



# Analysis of Large Scale Visual Recognition

Fei-Fei Li and Olga Russakovsky













Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei Detecting avocados to zucchinis: what have we done, and where are we going? ICCV 2013 <a href="http://image-net.org/challenges/LSVRC/2012/analysis">http://image-net.org/challenges/LSVRC/2012/analysis</a>

Backpack



**Flute** 



Matchstick



Sea lion



Strawberry



Backpack



Traffic light



Bathing cap



Racket







## PASCAL VOC 2005-2012

20 object classes

**22,591** images

Classification: person, motorcycle





**Action: riding bicycle** 

Everingham, Van Gool, Williams, Winn and Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

# IMAGENET Large Scale Visual Recognition Challenge (ILSVRC) 2010-2012

20 object classes 22,591 images

**1000** object classes **1,431,167** images



http://image-net.org/challenges/LSVRC/{2010,2011,2012}

## Variety of object classes in ILSVRC

#### **PASCAL**



birds

bottles

cars

bird



bottle



car

#### **ILSVRC**











flamingo

cock

ruffed grouse

quail

partridge











pill bottle

beer bottle wine bottle water bottle pop bottle . . .











race car

wagon

minivan

jeep

cab

# Variety of object classes in ILSVRC



Steel drum



#### Steel drum



#### **Output:**

Scale

T-shirt
Steel drum
Drumstick
Mud turtle



#### **Output:**

Scale
T-shirt
Giant panda
Drumstick
Mud turtle



Steel drum



#### **Output:**

Scale

T-shirt
Steel drum
Drumstick
Mud turtle



#### **Output:**

Scale T-shirt Giant panda Drumstick Mud turtle



Accuracy = 
$$\frac{1}{100,000}$$
  $\frac{100,000}{\text{images}}$ 

1[correct on image i]



Accuracy (5 predictions/image)



#### Steel drum



#### Output



Steel drum



Output (bad localization)



Output



Output (bad classification)







#### Steel drum



#### Output



Accuracy = 
$$\frac{1}{100,000}$$

100,000 images 1[correct on image i]



# What happens under the hood?

- ILSVRC-500 (2012) dataset
- Leading algorithms

- ILSVRC-500 (2012) dataset
- Leading algorithms

- A closer look at small objects
- A closer look at textured objects

- ILSVRC-500 (2012) dataset
- Leading algorithms

- A closer look at small objects
- A closer look at textured objects

# **ILSVRC (2012)**



# ILSVRC-500 (2012)



# ILSVRC-500 (2012)



#### Object scale (fraction of image area occupied by target object)

| ILSVRC-500 (2012) | 500 object categories | 25.3% |
|-------------------|-----------------------|-------|
| PASCAL VOC (2012) | 20 object categories  | 25.2% |

## Chance Performance of Localization







N = 9 here

### Chance Performance of Localization



N = 9 here

$$\text{CPL} = \frac{\sum_{i} \sum_{j \neq i} IOU(B_i, B_j) \ge 0.5}{N(N-1)}$$

### Chance Performance of Localization







N = 9 here

$$CPL = \frac{\sum_{i} \sum_{j \neq i} IOU(B_i, B_j) \ge 0.5}{N(N-1)}$$

| ILSVRC-500 (2012) | 500 object categories | 8.4% |
|-------------------|-----------------------|------|
| PASCAL VOC (2012) | 20 object categories  | 8.8% |

## Level of clutter

#### Steel drum



- Generate candidate object regions using method of

Selective Search for Object Detection vanDeSande et al. ICCV 2011

- Filter out regions inside object
- Count regions

## Level of clutter

#### Steel drum



- Generate candidate object regions using method of

Selective Search for Object Detection vanDeSande et al. ICCV 2011

- Filter out regions inside object
- Count regions

| ILSVRC-500 (2012) | 500 object categories | 128 ± 35 |
|-------------------|-----------------------|----------|
| PASCAL VOC (2012) | 20 object categories  | 130 ± 29 |

- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms

- A closer look at small objects
- A closer look at textured objects

## SuperVision (SV)

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton (Krizhevsky NIPS12)

Image classification: Deep convolutional neural networks

- 7 hidden "weight" layers, 650K neurons, 60M parameters, 630M connections
- Rectified Linear Units, max pooling, dropout trick
- Randomly extracted 224x224 patches for more data
- Trained with SGD on two GPUs for a week, fully supervised

**Localization:** Regression on (x,y,w,h)

## SuperVision (SV)

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton (Krizhevsky NIPS12)

Image classification: Deep convolutional neural networks

- 7 hidden "weight" layers, 650K neurons, 60M parameters,
   630M connections
- Rectified Linear Units, max pooling, dropout trick
- Randomly extracted 224x224 patches for more data
- Trained with SGD on two GPUs for a week, fully supervised

**Localization:** Regression on (x,y,w,h)

## OXFORD\_VGG (VGG)

Karen Simonyan, Yusuf Aytar, Andrea Vedaldi, Andrew Zisserman

Image classification: Fisher vector + linear SVM (Sanchez CVPR11)

- Root-SIFT (Arandjelovic CVPR12), color statistics, augmentation with patch location (x,y) (Sanchez PRL12)
- Fisher vectors: 1024 Gaussians, 135K dimensions
- No SPM, product quantization to compress
- Semi-supervised learning to find additional bounding boxes
- 1000 one-vs-rest SVM trained with Pegasos SGD
  - 135M parameters!

**Localization:** Deformable part-based models (Felzenszwalb PAMI10), without parts (root-only)

- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms: SV and VGG

- A closer look at small objects
- A closer look at textured objects

### Results on ILSVRC-500



#### Classification-only





#### Classification-only









## Cumulative accuracy across scales





### Classification+Localization



## Cumulative accuracy across scales





#### Classification+Localization



- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms: SV and VGG

- SV always great at classification, but VGG does better than SV at localizing small objects
- A closer look at textured objects

- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms: SV and VGG

- SV always great at classification, but VGG does
   better than SV at localizing small objects
- A closer look at textured objects

- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms: SV and VGG

- SV always great at classification, but VGG does better than SV at localizing small objects
- A closer look at textured objects

## Textured objects (ILSVRC-500)

Screwdriver Hatchet Ladybug Honeycomb

Amount of texture

Low

High

## Textured objects (ILSVRC-500)



|           | No texture | Low texture | Medium texture | High texture |
|-----------|------------|-------------|----------------|--------------|
| # classes | 116        | 189         | 143            | 52           |

## Textured objects (ILSVRC-500)





Low

Amount of texture

High

|              | No texture | Low texture | Medium texture | High texture |
|--------------|------------|-------------|----------------|--------------|
| # classes    | 116        | 189         | 143            | 52           |
| Object scale | 20.8%      | 23.7%       | 23.5%          | 25.0%        |

## Textured objects (416 classes)



| 9 |
|---|
|   |

Low

High

|              | No texture | Low texture            | Medium texture         | High texture           |
|--------------|------------|------------------------|------------------------|------------------------|
| # classes    | 116        | <del>189</del> 149     | <del>143</del> 115     | <del>52</del> 35       |
| Object scale | 20.8%      | <del>23.7%</del> 20.8% | <del>23.5%</del> 20.8% | <del>25.0%</del> 20.8% |

## Localizing textured objects

(416 classes, same average object scale at each level of texture)



## Localizing textured objects

(416 classes, same average object scale at each level of texture)



## Localizing textured objects

(416 classes, same average object scale at each level of texture)



- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms: SV and VGG

- SV always great at classification, but VGG does better than SV at localizing small objects
- Textured objects easier to localize, especially for SV

# ILSVRC 2013 with large-scale object detection

Fully annotated 200 object classes across 60,000 images



Allows evaluation of generic object detection in cluttered scenes at scale

http://image-net.org/challenges/LSVRC/2013/

# ILSVRC 2013 with large-scale object detection

| Statistics     |         | PASCAL VOC 2012 | ILSVRC 2013 |
|----------------|---------|-----------------|-------------|
| Object classes |         | 20 1            | .0x 200     |
| Training       | Images  | 5.7K            | 395K        |
|                | Objects | 13.6K <b>2</b>  | 345K        |
| Validation     | Images  | 5.8K            | 20.1K       |
|                | Objects | 13.8K           | 4x 55.5K    |
| Testing        | Images  | 11.0K           | 40.1K       |
|                | Objects |                 |             |

More than 50,000 person instances annotated

http://image-net.org/challenges/LSVRC/2013/

# ILSVRC 2013 with large-scale object detection

159 downloads so far:

http://image-net.org/challenges/LSVRC/2013/

- Submission deadline Nov. 15<sup>th</sup>
- ICCV workshop on December 7<sup>th</sup>, 2013
- Fine-Grained Challenge 2013:

https://sites.google.com/site/fgcomp2013/

