced
the idea of requiring nodes in one convolutional layer to share weights. The
application of these networks to character recognition and other important tasks
is from [8] and [7]. Also see [6] for the application to ImageNet of CNN’s.
ImageNet is available from [5].

Recurrent neural networks first appeared in [4]. Long short-term memory
is from [3].

1. http://caffe2.ai

2. Fukushima, K., “Neocognitron, a self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift of position,”
Biological Cybernetics 36:1 (1980), pp. 193–202.

3. Hochreiter, S. and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation 9:8 (1997), pp. 1735-1780.

4. J. J. Hopfield, “Neural networks and physical systems with emergent col-
lective computational abilities,” Proceedings of the National Academy of

Sciences 79:8 (1982), pp. 2554-2558.

5. http://www.image-net.org.

6. Krizhevsky, A, I. Sutskever, and G.E. Hinton, “Image classification with
deep convolutional neural networks,” Advances in Neural Information

Processing Systems, pp. 1097–1105, 2012.

556 CHAPTER 13. NEURAL NETS AND DEEP LEARNING

7. LeCun, Y. and Y. Bengio, “Convolutional networks for images, speech,
and time series,” The Handbook of Brain Theory and Neural Networks

(M. Arbib, ed.) 3361:10 (1995).

8. LeCun, Y., B. Boser, J.S. Denker, D. Henderson, R.E. Howard, and
W. Hubbard, “Backpropagation applied to handwritten zip code recogni-
tion,” Neural Computation 1:4 (1989) pp. 541–551.

9. LeCun, Y., C. Cortes, and C.J.C. Burges, “The MNIST database of hand-
written digits,” http://http://yann.lecun.com/exdb/mnist/

10. http://pytorch.org

11. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning representa-
tions by back-propagating errors, Nature 323 (1986), pp. 533–536.

12. http://www.tensorflow.org

13. Waibel, A., T. Hanazawa, G.E. Hinton, K. Shikano, and K.J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE Trans-

actions on Acoustics, Speech, and Signal Processing 37:3 (1989), pp. 328–
339.

