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Abstract

We develop and analyze a model of random choice and random expected utility. A

decision problem is a finite set of lotteries describing the feasible choices. A random choice

rule associates with each decision problem a probability measure over choices. A random

utility function is a probability measure over von Neumann-Morgenstern utility functions.

We show that a random choice rule maximizes some random utility function if and only

if it is mixture continuous, monotone (the probability that a lottery is chosen does not

increase when other lotteries are added to the decision problem), extreme (lotteries that

are not extreme points of the decision problem are chosen with probability zero), and linear

(satisfies the independence axiom).
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1. Introduction

In this paper, we develop and analyze a model of random choice and random ex-

pected utility. Modeling behavior as stochastic is a useful and often necessary device in

the econometric analysis of demand. The choice behavior of a group of subjects with iden-

tical characteristics each facing the same decision problem presents the observer with a

frequency distribution over outcomes. Typically, such data is interpreted as the outcome

of independent random choice by a group of identical individuals. Even when repeated

decisions of a single individual are observed, choice behavior may exhibit variation and

therefore suggest random choice by the individual.

Let Y be a set of choice objects. A finite subset D of Y represents a decision problem.

The individual’s behavior is described by a random choice rule ρ which assigns to each

decision problem a probability distribution over feasible choices. The probability that the

agent chooses x ∈ D is denoted ρD(x). A random utility function is a probability measure

µ on some set of utility functions U ⊂ {u : Y → IR}. The random choice rule ρ maximizes

the random utility function µ if ρD(x) is equal to the µ−probability of choosing some
utility function u that attains its maximum in D at x (for all D,x).

Modeling random choice as a consequence of maximizing a random utility function is

common practice in both empirical and theoretical work. When the frequency distribution

of choices describes the behavior of a group of individuals, the corresponding random utility

function is interpreted as a random draw of a member of the group (and hence of his utility

function). When the data refers to the choices of a single individual, the realization of the

individual’s utility function can be interpreted as the realization of the individual’s private

information. In the analysis of preference for flexibility (Kreps (1979), Dekel, Lipman and

Rustichini’s (2001)) the realization of the agent’s random utility function corresponds the

realization of his subjective (emotional) state.

In all these cases, the random utility function is observable only through the result-

ing choice behavior. Hence, testable hypotheses must be formulated with respect to the

random choice rule ρ. A central objective of the random choice literature has been to

identify those random choice rules that are consistent with random utility maximization.
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This amounts to answering the following question: what conditions on ρ are necessary and

sufficient for there to exist a random utility function µ that is maximized by ρ?

We answer this question for random expected utility maximization. Hence, the set U

consists of all von Neumann-Morgenstern utility functions. In many applications, economic

agents choose among risky prospects. For example, understanding random choice in the

context of the portfolio choice problem requires interpreting choice behavior as a stochastic

version of a particular theory of behavior under risk. Our theorem enables us to relate

random choice to the simplest theory of choice under uncertainty; expected utility theory.

The choice objects in our model are lotteries over a finite set of prizes. We identify

four properties of random choice rules that ensure its consistency with random expected

utility maximization. These properties are (i) monotonicity, (ii) mixture continuity, (iii)

linearity, and (iv) extremeness.

A random choice rule is monotone if the probability of choosing x from D is at least

as high as the probability of choosing x from D ∪ {y}. Thus, monotonicity requires that
the probability of choosing x cannot increase as more alternatives are added to the choice

problem.1

A random choice rule is mixture continuous if it satisfies a stochastic analogue of

the von Neumann-Morgenstern continuity assumption. We also use a stronger continuity

assumption (continuity) which requires that the random choice rule is a continuous function

of the decision problem.

A random choice rule is linear if the probability of choosing x from D is the same as

the probability of choosing λx+ (1− λ)y from λD+ (1− λ){y}. Linearity is the analogue
of the independence axiom in a random choice setting.

A random choice rule is extreme if, with probability one, the chosen lottery is an

extreme point of the decision problem. Extreme points are those elements of the choice

problem that are unique optima for some von Neumann-Morgenstern utility function.

A regular random utility function is one where in any decision problem, with proba-

bility 1, the realized utility function has a unique maximizer.2 Hence, for a regular random

utility function ties are 0-probability events.

1 Monotonicity is a well known implication of maximization of a random utility function. It is often
referred to as regularity (Luce and Suppes (1965)).

2 In the psychology literature this property is referred to as non-coincident, see Falmagne (1983).
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Theorem 2 is our main result. It says that a random choice rule maximizes some

regular (finitely additive) random utility function if and only if the random choice rule is

monotone, mixture continuous, linear and extreme. Hence, monotonicity, mixture con-

tinuity, linearity, and extremeness are the only implications of random expected utility

maximization.

Theorem 2 permits random utility functions that are not countably additive. In

Theorem 3 we characterize the behavior generated by countably additive random utility

functions. Theorem 3 says that a random choice rule maximizes some regular, count-

ably additive, random utility function if and only if the random choice rule is monotone,

continuous, linear and extreme. Hence, if we add the requirement that the random util-

ity function is countably additive then the maximizing random choice rule is continuous

(rather than mixture continuous). Conversely, if we add the requirement that the ran-

dom choice rule is continuous (which implies mixture continuity) then the corresponding

random utility function is countably additive.

A deterministic utility function is a special case of a random utility function. Clearly,

it is not regular since there are choice problems for which ties occur with positive prob-

ability. The difficulty with non-regular random utility functions is that the associated

choice behavior is ambiguous. In section 5, we show that this difficulty can be overcome

by adding a tie-breaking rule. Theorem 5 demonstrates that our tie-breaking rules lead

to well defined random choice rules that are monotone, mixture continuous, linear and

extreme. Hence, the maximizers of non-regular random utilities are identified by the same

conditions as the maximizers of regular random utilities. In this sense, the restriction to

regular random utilities is without loss of generality. Put differently, for any maximizer ρ

of a non-regular random utility function there is a regular random utility function µ0 such

that ρ also maximizes µ0 (Theorem 7). To achieve this generality it is essential that we

allow random utilities that are not countably additive: Theorem 8 shows that - except for

trivial cases - imposing a tie-breaker on a non-regular random utility yields a regular but

only finitely additive random utility function.

Studies that investigate the empirical validity of expected utility theory predominantly

use a random choice setting. For example, the studies described in Kahneman and Tversky
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(1979) report frequency distributions of the choices among lotteries by groups of individu-

als. Their tests of expected utility theory focus on the independence axiom. In particular,

the version of the independence axiom tested in their experiments corresponds exactly

to our linearity axiom. It requires that choice frequencies stay unchanged when each al-

ternative is combined with some fixed lottery. Our theorems identify all of implications

of random expected utility maximization that are relevant for the typical experimental

setting.

The related literature on stochastic choice (McFadden and Richter (1991), Falmagne

(1978), Clark (1995)) has focused on deterministic alternatives rather than lotteries. In

the supplement to this paper (Gul and Pesendorfer (2004)) we adapt the analysis found in

the literature to our setting to facilitate a precise comparison of the results.3

McFadden and Richter (1991) consider a setting with a finite set of alternatives.4 They

introduce the axiom of revealed stochastic preference (ARSP) - a stochastic analogue of

the strong axiom of revealed preference - and show that it is necessary and sufficient for a

random choice rule to maximize some regular random utility function. In the supplement

(Gul and Pesendorfer (2004)) we provide an appropriate version of ARSP for the setting

considered in this paper. It is immediate that this axiom is necessary for a random choice

rule to maximize some random utility function. We show that it implies monotonicity,

linearity, extremeness and mixture continuity. Hence, our main theorem implies that

ARSP applied to our setting is equivalent to monotonicity, linearity, extremeness and

mixture continuity.5

Clark (1995) considers a setting that allows for an arbitrary collection of utility func-

tions and decision problems. He introduces an axiom termed “coherency” and shows that

it is necessary and sufficient for a random choice rule to maximize a regular random util-

ity function. Coherency is closely related to a theorem of De Finetti’s which provides a

necessary and sufficient condition for a function defined on a collection of subsets to have

3 In addition to the literature discussed below, there is also an extensive literature on stochastic binary
choice. See Fishburn (1992) for a survey of this literature.

4 McFadden (2003) provides extensions of the results in McFadden and Richter (1991) to the case with
an infinite set of alternatives.

5 Note that ARSP is a condition that is imposed jointly on the space of utility functions and on
the random choice rule. Because we consider von Neumann-Morgenstern utility functions, ARSP implies
linearity and extremeness in our setting.

4



an extension to a finitely additive probability measure on the smallest algebra containing

those subsets. In the supplement (Gul and Pesendorfer (2004)) we apply coherency to our

setting and show that it implies monotonicity, linearity, extremeness and mixture conti-

nuity.6 Clark shows that coherency is necessary and hence our main theorem implies that

monotonicity, mixture continuity, linearity, and extremeness are equivalent to coherency

in our model.

Coherency can also be applied in settings where we only observe the choice behavior

in a subset of the possible decision problems. In that case, coherency is necessary and

sufficient for the implied random utility function to have an extension that is a probability

measure. Thus the observed choice probabilities satisfy coherency if and only if one can

construct a random utility function µ such that the observed behavior is consistent with

µ−maximization. This is in contrast to the conditions given in this paper. A finite data
set may not violate any of our axioms but nevertheless be inconsistent with maximization

of any random utility function.

A third strand of the literature related to our work is Falmagne (1978) and Barbera

and Pattanaik (1986)7. Falmagne studies the case where choice problems are arbitrary

subsets of a finite set of alternatives. His characterization of random choice identifies

a finite number (depending on the number of available alternatives) of non-negativity

conditions as necessary and sufficient for a random choice rule to maximize some regular

random utility function. We can relate our results to those of Falmagne by considering a

finite subset of decision problems. In particular, consider the decision problems consisting

of degenerate lotteries that yield one of the prizes with probability 1. If a random choice

rule on this restricted class of decision problems satisfies Falmagne’s conditions then it can

be extended to a random choice rule on all decision problems that satisfies monotonicity,

mixture continuity, linearity, and extremeness. Our main result implies that the converse

is true as well. Thus, Falmagne’s conditions are necessary and sufficient for a random

choice function over a finite set of prizes to have a mixture continuous, monotone, linear

6 Like ARSP, coherency is a condition that is imposed jointly on the space of utility functions and on
the random choice rule.

7 Barbera and Pattanaik (1986) provide an exposition and refinement of the work of Falmagne (1978)
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and extreme extension to the set of decision problems generated by lotteries over those

prizes.8

ARSP, Coherency and Falmagne’s conditions are complicated restrictions on arbitrary

finite collections of decision problems. This makes them difficult to interpret. In contrast,

monotonicity, linearity and extremeness are simple conditions in that each involves the

comparison of pairs of decision problems. Moreover, each of these axioms is a straightfor-

ward extensions of axioms from the deterministic setting and therefore easy to interpret.

The simplicity of the axioms facilitates the construction of experiments that attempt to fal-

sify the theory.9 In fact, linearity has been tested extensively (see for example, Kahnemann

and Tversky (1979)). We could imagine similar tests for monotonicity and extremeness.

As in the case of linearity one would expect to find circumstances under which our

other assumptions are violated in experimental settings. These violations can be the im-

petus for theories that generalize our model just like violations of linearity have stimulated

theoretical research that generalizes expected utility (see Machina (1989)). To provide

this impetus the axioms must be interpretable and must separate the key ingredients of

the theory. Our axioms accomplish this for a stochastic version of expected utility the-

ory. Violations of linearity or extremeness point to distinct violations of the expected

utility hypothesis. Potentially, these violations could be addressed by generalizing the set

of admissible utility functions. Violations of monotonicity point to a more basic failure

of Chernoff’s postulate 4 (or Sen’s condition α) which requires an optimal choice to re-

main optimal when alternatives are removed from the choice set. Therefore, violations of

monotonicity are inconsistent with maximization of a random utility function even if those

utility functions are allowed to be non-linear.

8 Assuming that Falmagne’s conditions hold for any finite collection of decision problems, Cohen (1980)
extends Falmagne’s model to arbitrary infinite sets of alternatives (maintaining the assumption that deci-
sion problems are finite). In contrast, our model provides an extension of Falmagne’s model to a specific
infinite set - the set of lotteries over a finite set of prizes. Cohen does not place any restriction on the utility
functions while we restrict attention to von Neumann-Morgenstern utility functions. Hence, monotonicity,
mixture continuity, linearity, and extremeness imply that Cohen’s conditions are satisfied in our setting
but the converse is not true. Cohen’s conditions imply monotonicity but not linearity or extremeness.

9 It seems straightforward to construct experiments that test linearity, extremeness or monotonicity.
However, like any continuity assumption, mixture continuity cannot be falsified by a finite data set. Hence,
empirical tests based on our conditions must assume mixture continuity.
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2. Random Choice and Random Utility

There is a finite set of prizes denoted N = {1, 2, . . . , n + 1} for n ≥ 1. The objects
of choice are lotteries over the prizes N . Let P := {x ∈ IRn+1

+ |Pn+1
i=1 xi = 1} be the unit

simplex in IRn+1. We denote with x ∈ P a lottery over N .

A decision problem is a nonempty, finite set of lotteries D ⊂ P . Let D denote the set
of all decision problems. We are concerned with a decision maker who makes stochastic

choices from decision problems. The decision maker is characterized by a random choice

rule that associates each decision problem D with a probability measure over choices.

Let B denote the Borel sets of P and Π be the set of all probability measures on the

measurable space (P,B).

Definition: A random choice rule (RCR) is a function ρ : D→ Π with ρD(D) = 1.

The probability measure ρD describes the agent’s behavior when facing the decision

problem D. We use ρD(B) to denote the probability that the agent chooses a lottery in the

set B ∈ B when faced with the decision problem D and write ρD(x) instead of ρD({x}).
Note that ρD is defined to be a measure on (P,B) rather than on the set of feasible choices
D. Feasibility is ensured by the requirement that the support of ρD is D, i.e., ρD(D) = 1.

The purpose of this paper is to relate random choice rules and the behavior associated

with maximizing a random utility function. We consider von Neumann-Morgenstern utility

functions and therefore each utility function u can be identified with an element of IRn+1.

We write u · x rather than u(x), where u · x = Pn+1
i=1 uixi. Since (u1, . . . , un+1) · x ≥

(u1, . . . , un+1) · y if and only if (u1 − un+1, u2 − un+1, . . . , 0) · x ≥ (u1 − un+1, u2 −
un+1, . . . , 0) · y for all x, y ∈ P , we can normalize the set of utility functions and work

with U := {u ∈ IRn+1 |un+1 = 0}.
Let M(D,u) denote the maximizers of u in the choice problem D. That is,

M(D,u) = {x ∈ D |u · x ≥ u · y ∀y ∈ D}

When the agent faces the decision problem D and the utility function u is realized the

agent must choose an element in M(D,u). Conversely, when the choice x ∈ D is observed

the agent’s utility function must be in the set

N(D,x) := {u ∈ U |u · x ≥ u · y ∀y ∈ D}
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(For x 6∈ D, we set N(D,x) = ∅.)
Let F denote the smallest field (algebra) that contains N(D,x) for all (D,x). A

random utility function is a probability measure defined on (U,F).

Definition: A random utility function (RUF) is a function µ : F → [0, 1] such that

µ(U) = 1 and µ(F ∪ F 0) = µ(F ) + µ(F 0) whenever F ∩ F 0 = ∅ and F,F 0 ∈ F . The RUF
µ is countably additive if

P∞
i=1 µ(Fi) = µ(

S∞
i=1 Fi) whenever Fi, i = 1, . . . is a countable

collection of pairwise disjoint sets in F such that
S∞
i=1 Fi ∈ F .

When we refer to a RUF µ, it is implied that µ is finitely additive but may not be

countably additive. We refer to a countably additive µ as a countably additive RUF.

Example 1: Assume there are two prizes, i.e., n+1 = 2. The set U consists of all the linear

combinations of the vectors (1, 0) and (−1, 0). There are three distinct (von Neumann-
Morgenstern) utility functions, corresponding to the vectors u = (0, 0), u0 = (1, 0), u00 =

(−1, 0). The algebra F consists of all unions of the sets ∅, F0, F1, F−1 where F0 = {(0, 0)},
F1 = {λ(1, 0)|λ > 0} and F−1 = {λ(−1, 0)|λ > 0}. Let µ(F0) = 0, µ(F1) = µ(F−1) = 1/2.

The RUF µ describes an agent who is equally likely to have a strict preference for prize 1

and a strict preference for prize 2.

Example 2: Assume there are three prizes, i.e., n + 1 = 3 and U : {(u, 0)|u ∈ IR2}.
Let Fuv := {α(u, 0) + β(v, 0)|α, β > 0}. The set Fuv is the collection of von Neumann-
Morgenstern utility functions that are positive linear transformations of a strict convex

combinations of (u, 0) and (v, 0). The set Fuu is the collection of utility functions that are

positive linear transformations of (u, 0). Let H := {Fuv|u, v ∈ IR2} ∪ ∅. The algebra F is

the collection of finite unions of sets in H. The following random utility corresponds to the
“uniform distribution” over von Neumann-Morgenstern utility functions. Let µ(Fuv) = 0

if u = λv for some λ ∈ IR and let µ(Fuv) =
1/2π arccos

³
uv

kukkvk
´
if u 6= λv for λ ∈ IR.10 The

RUF µ assigns each Fuv a measure proportional to the angle between the vectors u and v.

A regular RUF is one for which in every decision problem with probability 1 the

realized utility function has a unique maximizer. For x ∈ D, let

N+(D,x) := {u ∈ U |u · x > u · y ∀y ∈ D, y 6= x}
10 k · k denotes the Euclidian norm.
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be the set of utility functions that have x as the unique maximizer in D. (For x 6∈ D,

we set N+(D,x) = ∅.) The set Sx∈DN+(D,x) is the set of utility functions that have a

unique maximizer in D. Proposition 6 shows that F contains N+(D,x) for all (x,D).

Definition: The RUF µ is regular if µ(
S
x∈DN+(D,x)) = 1 for all D ∈ D.

The definition of regularity can be re-stated as

µ(N+(D,x)) = µ(N(D,x))

for all D ∈ D and x ∈ D.

The RUFs in Examples 1 and 2 are regular. In the one-dimensional case (illustrated

in Example 1) the RUF µ is regular if and only if µ(F0) = 0, that is, the utility function

that is indifferent between the two prizes (u = (0, 0)) is chosen with probability zero. In

the two-dimensional case (illustrated in Example 2) the RUF µ is regular if and only if

µ(Fuv) > 0 implies u 6= λv, i.e., the utility functions (v, 0) is not a linear transformation

of (u, 0). Hence, any set Fuu that consists of the positive linear transformations of a single

utility function must have measure zero.11

The RCR ρ maximizes the regular RUF µ if for any x ∈ D, the probability of choosing

x from D is equal to the probability of choosing a utility function that is maximized at x.

Definition: The RCR ρ maximizes the regular RUF µ if ρD(x) = µ(N(D,x)) for all

D ∈ D and x ∈ P .

Below, we describe the maximizing random choice rules for Examples 1 and 2.

Example 1 continued: The regular RUF µ in Example 1 is maximized by the RCR ρ

that chooses each extreme point of every decision problem with equal probability. That

is, for any decision problem D = {x1, ..., xk} with x11 ≤ ... ≤ x1k the lotteries x1 and xk are

each chosen with probability 1/2. (Obviously, if k = 1 then the lottery x1 is chosen with

probability 1.)

11 To see why µ(Fuu) = 0 is necessary for regularity, let ū = (u, 0) and note that we can always find
x, y, x 6= y such that ūx = ūy. If µ(Fuu) > 0 then there is a strictly positive probability of drawing a
utility function that is indifferent between x and y in decision problem D = {x, y}. Hence, µ is not regular.
Sufficiency of the stated condition is a consequence of Lemma 2 in the Appendix.
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Example 2 continued: The regular RUF µ in Example 2 is maximized by the following

RCR ρ. If all choices of the decision problem can be expressed as a convex combination

of two extreme lotteries (and hence the decision problem is one-dimensional12) then each

of the two extreme lotteries is chosen with equal probability. Hence, for one-dimensional

decision problems, Example 2 reduces to Example 1 above. If D is two-dimensional, then

N(D,x) has the form {αu + βv|α ≥ 0, β ≥ 0} for some u, v ∈ IR2. Then, ρD(x) is

proportional to the angle between u and v. More precisely, ρD(x) = µ(Fuv) where µ(Fuv)

is as defined in Example 2 above.

Not all RUF’s are regular. In particular, as illustrated in Example 3 below, determin-

istic choice interpreted as a degenerate RUF is not regular whenever n > 1. In section 5,

we extend the notion of RUF maximization to include non-regular RUFs.

Example 3: For the utility function ū ∈ IRn+1 define µū as follows: µū(F ) = 1 if ū ∈ F

and µū(F ) = 0 if ū /∈ F . The RUF µū corresponds to a deterministic utility function ū.

In the case of two prizes (n+ 1 = 2) the RUF µū is regular if ū 6= (0, 0). When there are
more than two prizes (n + 1 > 2) then µū is not regular irrespective of the choice of ū.

This follows because we can find distinct lotteries x, y such that ūx = ūy and therefore ū

does not have a unique maximizer in the decision problem D = {x, y}.

We conclude this section by showing that there is a one-to-one correspondence between

regular RUFs and their maximizers.

Theorem 1: (i) Every regular µ has a unique maximizer. (ii) For every RCR ρ there is

at most one regular RUF µ such that ρ maximizes µ.

Proof: See Appendix 8.1

Let ρ : D → Π be defined by ρD(B) :=
P

x∈D∩B µ(N(D,x)) for all D ∈ D, B ∈ B.
Since µ is regular, ρ is a well defined RCR. This is the only RCR that satisfies ρD(x) =

µ(N(D,x)) for all D,x and therefore part (i) follows. For part (ii) it suffices to show that

if µ and µ0 are two regular RUFs with µ(N(D,x)) = µ0(N(D,x)) = ρD(x) for all D,x

then µ(F ) = µ0(F ) for all F ∈ F . We prove this result in section 8.1.

12 The dimension of a set is the dimension of its affine hull.
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3. Properties of Random Choice Rules

This section describes the properties of random choice rules that identify random

utility models.

We endow D with the Hausdorff topology. The Hausdorff distance between D and D0

is given by

dh(D,D0) := max{max
x∈D

min
x0∈D0

kx− x0k, max
x0∈D0

min
x∈D

kx− x0k}

This choice of topology implies that when lotteries are added to D that are close to some

x ∈ D then the choice problem remains close to D. We endow Π with the topology of weak

convergence. For any D,D0 ⊂ D and λ ∈ [0, 1], let λD+ (1− λ)D0 := {λx+ (1− λ)y |x ∈
D, y ∈ D0}. Note that if D,D0 ∈ D then λD + (1− λ)D0 ∈ D.

We consider two notions of continuity for RCRs. The weaker notion (mixture con-

tinuity) is analogous to von Neumann-Morgenstern’s notion of continuity for preferences

over lotteries.

Definition: The RCR ρ is mixture continuous if ραD+(1−α)D
0
is continuous in α for all

D,D0 ∈ D.
The stronger notion of continuity requires that the choice rule be a continuous function

of the decision problem.

Definition: The RCR ρ is continuous if ρ : D→ Π is a continuous function.
Continuity implies mixture continuity since αD + (1− α)D0 and βD + (1− β)D0 are

close (with respect to the Hausdorff metric) whenever α and β are close. To see that

continuity is stronger than mixture continuity suppose that D0 is obtained by rotating D.

Mixture continuity permits the probability of choosing x in D to be very different even if

the angle of rotation is very small.

The next property is monotonicity. Monotonicity says that the probability of choosing

an alternative x cannot increase as more options are added to the decision problem.

Definition: The RCR ρ is monotone if x ∈ D ⊂ D0 implies ρD
0
(x) ≤ ρD(x).

Monotonicity is the stochastic analogue of Chernoff’s Postulate 4 or equivalently,

Sen’s condition α, a well-known consistency condition on deterministic choice rules. This
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condition says that if x is chosen from D then it must also be chosen from every subset of

D that contains x. Hence, Chernoff’s Postulate 4 is monotonicity for deterministic choice

rules.13

Our random utility model restricts attention to von Neumann-Morgenstern utility

functions. As a consequence, the corresponding random choice rules must also be linear.

Linearity requires that the choice probabilities remain unchanged when each element x of

the choice problem D is replaced with the lottery λx+ (1− λ)y for some fixed y.

Definition: The RCR ρ is linear if ρλD+(1−λ){y}(λx + (1 − λ)y) = ρD(x) for all x ∈
D,λ ∈ (0, 1).

Linearity is analogous to the independence axiom of von Neumann-Morgenstern the-

ory. Note that this “version” of the independence axiom corresponds exactly to the version

used in experimental settings. In the experimental setting, a group of subjects is asked

to make a choice from a binary choice problem D = {x, x0}. Then the same group must
choose from a second choice problem that differs from the first by replacing the original

lotteries x, x0 with λx+(1−λ)y and λx0+(1−λ)y. Linearity requires that the frequency

with which the lottery x is chosen is the same as the frequency with which the lottery

λx+ (1− λ)y is chosen.

The final condition on random choice rules requires that from each decision problem

only extreme points are chosen. The extreme points of D are denoted extD. Note that the

extreme points of D are those elements of D that are unique maximizers of some utility

function. Hence, x is an extreme point of D if N+(D,x) 6= ∅.

Definition: The RCR ρ is extreme if ρD(extD) = 1.

A decision-maker who maximizes expected utility can without any loss, restrict himself

to extreme points of the decision problem. Moreover, a decision maker who maximizes a

regular RUF must choose an extreme point with probability 1. Hence, extremeness is a

necessary condition for maximizing a regular RUF.

13 Monotonicity rules out “complementarities” as illustrated in the following example of a choice rule
given by Kalai et al. (2001). An economics department hires only in the field that has the highest number
of applicants. The rationale is that a popular field is active and competitive and hence hiring in that
field is a good idea. In other words, the composition of the choice set itself provides information for the
decision-maker. Monotonicity rules this out.
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4. Main Results

In this section we present our results on regular RUF maximization. Theorems 2 and

3 below are our main results. Theorem 2 establishes that mixture continuity, monotonicity,

linearity, and extremeness are necessary and sufficient for ρ to maximize a regular RUF.

Theorem 3 shows that replacing mixture continuity with continuity yields necessary and

sufficient conditions for maximizing a regular and countably additive RUF.

Theorem 2: The RCR ρ is mixture continuous, monotone, linear and extreme if and

only if there exists a regular RUF µ such that ρ maximizes µ.

Proof: See section 8.2.

It follows from Theorems 1 and 2 that there is a one-to-one correspondence between

mixture continuous, monotone, linear and extreme RCRs and the RUFs they maximize.

To see the intuition for the “only if” part of Theorem 2, assume that ρ maximizes

some regular µ. Hence, ρD(x) = µ(N(D,x)) for all D,x. The choice rule ρ is monotone

since N(D ∪ {y}, x) ⊂ N(D,x) whenever x ∈ D; it is linear since N(D,x) = N(λD+(1−
λ){y}, λx+ (1− λ)y). If x is not an extreme point of D then N+(D,x) = ∅ and therefore
regularity of µ implies that µ(N(D,x)) = µ(N+(D,x)) = 0. Hence, ρ is extreme. For the

proof of mixture continuity, see section 8.2 of the Appendix.

Next, we briefly sketch the proof of the “if” part of Theorem 2. Lemma 1 shows that

monotonicity, linearity and extremeness of ρ imply ρD(x) = ρD
0
(y) whenever N(D,x) =

N(D0, y). To get intuition for the proof of Lemma 1, consider the choice problems D,D0

illustrated in Figure 1.

Insert Figure 1 here

Note that K := N(D,x) = N(D0, y). By linearity we can translate and “shrink” D0

without affecting the choice probabilities. In particular, as illustrated in Figure 1, we may

translate D0 so that the translation of y coincides with x and we may shrink D0 so that

it “fits into” D (as illustrated by the decision problem λD0 + (1 − λ){z}). Monotonicity
together with the fact that only extreme points are chosen implies that the probability of
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choosing y from D0 is at least as large as the probability of choosing x from D. Then,

reversing the role of D and D0 proves Lemma 1.

Finite additivity is proven in Lemma 4. To understand the argument for finite addi-

tivity consider the decision problems D,D0,D00 as illustrated in Figure 2.

Insert Figure 2 here

Note that N(D,x) = N(D0, y) ∪ N(D00, z). For a regular µ we have µ(N+(D,x)) =

µ(N(D,x)) for all (D,x) and hence we must show that µ(N(D,x)) = µ(N(D0, y)) +

µ(N(D00, z)) which is equivalent to ρD(x) = ρD
0
(y) + ρD

00
(z). Consider the decision

problems Dλ := (1 − 2λ)D + λD0 + λD00 as illustrated in Figure 2. By Lemma 1,

we know that ρDλ(yλ) = ρD
0
(y), ρDλ(zλ) = ρD

00
(z). Mixture continuity implies that

ρDλ(B) → ρD(x) for any Borel set B such that B ∩D = {x} = B̄ ∩D, where B̄ denotes

the closure of B. As λ → 0 we have yλ → x and zλ → x. This in turn implies that

ρDλ(yλ) + ρDλ(zλ) = ρD
0
(y) + ρD

00
(z) = ρD(x) as desired.

Next, we characterize the behavior associated with countably additive RUFs. Theo-

rem 3 proves that continuity, monotonicity, linearity and extremeness are necessary and

sufficient conditions for regular random utility maximization.

Theorem 3: The RCR ρ is continuous, monotone, linear and extreme if and only if

there exists a regular, countably additive RUF µ such that ρ maximizes µ.

Proof: See section 8.3.

Theorem 3 implies that regular RUFs that are not countably additive lead to behavior

that is not continuous. To see this, suppose ρ maximizes some regular but not countably

additive µ. By Theorem 2, ρ must be monotone, linear and extreme. If ρ were continuous

then (by Theorem 3) it would maximize some regular and countably additive µ0. But, by

Theorem 1(ii), ρ cannot maximize two distinct regular RUFs.

For continuous ρ, extremeness can replaced with a weaker condition. Consider the

choice problem D and a lottery x such that x ∈ O for some open set O with O ⊂ convD.
Clearly, the lottery x is not an optimal choice from D for any utility function u ∈ U , except
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u = (0, . . . , 0). Therefore x cannot be chosen from D with positive probability if the agent

maximizes some regular RUF. Let bdX denote the boundary of the set X ⊂ IRn+1.

Definition: The RCR ρ is undominated if ρD(bd convD) = 1 whenever dimD = n.

Undominated choice rules place zero probability on x ∈ D such that any lottery in

a neighborhood of x can be attained by a linear combination of lotteries in D. Such

lotteries are never optimal for linear preferences unless the preference is indifferent among

all options in P .

Theorem 4: The RCR ρ is continuous, monotone, linear and undominated if and only

if there exists a regular, countably additive RUF µ such that ρ maximizes µ.

Proof: See section 8.4.

To prove Theorem 4, we show that a continuous RCR is extreme if and only if it is

undominated. Then the result follows from Theorem 3.

5. Counterexamples

In this section, we provide examples that show that none of the assumptions in The-

orems 2, 3, and 4 are redundant. Example 4 provides a RCR that is continuous (hence

mixture continuous), linear and extreme (hence undominated) but not monotone. This

shows that monotonicity cannot be dispensed with in Theorems 2, 3 and 4.

Example 4: Let n+ 1 = 2. Hence, P can be identified with the unit interval and x ∈ P

is the probability of getting prize 2. For D ∈ D, let m(D) denote the smallest element in
D, m(D) denote the largest element in D, and define

a(D) := sup{x− y |m(D) ≤ y ≤ x ≤ m(D), (y, x) ∩D = ∅}

Hence, a(D) is the length of the largest open interval that does not intersect D, but is

contained in the convex hull of D. If D = {x} then ρD(x) = 1. If D is not a singleton, let

ρD(m(D)) =
a(D)

m(D)−m(D)

ρD(m(D)) = 1− ρD(m(D))
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and ρD(x) = 0 for x 6∈ {m(D),m(D)}. Then, ρ is continuous (hence mixture continuous),
linear, extreme, (hence undominated) but not monotone.

Example 5 provides a RCR that is continuous (hence mixture continuous), monotone

and linear but not undominated (and hence not extreme). This shows that the requirement

that the choice rule is undominated cannot be dropped in Theorem 4 and the requirement

that the choice rule is extreme cannot be dropped in Theorems 2 and Theorem 3.

Example 5: Let n+1 = 2 and let x ∈ [0, 1] denote the probability of getting prize 2. For
any D = {x1, . . . , xm}, where x1 < x2 < . . . < xm, let

ρD(x1) =

½
1 if m = 1
1/2 otherwise.

For k > 1, let

ρD(xk) =
xk − xk−1
2(xm − x1)

Then, ρ is continuous, monotone and linear but not undominated (hence not extreme).

Example 6 provides a RCR that is continuous (hence mixture continuous), extreme

(and hence undominated) and monotone but not linear. This shows that linearity cannot

be dropped in Theorems 2, 3, and 4.

Example 6: Let n + 1 = 2 and let x ∈ [0, 1] denote the probability of getting prize 2.
As in Example 4, let m(D) and m(D) be the smallest and largest elements in D. Let

ρD(x) = 1 for D = {x}. If D is not a singleton then

ρD(m(D)) = m(D)

ρD(m(D)) = 1−m(D)

and ρD(x) = 0 for x 6∈ {m(D),m(D)}. Then, ρ is continuous, monotone and extreme but
not linear.

Example 7 provides a RCR that is monotone, linear, and extreme (hence undominated)

but not mixture continuous (and hence is not continuous). This shows that mixture con-

tinuity cannot be dispensed with in Theorem 2 and continuity cannot be dispensed with

in Theorems 3 and 4.
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Example 7: The RCR ρ takes on the values 0, 1/2 and 1. If N(D,x) = U and hence the

decision problem is a singleton, then ρD(x) = 1. There are three cases in which ρ takes on

the value 1/2:

ρD(x) = 1/2 if N(D,x) is a halfspace or

if there is � > 0 such that (1 + �,−1, 0), (1,−1, 0) ∈ N(D,x) or

if there is � > 0 such that (−1, 1 + �, 0), (−1, 1, 0) ∈ N(D,x)

In all other cases, ρD(x) = 0.

To see that this ρ constitutes a well defined RCR note that N(D,x) is a halfspace if

and only ifD is one-dimensional and x is an extreme point ofD. Clearly, a one-dimensional

decision problem has two extreme points. If D is 2-dimensional then ρD(x) = 1/2 if x is

the maximizer of (1,−1, 0) in D with the largest first coordinate or if x is the maximizer

of (−1, 1, 0) in D with the largest second coordinate.

This RCR is extreme by definition. It is linear because the probability of choosing

x from D depends only on the set N(D,x) which is invariant to linear translations of

D. To see that the choice rule is monotone, note that the construction ensures that the

probability of choosing x from D is monotone in N(D,x). That is, N(D,x) ⊂ N(D0, y)

implies ρD(x) ≤ ρD
0
(y). Since N(D ∪ {y}, x) ⊂ N(D,x) it follows that ρ is monotone. It

remains to show that ρ is not mixture continuous.

Let D =
©¡
1/4,

1/2,
1/4
¢
,
¡
1/2,

1/4,
1/4
¢ª

and let D0 =
©¡
3/8,

3/8,
1/4
¢
,
¡
1/8,

1/8,
3/4
¢ª
. For

λ > 0 the agent chooses from λD + (1 − λ)D0 either λ
¡
1/4,

1/2,
1/4
¢
+ (1 − λ)

¡
3/8,

3/8,
1/4
¢

or λ
¡
1/2,

1/4,
1/4
¢
+ (1 − λ)

¡
3/8,

3/8,
1/4
¢
, each with probability 1/2. For λ = 0 the agent

chooses
¡
3/8,

3/8,
1/4
¢
or
¡
1/8,

1/8,
3/4
¢
each with probability 1/2. Clearly, this violates mixture

continuity at λ = 0.
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6. Non-regular Random Utility

Not all RUFs are regular. For non-regular RUFs we cannot identify a unique max-

imizing RCR since there is a positive probability of a “tie” in some decision problems.

More precisely, for some decision problem D there is a positive probability of choosing a

utility function that does not have a unique maximizer in D.

To deal with non-regular RUFs we introduce tie-breakers. Suppose that the agent

with RUF µ faces the decision problem D. Assume that in order to eliminate ties, the

decision-maker chooses two utility functions (u, v) according to some measure η. If the

set of maximizers of u in D (denoted M(D,u)) is a singleton, then the agent chooses the

unique element of M(D,u). Otherwise, the agent chooses an element of M(D,u) that

maximizes v; that is, an element of M(M(D,u), v). If η is a product measure η = µ× µ̂

and µ̂ is regular then it is clear that this procedure will lead to a unique choice with

probability one. In this case, the choice of v is independent of the choice of u and the

regularity of µ̂ ensures that M(M(D,u), v) is a singleton with probability 1. It turns out

that independence is not necessary for a tie-breaker to generate a unique choice as long as

the marginal on the second coordinate is a regular RUF. Therefore, our model does not

restrict to product measures and allows for correlation.

In order to describe the lexicographic procedure above formally, we need to describe

a measure on the set U × U . Let F2 denote the smallest field that contains F × F . The
marginals ηi of η are defined by:

η1(F ) = η(F,U)

η2(F ) = η(U,F )

for all F ∈ F .

Definition: (i) The measure η on F2 is a tie-breaker if η2 is regular. (ii) The measure
η is a tie-breaker for µ if η1 = µ and η2 is regular.

Let Nl(D,x) = {(u, v) |x ∈M(M(D,u), v)}. Hence, (u, v) ∈ Nl(D,x) if and only if x

is a lexicographic maximizer of (u, v) in D. We show in Lemma 8 that Nl(D,x) ∈ F2 for
all D,x. A random choice rule ρ maximizes the tie-breaker η if the probability of choosing
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x in D is equal to the probability of choosing (u, v) in Nl(D,x). The random choice rule

maximizes the (not necessarily regular) RUF µ if ρ maximizes a tie-breaker for µ.

Definition: (i) The RCR ρ maximizes the tie-breaker η if ρD(x) = η(Nl(D,x)) for all

D,x. (ii) The RCR ρ maximizes the RUF µ if ρ maximizes a tie-breaker for µ.

Part (ii) of the definition above applies to regular and non-regular RUFs. To see this

note that

µ(N+(D,x)) ≤ η(Nl(D,x)) ≤ µ(N(D,x))

for all D,x. The first inequality follows from the fact that if x is the unique maximizer

of u in D then x is the lexicographic maximizer of (u, v) for all v ∈ U . The second

inequality follows from the fact that any lexicographic maximizer of (u, v) is a maximizer

of u. Hence, if η is tie-breaker for the regular RUF µ and ρD(x) = η(Nl(D,x)) for all D,x

then ρD(x) = µ(N(D,x)) for all D,x. Therefore, ρ maximizes µ.

Theorem 5 demonstrates that tie-breakers have a unique maximizing RCR. Moreover,

this RCR is monotone, linear, mixture continuous and extreme.

Theorem 5: Every tie-breaker is maximized by a unique RCR. If the RCR ρ maximizes

a tie-breaker then ρ is monotone, linear, mixture continuous and extreme.

Proof: See Appendix, section 8.5.

To prove part (i) of Theorem 5 we show that the function ρ : D → Π defined as

ρD(B) :=
P

x∈D∩B η(Nl(D,x)) for all D ∈ D, B ∈ B is a well defined random choice rule.

To prove this we establish that M(M(D,u), v) is a singleton with probability 1 when η2

is regular. Clearly, this is the only RCR that satisfies ρD(x) = η(Nl(D,x)) and hence

uniqueness follows. Part (ii) of Theorem 5 is analogous to the “only if” part of Theorem

2.

Example 3 above described the RUF that corresponds to a deterministic utility func-

tion ū. Below, we provide an example of a tie-breaker for this RUF.

Example 3 continued: There are three prizes (n+ 1 = 3). Consider the RUF µū which

assigns probability 1 to the utility function ū 6= (0, 0, 0). An example of a tie-breaker for
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µū is the measure η = µū × µ where µ is the uniform RUF defined in Example 2. The

tie-breaker η is maximized by the following RCR ρ. If M(D, ū) = {x} and hence ū has a
unique maximizer in D then ρD(x) = 1. IfM(D, ū) is not a singleton then the convex hull

of M(D, ū) is a line segment. In that case, ρD assigns probability 1/2 to each end-point

of this line segment.

Let µ̂ be any regular random utility.14 Then, the product measure η := µ × µ̂ is a

tie-breaker for µ. By Theorem 5, every tie-breaker has a maximizer and therefore it follows

that every non-regular RUF has a maximizer. For a non-regular RUF the choice of a tie-

breaker affects behavior and therefore there are multiple maximizing random choice rules.

In contrast, regular random utilities have a unique maximizer. Theorem 6 summarizes

these facts.

Theorem 6: (i) Every RUF µ has a maximizer. (ii) A RUF has a unique maximizer if

and only if it is regular.

Proof: See Appendix, section 8.6.

Theorem 5 shows that the generalization of RUF maximization to non-regular RUFs

preserves the properties identified in section 4. If ρ is a maximizer of some (not necessarily

regular) RUF then it satisfies monotonicity, linearity, mixture continuity and extremeness.

Therefore we can apply Theorem 2 to conclude that ρ must also maximize some regular

RUF µ0.

Theorem 7: If the RCR ρ maximizes some RUF then ρ maximizes a regular RUF.

Proof: Follows from Theorem 5 and Theorem 2.

Consider a non-regular RUF µ. Let η be a tie-breaker for µ and let ρ be the maximizer

of η. By Theorem 7 the RCR ρ also maximizes a regular RUF µ0. Hence,

µ0(N(D,x)) = η(Nl(D,x)) = ρD(x)

for all D ∈ D and x ∈ D. We call this µ0 a dilation of µ. A dilation µ0 of µ satisfies

µ(N+(D,x)) ≤ µ0(N(D,x)) ≤ µ(N(D,x))

14 Lemma 3 proves the existence of a regular RUF.
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Intuitively, a dilation of µ takes probability mass from lower dimensional subsets of U and

(with the aid of the tie-breaker) spreads it over adjacent n−dimensional sets. Below, we
illustrate a dilation of the RUF in Example 3.

Example 3 continued: There are three prizes (n+ 1 = 3). Consider the RUF µū which

assigns probability 1 to the utility function ū 6= (0, 0, 0). The following regular random

utility µ0 is a dilation of µū. Recall that for any u, v ∈ U , Fuv := {αu+βv |α, β > 0}. Let
µ0(Fuv) = 1 if u 6= λv (and hence Fuv is two-dimensional) and ū is in the relative interior

of Fuv. Let µ
0(Fuv) = 1/2 if u 6= λv for λ ∈ IR and ū is on the boundary of Fuv. That

is, ū = λu or ū = λv for some λ > 0. In all other cases, µ0(Fuv) = 0. In particular, every

one-dimensional subset of U has µ0−measure 0 and therefore, µ0 is regular. The RUF µ0

is maximized by same RCR as the uniform tie-breaker described above: If M(D, ū) = {x}
then ū is in the interior of N(D,x). Therefore, ρD(x) = µ0(N(D,x)) = 1 in this case.

If M(D,x) is not a singleton then ρD assigns probability 1/2 to each extreme point of

M(D, ū). (Note that M(D, ū) has at most two extreme points).

Theorem 8 shows that except for the case of complete indifference a dilation of a non-

regular random utility is not countably additive. In other words, ties cannot be broken in

a manner that preserves countable additivity. Recall that o = (0, . . . , 0) denotes the utility

function that is indifferent between all prizes.

Theorem 8: If µ0 is a dilation of some non-regular µ such that µ(o) = 0 then µ0 is not

countably additive.

Proof: See section 8.7.

Theorem 8 is closely related to Theorem 3 above. Theorem 3 implies that a maximizer

of a regular, countably additive RUF is continuous. In the proof of Theorem 8 we show

that a maximizer of a non-regular RUF µ with µ(o) = 0 must fail continuity and therefore,

Theorem 3 implies Theorem 8. We illustrate Theorem 8 by demonstrating that the dilation

in Example 3 above is not countably additive.

Example 3 continued: In Example 3 above, we define a dilation µ0 of the random utility

µū. To see that µ
0 is not countably additive, let v 6= λū and let vn be on the relative interior
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of the line segment connecting ū and v. Choose the sequence vn so that it converges to

ū. Note that µ0(Fvvn) = 0 for all n yet µ0(
S
n Fvvn) = 1/2. Hence, the dilation µ0 is not

countably additive. Note, that the original random utility µū is countably additive.

We can interpret the results in this section as a justification for restricting attention

to regular RUFs. When tie-breakers are used to resolve the ambiguity associated with

non-regular RUFs, the resulting behavior maximizes some regular random utility. In this

sense, the restriction to regular RUFs is without loss of generality. However, applying a

tie-breaker to a non-regular µ typically results in a regular RUF (i.e., dilation of µ) that

fails countable additivity.

7. Appendix A: Preliminaries

In this section, we define the concepts and state results from convex analysis that are

used in the proofs. Throughout this section, all points and all sets are in n−dimensional
Euclidian space IRn. For any x ∈ IRn we use xi to denote the i’th coordinate of x and o

to denote the origin. If x =
P

i λixi with λi ∈ IR for all i = 1, . . . , k then x is a (linear)

combination of the x1, . . . , xk. If λi ≥ 0, then x is a positive combination, if
P

i λi = 1

then x is an affine combination and if λi ≥ 0,
P

i λi = 1 then x is a convex combination of

x1, . . . , xk. For any set A, we let aff A (posA, convA) denote the set of all affine (positive,

convex) combinations of points in A. The set A is affine (a cone, convex) if A = aff A

(A = posA, A = convA). The interior of a set A is denoted intA. The relative interior

of A, denoted riA, is the interior of A in the relative topology of aff A. The dimension of

the affine set A is the dimension of the subspace A− x for x ∈ A. The dimension of any

set A, denoted dimA is the dimension of the affine hull of A.

The open ball with radius � and center x is denoted B�(x). The unit sphere is denoted

S = {u ∈ IRn | kuk = 1}, and the n-dimensional cube is denoted E∗ := {u ∈ IRn | |ui| =
1 for some i and uj = 0∀j 6= i}. We use e to denote the vector of 1’s in IRn.

A set of the form K(u, α) := {z ∈ IRn |u · z ≤ α} for u 6= o, is called a halfspace.

For x 6= o, the set H(x, α) := K(x, α) ∩ K(−x,−α) is called a hyperplane. A set A is

polyhedral (or is a polyhedron) if it can be expressed as the intersection of a finite collection

of halfspaces. Obviously, polyhedral sets are closed and convex. The set A is a polytope if
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A = convB for some finite set B. Every polytope is a polyhedron and a polyhedron is a

polytope if and only if it is bounded. A cone is polyhedral if and only if it can be expressed

as posC for some finite C. Let K∗ denote the set of all polyhedral cones and K denote

the set of all pointed polyhedral cones; that is, the elements of K are those elements of K∗
that have o as an extreme point.

For the polyhedron A and x ∈ A, the set N(A, x) = {u ∈ IRn |u · y ≤ u · x∀y ∈ A}
is called the normal cone to A at x. When D is a finite set, we write N(D,x) rather

than N(convD,x). The set N(A, x) is polyhedral whenever A is polyhedral. If K is a

polyhedral cone then L = N(K, o) is called the polar cone of K and satisfies K = N(L, o).

A face A0 of a polyhedron A is a nonempty convex subset of A such that if αx+ (1−
α)y ∈ A0 for some x, y ∈ A,α ∈ (0, 1) then {x, y} ⊂ A0. Let F (A) denote the set of all

nonempty faces of the nonempty polyhedron A and let F 0(A) := {riF |F ∈ F (A)}. Let
F (A,u) = {x ∈ A |u · x ≥ u · y ∀y ∈ A}. For A 6= ∅, the set F (A,u) is called an exposed
face of A. Clearly every exposed face of A is a face of A. A singleton set is a face of A if

and only if it is an extreme point of A. For any polyhedron A, A itself is a face of A and

it is the only face F ∈ F (A) such that dim(F ) = dim(A). Every face of a polyhedron is a

polyhedron; A00 is a face of A0 and A0 is a face of the polyhedron A implies A00 is a face of A

and finally, every face of a polyhedron is an exposed face (hence F (A) =
S
u∈IRn F (A, u)).

Proposition 1: Let A,A0 be two polyhedra and x, y ∈ A. Then: (i) dimA = n if and

only if o ∈ extN(A, x). (ii) L = N(A,x) implies N(L, o) = pos(A− {x}) (iii) x ∈ extA if
and only if dimN(A, x) = n. (iv) riN(A, x) ∩ riN(A, y) 6= ∅ implies N(A,x) = N(A, y).

(v) riA ∩ riA0 6= ∅ implies riA ∩ riA0 = ri(A ∩A0).

Proof: (i) If o /∈ extN(A, x), then {o} is not a face of N(A,x) and therefore there exists
u 6= o such that u,−u ∈ N(A, x). Hence, A ⊂ {z |u · z ≤ u ·x}∩ {z | −u · z ≤ −u ·x}. But
{z |u · z ≤ u ·x}∩{z | −u · z ≤ −u ·x} has dimension n−1 and therefore, dimA < n. The

argument can be reversed. (ii) Let L = N(A, x) and K = pos(A − {x}). Clearly, K is a

polyhedral cone and L = N(K, o) is its polar cone. Hence,N(L, o) = K as desired. (iii) Let

L = N(pos(A−{x}), o). Then, N(A, x) = N(A−{x}, o) = L and N(L, o) = pos(A−{x}).
Therefore, x ∈ extA iff o ∈ extN(L, o). By part (i), o ∈ extN(L, o) iff dimL = n and
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therefore x ∈ extA iff dimN(A, x) = n. (iv) Schneider (1993) notes this after stating

Lemma 2.2.3. (v) Theorem 6.5 of Rockafeller (1970) proves the same result for all convex

sets.

Proposition 2: (i) Let A be a polytope or polyhedral cone. Then, x, y ∈ riF for some

F ∈ F (A) implies N(A, x) = N(A, y). (ii) Let A be a polytope with dimA = n and u 6= o.

Then, x ∈ riF (A, u) implies u ∈ riN(A, x).

Proof: Suppose x, y ∈ riF for some F ∈ F (A). If u ∈ N(A, x) then x ∈ F (A,u). Since

y ∈ riF and x ∈ F , there exists λ > 1 such that z := λx + (1 − λ)y ∈ A. Hence,

x = αy + (1 − α)z for some α ∈ (0, 1). Since F (A,u) is a face of A, we conclude that
y ∈ F (A, u) and therefore u ∈ N(A, y). By symmetry, we have N(A,x) = N(A, y). In

Schneider (1993) page 99, (ii) is stated as (2.4.3), a consequence of Theorem 2.4.9.

Proposition 3: If Di ∈ D for i = 1, . . . ,m then

N(D1 + · · ·+Dm,
X
i

xi) =
m\
i=1

N(Di, xi)

Nl(D1 + · · ·+Dm,
X
i

xi) =
m\
i=1

Nl(Di, xi)

Proof: Follows from elementary arguments.

Proposition 4: If K ∈ K∗ then K = N(D, o) for some D ∈ D with o ∈ D.

Proof: LetA = N(K, o)∩convE∗. Clearly, A is bounded and polyhedral. ThatN(A, o) =
N(N(K, o), o) is obvious. Since N(N(K, o), o) = K, extA ∪ {o} is the desired set.

Let N (A) := {N(A,x) |x ∈ A} and let N 0(A) := {riK |K ∈ N (A)}. A finite

collection of subsets P of X is called a partition (of X) if ∅ /∈ P, A,B ∈ P, A ∩ B 6= ∅
implies A = B, and

S
A∈P A = X. If P is partition of X and ∅ 6= Y ⊂ X then we say that

P measures Y if there exists Ai ∈ P for i = 1, . . . ,m such that
Sm
i=1Ai = Y . Note that

the partition P measures Y if and only if A ∈ P, A ∩ Y 6= ∅ implies A ⊂ Y . We say that

the partition P refines P 0, if P measures each element of P 0.
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Proposition 5: (i) For any nonempty polyhedron A, F 0(A) is a partition of A and

measures each element of F (A). (ii) For any polytope A such that dim(A) = n, N 0(A) is

a partition of IRn.

Proof: (i) That F 0(A) is a partition of A follows from the fact that the set of relative

interiors of faces of any closed, convex set is a pairwise disjoint cover i.e., a decomposition

of A, (Theorem 2.1.2 of Schneider (1993)) and the fact that a polyhedron has a finite

number of faces. Then, suppose B ∈ F (A), H ∈ F 0(A) and B ∩H 6= ∅. Since any face of
B ∈ F (A) is also a face of A and F 0(B) is a partition of B, we can express B as

Sm
i=1Hi

for H1, . . . ,Hm ∈ F 0(A). But since F 0(A) is a partition, it follows that Hi∩H 6= ∅ implies
H = Hi. Hence, F

0(A) measures each element of F (A).

(ii) For any u the face F (A, u) is a non-empty convex set. Therefore, riF (A,u) is

non-empty (Theorem 1.1.12 of Schneider (1993)). By Proposition 2(ii), x ∈ riF (A,u)
implies u ∈ riN(A,x) and hence u ∈ SK∈N0(A)K. It follows that IR

n ⊂ SK∈N0(A)K.

To complete the proof we must show that K,K0 ∈ N 0 and K ∩K0 6= ∅ implies K = K0.

Suppose, riN(A, x) ∩ riN(A, y) 6= ∅. Then, for u ∈ riN(A,x) ∩ riN(A, y) Proposition
2(ii) yields x, y ∈ riF (A, u). But then Proposition 2(i) establishes N(A, x) = N(A, y) and

therefore riN(A, x) = riN(A, y). Hence, N 0 is a partition.

Let F be the smallest field that contains K∗ and let H := {riK |K ∈ K} ∪ ∅. A
collection of subsets P of X is called a semiring if ∅ ∈ P, A,B ∈ P implies A ∩ B ∈ P,
and A,B ∈ P and B ⊂ A implies there exists disjoint sets A1, . . . , Am ∈ P such thatS
iAi = A\B.

Proposition 6: (i) H is a semiring. (ii) F = {∪mi=1Hi |Hi ∈ H for i = 1, . . . ,m}.

Proof: (i) First, we show that H,H 0 ∈ H implies H ∩ H 0 in H. Let H = riK and

H 0 = riK0 for K,K0 ∈ K. Note that o ∈ extK ∩ extK0 and hence o ∈ ext(K ∩K0). If

H ∩H 0 = ∅, we are done. Otherwise, by Proposition 1(v), H ∩H 0 = ri(K ∩K0) ∈ H as

desired.

Next, we show that for all polytopes A,A0 such that dim(A+A0) = n, N 0(A+A0) is a

partition that measures each element of N 0(A) and by symmetry of N 0(A0). Proposition

5(ii), N 0(A + A0) is a partition of IRn. Recall that N 0(A + A0) refines N 0(A) if for
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each H ∈ N 0(A) and H 00 ∈ N 0(A + A0), H ∩ H 00 6= ∅ implies H 00 ⊂ H. Hence, assume

H = riN(A, x) for some x ∈ A, H 00 = riN(A + A0, y + x0) for some y ∈ A,x0 ∈ A0 and

riN(A, x) ∩ riN(A+A0, y + x0) 6= ∅. Then, by Propositions 1(v) and 3,

∅ 6= H 00 ∩H = riN(A+A0, y + x0) ∩ riN(A,x)
= ri[N(A+A0, y + x0) ∩N(A, x)]
= riN(A+A+A0, x+ y + x0)

Since A is a convex set, N(A+ A+ A0, x+ y + x0) = N(A+ A0, x+y2 + x0) ∈ N (A+ A0).

It follows that riN(A + A0, x+y2 + x0) ∩ H 00 6= ∅ and therefore, by Proposition 1(iv),
riN(A+A0, x+y2 + x0) = H 00, establishing H 00 ∩H = H 00 (i.e., H 00 ⊂ H) as desired.

Assume that H,H 0 ∈ H such that H 0 ⊂ H. Hence, by Proposition 4, H ∈ N 0(A) and

H 0 ∈ N 0(A0) for some polytopes A,A0. By Proposition 1(i) each of these polytopes and

hence A + A0 has dimension n. Hence, N 0(A + A0) refines both N 0(A) and N 0(A0) and

therefore measures H\H 0 proving that H is semiring.

(ii) We first show that F ⊂ {∪mi=1Hi |Hi ∈ H for i = 1, . . . ,m}. Clearly, the set of all
finite unions of elements of a semiring is a field. Hence, {∪mi=1Hi |Hi ∈ H for i = 1, . . . ,m}
is a field. Let K ∈ K, then F (K) ⊂ K and hence F 0(K) ⊂ H. By Proposition 5(i),S
H∈F0(K)H = K and hence {∪mi=1Hi |Hi ∈ H for i = 1, . . . ,m} contains K. Let K ∈ K∗.

Then, by Proposition 4, there exists A, x such that N(A, x) = K. Since
S
extB N(B,x) =

IRn, Proposition 3 implies
S
y∈extE∗ N(A+E

∗, x+y) = N(A, x). Since dim(A+E∗) = n, by

Proposition 1(i), each N(A+E∗, x+y) ∈ K. Since, {∪mi=1Hi |Hi ∈ H for i = 1, . . . ,m} is a
field, we conclude K ∈ {∪mi=1Hi |Hi ∈ H for i = 1, . . . ,m} and hence F ⊂ {∪mi=1Hi |Hi ∈
H for i = 1, . . . ,m}.

Since F is a field, to show that {∪mi=1Hi |Hi ∈ H for i = 1, . . . ,m} ⊂ F , it is enough
to show that H ∈ F for all H ∈ H. Let H = riK for some K ∈ K. Since K∗ ⊂ F , K ∈ F .
By Proposition 5(i), F 0(K) is a partition of K that measures each face of K. Hence,

K = riK ∪ (
[

F∈F (K),F 6=K
F )

∅ = riK ∩ (
[

F∈F (K),F 6=K
F )
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Since F is a field that contains F (K), it follows that riK = K ∩ (SF∈F (K),F 6=K F )c ∈ F
as desired.

Proposition 7: Let Di ∈ D converge to D ∈ D and let K = N(D,x) ∈ K for some

x ∈ D. There exist Kj ∈ K, kj and �j > 0 for j = 1, 2, . . . such that (i) Kj+1 ⊂ Kj for all

j, (ii)
T
j Kj = K, and (iii)

S
xi∈Di∩B�j (x)N(Di, xi) ⊂ Kj for i > kj .

Proof: Since K ∈ K Proposition 1(i) implies dim convD = n. Let y∗ ∈ int convD and

let D̃j = {x} ∪ ( j
j+1D +

1
j+1{y∗}). Note that y∗ ∈ int conv D̃j. Define Kj := N(D̃j , x).

To prove (i) let u ∈ Kj+1 and hence u · x ≥ u · ( j+1j+2y +
1

j+2y
∗) for all y ∈ D. Note

that u · x ≥ u · y∗ since y∗ ∈ int conv D̃j+1. It follows that u · x ≥ u · ( j
j+1y +

1
j+1y

∗) for

all y ∈ D and hence u ∈ Kj .

If u ∈ K then u · x ≥ u · y for all y ∈ D and hence u · x ≥ u · ( j
j+1y +

1
j+1y

∗) for all

y ∈ D and therefore u ∈ Kj for all j. Let u ∈
T
j Kj then u · x ≥ u · ( j

j+1y+
1

j+1y
∗) for all

j and all y ∈ D. It follows that u · x ≥ u · y for all y ∈ D and hence u ∈ K. This proves

(ii).

To prove (iii), first, we observe that u·y > u·x for all u ∈ N(D̃j,
j

j+1y+
1

j+1y
∗), u 6= o.

To see this, note that for u ∈ N(D̃j ,
j

j+1y +
1

j+1y
∗), u 6= o there is z with u · z > 0. Since

y∗ + �0z ∈ int conv D̃j for some �
0 > 0 and since u · ( j

j+1y +
1

j+1y
∗) ≥ u · (y∗ + �0z), we

conclude that u · y > u · y∗. But u · ( j
j+1y +

1
j+1y

∗) ≥ u · x and therefore, u · y > u · x.
Recall that S denotes the unit sphere. For y ∈ D, let Rj(y) := N(D̃j ,

j
j+1y+

1
j+1y

∗)∩
S. Clearly, Rj(y) is compact. By the argument above, u · y > u · x for u ∈ Rj(y). Since

Rj(y) is compact and D is finite, there is an α > 0 such that maxy∈D u · (y − x) ≥ α for

all u ∈ Rj :=
S
y∈D,y 6=xRj(y). Note that if u 6∈ Kj then λu ∈ Rj for some λ > 0.

Choose �j > 0 so that |u · z| < α/4 for all u ∈ Rj and z ∈ B�j (o). Choose kj so that

B�j (y) ∩Di 6= ∅ for all y ∈ D and i > kj . Then, for all u ∈ Rj(y), xi ∈ Di ∩ B�j (x), yi ∈
Di∩B�j (y) we have u·(xi−yi) ≤ u·(x−y)+maxxi∈B�j (x) u·(xi−x)−minyi∈B�j (y) u·(yi−y) <
u · (x− y) + α/2 < 0 and hence u 6∈ N(Di, xi)∩ S for xi ∈ Di ∩B�j (x). We conclude thatS
xi∈Di∩B�j (x)N(Di, xi) ⊂ Kj for all i > kj.

Proposition 8: Let K ∈ K and � > 0. There exist D,D0 ∈ D, K0 ∈ K and an open set
O such that D ∩ B1(o) = D0 ∩ B1(o) = {o}, K = N(D, o),K0 = N(D0, o), dh(D,D0) < �

and K ∩ S ⊂ O ⊂ K0.
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Proof: By Proposition 4, there is D ∈ D such that o ∈ D and K = N(D, o). Since

N(D, o) = N(λD, o) for λ > 0, we may choose D so that D∩B2(o) = {o}. By Proposition
1(i), dimD = n. Choose y ∈ int convD and λ ∈ (0, 1) so that D0 := {o}∪((1−λ)D+λ{y})
satisfies dh(D,D0) < � and D0 ∩ B1(o) = {o}. Clearly, dim convD0 = n and hence K0 :=

N(D0, o) ∈ K. If K = {o} then K0 = K and O = ∅ have the desired property and
we are done. Therefore, assume K 6= {o}. Obviously, 0 > u · y for u ∈ K,u 6= o and

y ∈ int convD. Hence, 0 > u ·x ∀x ∈ D0\{o},∀u ∈ K,u 6= o. Since K ∩S is compact there
is �0 > 0 such that −�0 > u · x ∀x ∈ D0\{o},∀u ∈ K ∩ S. Let �00 = minx∈D0\{o} �0/(2kxk).
Then 0 > −�0/2 ≥ u · x + (u0 − u) · x = u0 · x ∀x ∈ D0\{o},∀u0 ∈ Su∈K∩S B�00(u). Let

O :=
S
u∈K∩S B�00(u). Clearly, K ∩ S ⊂ O ⊂ K0 as desired.

8. Appendix B: Proofs

It is convenient to view random choice rules as maps from nonempty finite subsets of

the n−dimensional Euclidean space IRn (rather than P ) to probability measures on the

Borel subsets of IRn. To see how this can be done, let P̂ = {x ∈ IRn
+ |
Pn

i=1 x
i ≤ 1}.

Hence, P̂ is the n−dimensional “Machina-Marschak Triangle”. There is an obvious way
to interpret ρ as a RCR on finite subsets of P̂ and a RUF as a probability measure on the

algebra generated by polyhedral cones in IRn. This is done with the aid of the following

two bijections. Define, T0 : IR
n → U and T1 : P̂ → P as follows:

T0(u
1, . . . , un) = (u1, . . . , un, 0) and

T1(x
1, . . . , xn) = (x1, . . . , xn, 1−Pn

i=1
xi)

Note that P̂ is convex and both T0, T1 are homeomorphisms satisfying the following prop-

erties:

T0(γu+ βv) = αT0(u) + βT0(v)

T1(γx+ (1− γ)y) = γT1(x) + (1− γ)T1(y)

T0(u) · T1(v) = u · v
for all u, v ∈ IRn, x, y ∈ P̂ , α, β ∈ IR, and γ ∈ (0, 1).

Let ρ̂D̂(x) = ρT1(D̂)(T1(x)). We extend the RCR ρ̂ to all finite non-empty subsets

of IRn in the following manner: Choose z ∈ int P̂ . For D ⊂ IRn let γD = max{γ ∈

28



(0, 1] | γD+(1− γ){z} ⊂ P̂}. Note that γD is well-defined since P̂ is closed and z ∈ int P̂ .
Also, if D ⊂ P̂ , then γD = 1. Extend ρ̂ to all finite, nonempty D ⊂ IRn by letting

ρ̂D(x) = ρ̂γD+(1−γ){z}(γx+ (1− γ)z) for all x, D.

For the extended RCR, the following definitions of linearity and mixture continuity

will be used.

Definition: The RCR is linear if ρD(x) = ρtD+{y}(tx + y) for all t > 0, y ∈ IRn and

x ∈ D.

Definition: The RCR is mixture continuous if ρtD+t
0D0

is continuous in t, t0 for all

t, t0 ≥ 0.
Continuity, monotonicity, extremeness and undominatedness of ρ̂ are defined the same

way as the corresponding properties for ρ. It follows from the properties of T1 stated above

that ρ̂ is mixture continuous (continuous, monotone, linear, extreme, undominated) if and

only if ρ is mixture continuous (continuous, monotone, linear, extreme, undominated).

Furthermore, ρ̂ maximizes µ ◦ T0 if and only if µ maximizes ρ. Hence, in the proofs we
work in IRn so that ρ refers to the corresponding ρ̂ and µ to µ ◦ T0.

Lemma 1: If ρ is monotone, linear and extreme then x ∈ D, x ∈ D0 and N(D,x) =

N(D0, x0) implies ρD(x) = ρD
0
(x0).

Proof: By linearity, ρD−{x}(o) = ρD(x). Therefore, it suffices to show that N(D, o) =

N(D0, o), o ∈ D,D0 implies ρD(o) = ρD
0
(o).

We first show that if N(D, o) = N(D0, o) there exists λ ∈ (0, 1) such that D00
:=

λD0 ⊂ convD. By Proposition 1(ii), posD = N(L, o) for L = N(D, o). Let y ∈ D0. Since

D0 ⊂ N(L, o) it follows that y =
P

αixi, xi ∈ D,αi ≥ 0. Since o ∈ D, λy ∈ convD for λ

sufficiently small proving the assertion.

By linearity ρD
00
(o) = ρD

0
(o). Then, monotonicity and extremeness imply that

ρD
00
(o) ≥ ρD

00∪D(o) = ρD(o). Hence, ρD
0
(o) ≥ ρD(o). A symmetric argument ensures

ρD(o) ≥ ρD
0
(o) and hence ρD(o) = ρD

0
(o) as desired.

A RUF is full-dimensional if algebra elements that have dimension smaller than n

have measure zero.
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Definition: The RUF µ is full-dimensional if µ(F ) = 0 whenever dimF < n.

Lemma 2: A RUF µ is full-dimensional if and only if it is regular.

Proof: Assume µ is full-dimensional. We first establish that IRn =
S
x∈DN+(D,x) ∪ F

where F is a finite union of polyhedral cones of dimension less than n. It is easy to see

that IRn =
S
x∈DN(D,x). By Proposition 5(i), each N(D,x) can be expressed as the

disjoint union of sets riA for A ∈ F (N(D,x)). Recall that each face of a polyhedral cone

is a polyhedral cone. Note that A ∈ F (K) and A 6= K implies A = H(u, α) ∩ K for

some u 6= o and some α ∈ IR. Hence, A 6= K implies dimA < n. If dimN(D,x) = n

then riN(D,x) = intN(D,x) = N+(D,x). Therefore, N(D,x) = N+(D,x) ∪ F 0 where
F 0 is a finite union of polyhedral cones with dimension less than n and hence IRn =S
x∈DN(D,x) =

S
x∈DN+(D,x) ∪ F where F is a finite union of polyhedral cones of

dimension less than n. If µ is full-dimensional then µ(F ) = 0. Therefore, 1 = µ(IRn) =

µ
¡S

x∈DN+(D,x)
¢
which proves the “only if” part of the lemma.

If µ is not full-dimensional then there exists a set F ∈ F such that dimF < n and

µ(F ) > 0. By Proposition 6, H := {riK|K ∈ K} is a semiring and every element of
F can be written as a finite union of elements in H. Therefore, µ(K) > 0 for some

K ∈ K∗ with dimK < n. By Proposition 1(i), dimK < n implies there is x 6= 0 such

that x,−x ∈ N(K, o). Let D = {x,−x} and note that K ⊂ N(D,x) ∩N(D,−x). Hence,
µ(N+(D,x) ∪N+(D,−x)) ≤ 1− µ(K) < 1 and µ is not regular.

Lemma 3: The set of regular RUFs is nonempty.

Proof: Let V be the usual notion of volume in IRn. For any K ∈ K∗, let µV (intK) =
V (B1(o)∩K)
V (B1(o))

. Obviously, dimK < n implies intK = ∅ and hence V (B1(o) ∩K) = 0. By

Proposition 5(i), K\ intK can be written as a finite union of set of dimension less than n.

Hence, µV (K) = µV (intK) and therefore µV is a RUF. Since µV assigns probability 0 to

every set of dimension less than n, by Lemma 2, µV is a regular RUF.

8.1 Proof of Theorem 1

Let µ, µ0 be regular RUFs with µ(N(D,x)) = µ0(N(D,x) for all (D,x). We must

show that µ(F ) = µ0(F ) for all F ∈ F .
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Let F ∈ F . By Proposition 6, we can write F as a finite union of elements in H.
In fact, it is easy to see that we can write F as a finite union of disjoint elements of H.
Recall that H := {riK|K ∈ K}. To prove Theorem 1(ii) it therefore suffices to show that

µ(riK) = µ0(riK) for all K ∈ K.
By Proposition 4, for every K ∈ K there is D,x such that K = N(D,x). Note

that N+(D,x) ⊂ riN(D,x) ⊂ N(D,x). If µ is regular then µ(N+(D,x)) = µ(N(D,x)).

Therefore, µ(riK) = µ(K) for all K ∈ K. It follows that µ(riK) = µ0(riK) for all K ∈ K.

8.2 Proof of Theorem 2

Let µ be regular RUF. By Theorem 1 there exists a unique ρ that maximizes µ. Hence,

ρ and µ satisfy

ρD(x) = µ(N(D,x)) (1)

for all D ∈ D and x ∈ D. We argue in the text that ρ must be monotone, linear and

extreme. To prove mixture continuity, we must show that ρtD+t
0D0

is continuous in t, t0.

By equation (1) and Proposition 3, ρtD+t
0D0
(tx + t0x0) = µ(N(D,x) ∩ N(D0, x0)) which

implies that ρtD+t
0D0

is continuous in (t, t0) for t, t0 > 0. Hence, it remains to show that

ρtD+D
0 → ρD

0
as t→ 0. Choose � > 0 small enough so that B�(x

0)∩D0 = {x0} and choose
t small enough so that x0 + tx ∈ B�(x

0) for all x ∈ D. Proposition 3 and the fact thatS
x∈DN(D,x) = IRn imply that

ρtD+D
0
(B�(x

0)) = µ(
[
x∈D

(N(D,x) ∩N(D0, x0))) = µ(N(D0, x0)) = ρD
0
(x0)

which completes the proof of mixture continuity. This proves the only if part of the

Theorem.

Let ρ be a mixture continuous, monotone linear and extreme RCR. By Proposition

4, for any K ∈ K∗ there exists (D,x) such that K = N(D,x). We define µ : H → IR as

follows:

µ(riK) = ρD(x) (2)
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for D,x such that K = N(D,x),K ∈ K. Lemma 1 ensures that µ is well-defined. If
dimK < n then Proposition 1(iii) implies that x is not an extreme point of D. Since

ρ is extreme this in turn implies ρD(x) = 0, so µ(riK) = 0 for any K ∈ K∗ such that
dim(K) < n. Note that F ∈ F 0(K) and dimF = dimK implies F = riK. It follows from

Proposition 5(i) that

µ(intK) = µ(K) (3)

for K ∈ K.
In Lemmas 4 and 5 it is understood that the function µ (defined above) and the RCR

ρ satisfy (2).

Lemma 4: If ρ is mixture continuous, monotone, linear and extreme then µ is finitely

additive.

Proof: Assume riK0 =
Sm
i=1 riKi and Ki ∈ K for all i = 1, . . . ,m with riKi, i = 1, . . . , n

pairwise disjoint. By Proposition 4, there exist Di ∈ D and xi ∈ Di such that N(Di, xi) =

Ki for all i = 0, . . . ,m. Let D = D0 + · · · + Dm and without loss of generality, assume

that the Di’s are “generic” that is, for each y ∈ D, there exists a unique collection of yj ’s

such that y =
P

j yj and for each y0 ∈ D0 + · · · + Di−1 + Di+1 + · · · + Dm there exist

a unique collection of yj ’s for j 6= i such that y =
P

j 6=i yj . Let β
i > 0 for all i and let

D(β) = β0D0 + · · · + βmDm. Note that N(β
iDi, β

iyi) = N(Di, yi) for β
i > 0 and hence

Proposition 3 implies

N(D(β),
X
i

βiyi) =
m\
i=1

N(Di, yi) (4)

whenever βi > 0 and yi ∈ Di for all i.

Fix i ∈ {0, . . . ,m} and let βk = (β0k, . . . , β
m
k ) be such that β

j
k =

1
k for j 6= i and

βik = 1. For y ∈
Sm
j=0Dj , let

Z(y) = {z = (z0, . . . zm) ∈ ×m
j=0Dj | zj ∈ Dj for all j, z

j = y for some j}

Gβ(y) = {y0 ∈ D(β) | y0 =
mX
j=0

βjzj for z ∈ Z(y)}

Let G(y) = G(1,...,1)(y). By our genericity assumption, for each y ∈ Sm
j=0Dj there ex-

ists a unique j such that y ∈ Dj . Hence, the function φ : G(y) → Gβk(y) such that
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φ(y0 + · · · + ym) = β0ky0 + · · · + βmk ym is well-defined. Again, by our genericity assump-

tion φ is a bijection for k sufficiently large. But since N(D(β),
P

i β
iyi) = N(D,

P
i yi),

we have ρD(βk)(Gβk(y)) = ρD(G(y)) for all y ∈ Sm
j=0Dj and for sufficiently large k.

Choose open sets O,O0 such that {y} = O ∩ Di, Di\{y} = O0 ∩ Di. By mixture con-

tinuity, limk→∞ ρD(βk)(Gβk(y)) = limk→∞ ρD(βk)(O) ≥ ρDi(O) = ρDi(y) and similarly,

limk→∞ ρD(βk)(D(βk)\Gβk(y)) = limk→∞ ρD(βk)(O0) ≥ ρDi(O0) = ρDi(Di\{y}). That is,
ρD(βk)(Gβk(y))→ ρDi(y) and hence we conclude for all i = 0, . . . ,m and y ∈ Di

ρD(G(y)) = ρDi(y) (5)

By the definition of µ, (4) implies that for zj ∈ D, j = 0, . . . ,m and y =
Pm

j=0 z
j ,

ρD(y) = µ[intN(D, y)] = µ[
m\
j=0

intN(Dj , z
j)] (6)

Since intN(D,xi) ∩ intN(D,xj) = ∅ and intN(D,xi) ⊂ intN(D,x0) for i, j ≥ 1, i 6= j,

(6) implies

ρD(G(xi) ∩G(xj)) = 0 and ρD(G(xi)\G(x0)) = 0

for i, j ≥ 1, i 6= j. Thus,

ρD(G(x0)) = ρD(
m[
i=1

(G(x0) ∩G(xi))

= ρD(
m[
i=1

G(xi)) =
mX
i=1

X
y∈G(xi)

ρD(y) =
mX
i=1

ρD(G(xi))

(7)

Again, by the definition of µ, (6) and (7) imply that

µ[intN(D0, x0)] = ρD0(x0) =
mX
i=1

ρDi(xi) =
mX
i=1

µ[intN(Di, xi)]

as desired.

Next, we extend µ to F . Equation (2) defines µ for every element ofH. By Proposition
6, F consists of all finite unions of elements in H. In fact, it is easy to see that F consists
of all finite unions of disjoint sets in H. To extend µ to F , set µ(∅) = 0 and define
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µ(F ) =
Pm

i=1 µ(Hi) where H1, . . . ,Hm is some disjoint collection of sets in H such thatSm
i=1Hi = F . To prove that µ is well-defined and additive on F , note that if H 0

j , j =

1, . . . , k is some other disjoint collection such that
Sk
j=1H

0
j = F , then

Pm
i=1 µi(Hi) =Pm

i=1

Pk
j=1 µ(Hi ∩H 0

j) =
Pk

j=1 µi(H
0
j).

Next, we show that µ(IRn) = 1. It is easy to see that
S
x∈E∗ N(E

∗, x) = IRn. Note

also that N(E∗, x) ∈ K for all x and µ(N(E∗, x)) = µ(intN(E∗(x)) by Equation (3). Since

interiors of normal cones at distinct points are disjoint, we have
S
x∈E∗ intN(E

∗, x)) ⊂ IRn.

Therefore, we have

µ(IRn) ≤
X
x∈E∗

N(E∗, x) =
X
x∈E∗

µ(intN(E∗, x)) ≤ µ(IRn)

Since
P

x∈E∗ µ(intN(E
∗, x)) = ρE

∗
(E∗) = 1 it follows that µ(IRn) = 1.

We have established that µ is a finitely additive probability measure and therefore a

RUF.

Lemma 5: The RCR ρ maximizes the RUF µ.

Proof: Since ρD is a discrete measure, it suffices to show that ρD(x) = µ(N(D,x)) for

all x ∈ D. By the construction, this holds for all D,x such that D has dimension n

(i.e., whenever N(D,x) ∈ K). It remains to show that ρD(x) = µ(N(D,x)) for lower

dimensional decision problems.

Let α > 0. Since dim(D + αE∗) = n, ρD+αE
∗
(x+ αy) = µ(intN(D + αE∗, x+ αy).

Then, Proposition 3 and the fact that the interiors of normal cones at distinct points are

disjoint implies

ρD+αE
∗
({x}+ αE∗) =

X
y∈E∗

ρD+αE
∗
(x+ αy) =

X
y∈E∗

µ(intN(D + αE∗, x+ αy)

= µ(
[

y∈E∗
intN(D + αE∗, x+ αy)

= µ(
[

y∈E∗
N(D + αE∗, x+ αy) = µ(N(D,x))

The last equality follows from the fact that
S
y∈E∗ N(E

∗, y) = IRn. Choose open sets O,O0

such that {x} = O ∩D, D\{x} = O0 ∩D. By mixture continuity,

lim
α→0

ρD+αE
∗
({x}+ αE∗) = lim

α→0
ρD+αE

∗
(O) ≥ ρD(O) = ρD(x)
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and similarly,

lim
α→0

ρD+αE
∗
([D + αE∗]\[{x}+ αE∗]) = lim

α→0
ρD+αE

∗
(O0) ≥ ρD(O0) = ρD(D\{x})

That is,

lim
α→0

ρD+αE
∗
({x}+ αE∗) = ρD(x)

Hence

ρD(x) = µ(N(D,x))

for all D ∈ D, x ∈ IRn and therefore ρ maximizes µ.

8.3 Proof of Theorem 3

Theorem 2 and Lemmas 6 proves the “only if” part of Theorem 3, while Theorem 2

and Lemma 7 proves the “if” part of Theorem 3.

Lemma 6: Let ρ maximize the regular RUF µ. If ρ is continuous then µ is countably

additive.

Proof: By Theorem 11.3 of Billingsley (1986) any finitely additive and countably sub-

additive real-valued function on a semiring extends to a countably additive measure on

σ(H), the σ−field generated by H. Since IRn ∈ H and µ(IRn) = 1, the extension must be

a (countably additive) probability measure. Hence, to prove that µ is countably additive

it suffices to show that µ is countably subadditive on H.
Let

Sm
i=1Hi = H0. Since H is a semiring we can construct a partition of H0 that

measures each Hi. Then, the finite additivity of µ implies the finite subadditivity of µ.

To prove countable subadditivity, consider a countable collection of set Ki, i = 0, . . . such

that Ki ∈ K and riK0 =
S∞
i=1 riKi. We must show that µ(

S∞
i=1 intKi) ≤

P∞
i=1 µ(intKi).

By Proposition 5(i), each K ∈ K can be expressed as the disjoint union of sets riA

for A ∈ F (K). Recall that each face of a polyhedral cone is a polyhedral cone. Note that

A ∈ F (K) and A 6= K implies A = H(u, α) ∩K for some u 6= o and some α ∈ IR. Hence,

A 6= K implies dimA < n. If dimK = n then riK = intK. Therefore, K = intK ∪ F
where F is a finite union of polyhedral cones with dimension less than n. Since µ is full-
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dimensional (by Lemma 2) this implies that µ(intK) = µ(K). Since riK0 =
S∞
i=1 riKi,

we have K0 =
S∞
i=1Ki and it suffices to show that µ(

S∞
i=1Ki) ≤

P∞
i=1 µ(Ki)

Proposition 8 implies that for eachKi, �
0 there areDi, D̃i ∈ D, K̃i ∈ K and an open set

O such that (i) Ki ∩S ⊂ Oi ⊂ K̃i with Ki = N(Di, o), K̃i = N(D̃i, o); (ii) dh(Di, D̃i) < �0

and (iii) ρDi(B1(o)) = µ(Ki), ρ
D̃i(B1(o)) = µ(K̃i).

Note that (i) implies that K0 ∩ S ⊂
S∞
i=1Oi. Since K0 ∩ S is compact, there exists

a finite collection Oi, i ∈ I, 0 /∈ I, that covers K0 ∩ S. Hence K̃i, i ∈ I covers K0. Since

ρ is continuous (ii) and (iii) imply that we may choose �0 small enough so that µ(Ki) ≥
µ(K̃i)−2i�. Then, finite subadditivity implies µ(K0) ≤

P
i∈I µ(K̃i)− � ≤

P∞
i=1 µ(Ki)− �.

Since � was arbitrary the result follows.

Lemma 7: If ρ maximizes the regular, countably additive, RUF µ then ρ is continuous.

Proof: Assume that Di converges to D. It suffices to show that lim sup ρ
Di(G) ≤ ρD(G)

for any closed G ⊂ IRn (Billingsley (1999), Theorem 2.1). Without loss of generality,

assume D ∩G = {x} for some x ∈ D.

Case 1: dimconvD = n. Then, Proposition 1(i) implies N(D,x) ∈ K. By Proposition 7
there are �j > 0, kj , and Kj , j = 1, 2, . . . such that Kj+1 ⊂ Kj ,

T
j Kj = N(D,x) and

[
y∈Di∩B�j (x)

N(Di, y) ⊂ Kj (8)

for all i > kj .

Since Di converges to D and D ∩ G = {x}, for all �j > 0, there exists mj such that

i ≥ mj implies

Di ∩G ⊂ B�j (x) (9)

Let Fj = Kj\N(D,x). Since µ is countably additive and Fj ↓ ∅ we conclude that
µ(Fj)→ 0. Hence, for all � > 0 there exist m such that j ≥ m implies

µ(Kj) ≤ µ(N(D,x)) + � (10)

For a given � choose j so that (10) is satisfied. Then, choose i > max{mj , kj} so that
both (8) and (9) are satisfied. By Proposition 1(iv), the interiors of normal cones at
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distinct points of Di are disjoint. Since µ is full-dimensional, we have µ(N(Di, x)) =

µ(intN(Di, x)). Therefore,

ρDi(G) =
X

y∈Di∩G
µ(N(Di, y)) =

[
y∈Di∩G

µ(N(Di, y)) ≤ µ(Kj) ≤ ρD(G) + �

Since, � is arbitrary, ρD(G) ≥ lim sup ρDi(G) as desired.

Case 2: dim convD < n. Note that x ∈ M(Di, u) implies M(λDi + (1 − λ)E∗, u) ⊂
λx+ (1− λ)E∗. Hence, we conclude

ρDi(x) ≤ ρλDi+(1−λ)E∗(λ{x}+ (1− λ)E∗)

Since dim conv[λDi + (1− λ)E∗] = n, the argument above establishes

lim sup ρλDi+(1−λ)E∗(λ{x}+ (1− λ)E∗) ≤ ρλD+(1−λ)E
∗
(λ{x}+ (1− λ)E∗)

Choose λ ∈ (0, 1) such that kx − yk < 1−λ
λ kx0 − y0k for all x, y ∈ D and x0, y0 ∈ E∗,

x0 6= y0. Note that M(λD + (1− λ)E∗, u) = λM(D,u) + (1− λ)M(E∗, u). Hence, for all

w ∈M(λD+(1−λ)E∗, u)∩[λ{x}+(1−λ)E∗] there exists xD ∈M(D,u) and xE∗ , yE∗ ∈ E∗

such that w = λxD+(1−λ)xE∗ = λx+(1−λ)yE∗ . Hence λ(x−xD) = (1−λ)(xE∗−yE∗).
From our choice of λ, we conclude that x = xD. Therefore

ρλD+(1−λ)E
∗
(λ{x}+ (1− λ)E∗) ≤ ρD(x)

The last three display equations yield lim sup ρDi(x) ≤ ρD(x) as desired.

8.4 Proof of Theorem 4

Theorem 4 follows from Theorem 3 and Lemma 9 below.

Lemma 9: A continuous RCR is undominated if and only if it is extreme.

Proof: Note that extD ⊂ bd convD. Hence, every extreme RCR is undominated. For
the converse, consider a D such that dimD = n. Let Dk = extD ∪ (k−1k D + 1

k{y}) for
y ∈ int convD. Note that Dk converges to D and Dk ∩ bd convDk = extD. Therefore, ρ

is undominated implies ρDk(extD) = 1 for all k. By continuity, ρD(extD) = 1 as desired.

Let m be any number such that 1 < m ≤ n. To conclude the proof, we show that if
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ρD(extD) = 1 for all D ∈ D such that dimD = m then ρD(extD) = 1 for all D ∈ D
such that dimD = m− 1. Let dimD = m− 1 and x ∈ D\ extD. Choose y ∈ extD and

z 6∈ affD. Define Dk = D ∪ {k−1k y + 1
kz} and note that dimDk = m, Dk converges to

D and extDk = (extD) ∪ {k−1k y + 1
kz} for all k. Hence, there exists an open set O such

that x ∈ O and O ∩ extDk = ∅ for all k. By assumption, ρDk(O) = 0 for all k. Then, by

continuity ρD(x) ≤ ρD(O) = 0.

8.5 Proof of Theorem 5

For D ∈ D and x ∈ D let Px(D) denote the collection subset of D that contain x.

For X ⊂ IRn, let ¬X = IRn\X. Note that

Nl(D,x) =
[

B∈Px(D)

³¡ \
y∈B

N(D, y) ∩
\

y∈¬B∩D
¬N(D, y)

¢×N(B,x)
´

(11)

where we let the intersection over an empty index set (i.e., for B = D) equal IRn. Define

N+
l (D,x) :=

[
B∈Px(D)

³¡ \
y∈B

N(D, y) ∩
\

y∈¬B∩D
¬N(D, y)

¢×N+(B,x)
´

(12)

Lemma 8: Nl(D,x) ∈ F2.

Proof: F is a field that contains N(D0, y) for all (D0, y). Since F2 contains F×F equation
(11) implies that F2 contains Nl(D,x).

Let η be a tie-breaker and let ρ : B→ Π be defined as

ρD(B) =
X

x∈D∩B
η(Nl(D,x)) (13)

for all D ∈ D, B ∈ B. Clearly, this ρ is the only candidate for a maximizer of the tie-
breaker η. Lemma 9 below shows that the ρ defined in (13) is a well defined RCR. This

proves that every tie-breaker has a unique maximizing RCR.

Lemma 9: Then function ρ defined in (13) is a RCR.

Proof: To prove that ρ is a RCR we suffices to show that
P

x∈D ρD(x) = 1 for all D,x.

First, we show that η(Nl(D,x)) = η(N+
l (D,x)) for all D,x. Clearly, η(Nl(D,x)) ≥
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η(N+
l (D,x)). If η(Nl(D,x)) > η(N+

l (D,x)) then by (11) and (12) there is F ∈ F such

that η(F ×N(B, x)) > η(F ×N+(B, x)). Since η(U\F ×N(B, x)) ≥ η(U\F ×N+(B, x)),

this implies that η(U ×N(B,x)) > η(U ×N+(B,x)) contradicting the regularity of η2.

For x 6= y, N+
l (D,x) ∩N+

l (D, y) = ∅. Also, Sx∈DNl(D,x) = IRn × IRn. Therefore,

ρD(x) =
X
x∈D

η(Nl(D,x)) ≥ η(
[
x∈D

Nl(D,x)) = η(IRn × IRn) = 1

ρD(x) =
X
x∈D

η(N+
l (D,x)) = η(

[
x∈D

N+
l (D,x)) ≤ η(IRn × IRn) = 1

Hence ρD is a RCR.

Lemma 10: Let the RCR ρ maximize the tie-breaker η. Then ρ is monotone, linear,

mixture continuous and extreme.

Proof: Note that for all D, x ∈ D, y, and λ ∈ (0, 1), Nl(D ∪ {y}, x) ⊂ Nl(D,x) and

Nl(λD + (1 − λ){y}, x + (1 − λ)y) = Nl(D,x). Hence, monotonicity and linearity of ρ

follows immediately from its definition.

Next, we prove that ρ is extreme. For any B ⊂ D, let FB(D) denote the intersection

of all faces of F (convD) that contain B. Obviously, B ⊂ FB(D) ∩ D. Suppose there

exists z ∈ FB(D) ∩D, z 6∈ B. Then, u ∈ Ty∈B N(D, y) implies u ∈ N(D, z) and thereforeT
y∈B N(D, y)∩Ty∈¬B∩D ¬N(D, y) = ∅. Hence, in (11) it suffices to consider B such that

B = F ∩ D for some face F ∈ F (convD). But if B = F ∩ D for some F ∈ F (convD)

and x ∈ B is not extreme point of D then it is not an extreme point of B. But then, the

regularity of η2 ensure η(IR
n,N+(B, x)) = 0, proving the extremeness of ρ.

To prove mixture continuity, it suffices to show that ρtD+t
0D0

is continuous in t, t0. By

Proposition 3, ρtD+t
0D0
(tx+ t0x0) = µ(Nl(D,x) ∩Nl(D

0, x0)) which implies that ρtD+t
0D0

is continuous in (t, t0) for t, t0 > 0. Hence, it remains to show that ρtD+D
0 → ρD

0
as t→ 0.

Choose � > 0 small enough so that B�(x
0) ∩D0 = {x0} and choose t small enough so that

x0+ tx ∈ B�(x
0) for all x ∈ D. Proposition 3 and the fact that

S
x∈DNl(D,x) = IRn imply

that

ρtD+D
0
(B�(x

0)) = µ(
[
x∈D

(Nl(D,x) ∩Nl(D
0, x0))) = µ(Nl(D

0, x0)) = ρD
0
(x0)
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which establishes mixture continuity and completes the proof of the Lemma.

8.6 Proof of Theorem 6

In Lemma 3 we construct a regular RUF µV . Obviously, µ× µV is a tie-breaker for

µ. Then Theorem 5 proves part (i) of the theorem.

Let ρ be such that ρD(x) = η(Nl(D,x)) for all D,x and η = µ × µV where µV

is the regular RUF constructed in Lemma 3. By Theorem 5, this identifies a unique

RCR ρ that is a maximizer of µ. To construct a second maximizer, note that since µ

is not full-dimensional there exists some polyhedral cone K∗ such that dimK∗ < n and

µ(K∗) > 0. By the argument given in the proof of Lemma 2, there is x∗ 6= 0 such that

K∗ ⊂ N(D∗, x∗) ∩N(D∗,−x∗) for D∗ = {−x∗, x∗}. Define µ∗ as follows:

µ∗(K) =
V (B1(o) ∩K ∩N(D∗, x∗))
V (B1(o) ∩N(D∗, x∗))

Repeating the arguments made for µV establishes that µ∗ is a regular RUF.15 Then, let

ρ∗ be defined by ρD∗ (x) = η∗(N(D,x)) where η∗ = µ × µ∗. Again by Theorem 5, ρ∗ is a

maximizer of µ. Note that 1 = ρD∗∗ (x∗) 6= ρD∗(x∗) = .5. Hence, ρ∗ 6= ρ and we have shown

that there are multiple maximizers of µ.

8.7 Proof of Theorem 8

Lemma 11: Let ρ maximize some RUF µ such that µ(o) = 0. If ρ is continuous then µ

is regular.

Proof: If ρ maximizes some µ then

µ(N+(D,x)) ≤ ρD(x) ≤ µ(N(D,x)) (14)

Suppose µ is not regular. By Lemma 2, this implies that µ is not full-dimensional. By

Proposition 6, H := {riK|K ∈ K} is a semiring and every element of F can be written as

a finite union of elements in H. Therefore, µ(K) > 0 for some K ∈ K with dimK < n.

By Proposition 1(i), dimK < n implies there is x 6= 0 such that x,−x ∈ N(K, o). Since

K is a pointed cone, o is an extreme point of K and therefore Proposition 1(iii) implies

15 A similar construction is used in Regenwetter and Marley (2001), p. 880.
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that N+(K, o) is non-empty. Hence there is z such that uz < 0 for all u ∈ K, u 6= o. Let

Dk := {x, 1/k(−z),−x} and let D = {−x, o, x}. Let O be an open ball that contains o but

does not contain x,−x. Since µ(K) = µ(K\{o}), for all k sufficiently large, (14) implies
ρDk(O) ≥ µ(K\{o}) = µ(K) > 0. But ρD(O) = 0 since ρ is extreme.

To prove Theorem 8, let µ0 be a dilation of µ for some non-regular µ such that µ(o) = 0.

Let ρ maximize µ0 (and hence maximize µ). Since ρ maximizes µ, Lemma 11 implies that

ρ is not continuous. Since µ0 is regular, Theorem 3 implies µ0 is not countably additive.
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Abstract

This supplement provides a detailed discussion of the related literature in Gul and

Pesendorfer (2004). In particular, we relate our results to the work of McFadden and

Richter (1971), Clark (1995) and Falmagne (1978)

McFadden and Richter (1991) and Clark (1995) provide conditions that are necessary

and sufficient for a random choice rule (RCR) to maximize a random utility function

(RUF). The models of Clark and McFadden and Richter (1991) do not restrict to the

linear structure of lotteries and von Neumann-Morgenstern utility functions. To facilitate

a comparison, we adapt their conditions to the model analyzed Gul and Pesendorfer (2004).

† This research was supported by grants SES0236882 and SES0214050 from the National Science
Foundation.
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This adaptation is possible because both Clark’s condition and McFadden and Richter’s

condition can be thought of as a joint restriction on random choice rules and the space

of utility functions. The notation below is taken from section 2 of Gul and Pesendorfer

(2004).

Clark (1995) introduces an axiom termed “coherency”. Coherency is closely related to

a theorem of De Finetti’s which provides a necessary and sufficient condition for a function

defined on a collection of subsets to have an extension to a finitely additive probability

measure on the smallest algebra containing those subsets. Clark (1995) shows that a

random choice rule is coherent if and only if it maximizes some regular random utility

function.

The definition below adapts Clark’s axiom to the setting of Gul and Pesendorfer

(2004). For A ⊂ U let IA denote the indicator function on the set A. Hence IA(u) = 1 if

u ∈ A and IA(u) = 0 otherwise. We write IA ≥ 0 as a shorthand for IA(u) ≥ 0∀u ∈ U .

Definition: The RCR ρ is coherent if for every finite sequence {Di, xi}mi=1, with Di ∈
D, xi ∈ Di and every finite sequence {λi}mi=1 in IRm

nX
i=1

λiIN(Di,xi) ≥ 0 implies
nX
i=1

λiρ
Di(xi) ≥ 0

Clark (1995) shows that coherency is necessary and sufficient for the existence of a

regular RUF µ such that for all D and x ∈ D

ρD(x) = µ(N(D,x))

Fact 1: A coherent RCR ρ is mixture continuous, monotone, linear and extreme.

Proof: To show extremeness, let y ∈ D with y 6∈ extD0 and let D = extD0. Then

IN(D,x) = IN(D0,x) for all x ∈ D and therefore coherency implies

X
x∈D

ρD
0
(x) =

X
x∈D

ρD(x) = 1

2



which in turn implies that ρD(y) = 0 and establishes extremeness.

To show monotonicity, let D0 = D∪ {y}. Then N(D,x) ⊃ N(D0, x) for all x ∈ D and

therefore IN(D,x) − IN(D0,x) ≥ 0 which implies ρD(x) ≥ ρD
0
(x).

To show linearity and mixture continuity note that for any coherent RCR ρ

N(D,x) = N(D0, x0) implies ρD(x) = ρD
0
(x0) (i)

and

N(D,x) = N(D0, x0) ∪N(D00, x00) implies ρD(x) ≤ ρD
0
(x0) + ρD

00
(x00) (ii)

Since N(D,x) = N(λD+(1−λ){y}, λx+(1−λy) linearity follows from (i). Using (i) and
(ii) it is straightforward to adapt the argument given in the proof of Theorem 2 in Gul

and Pesendorfer (2004) to demonstrate that ρ is mixture continuous.

Clark’s theorem implies that coherency is necessary for a random choice rule to max-

imize a regular random utility function. By Theorem 2 in Gul and Pesendorfer (2004) the

maximizer of a regular random utility function is monotone, linear, mixture continuous

and extreme. Together with Fact 1 this implies that a RCR is monotone, linear, mixture

continuous and extreme if and only if it is coherent.

Coherency can also be applied in settings where we only observe the choice behavior

in a subset of the possible decision problems. In that case, coherency is necessary and

sufficient for the implied RUF to have an extension that is a probability measure. Thus

whenever the observed choice probabilities satisfy coherency, one can construct a RUF µ

such that the observed behavior is consistent with µ−maximization.
Coherency is difficult to interpret behaviorally. Moreover, it seems difficult to con-

struct experiments that “test” for coherency. By contrast, it seems quite straightforward

to construct tests of extremeness, linearity and monotonicity. In fact, the experimental

literature on expected utility has focused on the linearity axiom to point out violations

of the expected utility framework and develop alternatives. This process of searching for

violations of a theory and generalizing the theory to incorporate the documented violations

requires interpretable axioms.
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McFadden and Richter (1991) introduce a stochastic version of the strong axiom of

revealed preference, an axiom they term Axiom of Revealed Stochastic Preference (ARSP).

McFadden and Richter (1991) study a case where each utility function under consideration

has a unique maximizer and show that ARSP is necessary and sufficient for (regular)

random utility maximization.

In the definition below, we adapt ARSP to the framework in Gul and Pesendorfer

(2004).

Definition: The RCR satisfies ARSP iff for all (Di, xi)
m
i=1 with Di ∈ D, xi ∈ Di

mX
i=1

ρDi(xi) ≤ max
u∈U∗

mX
i=1

IN+(Di,xi)(u) (∗)

To see that ARSP is necessary for regular random utility maximization, note that if

ρ maximizes a regular RUF µ, then

mX
i=1

ρDi(xi) =

Z
U

mX
i=1

IN+(Di,xi)(u)µ(du)

Obviously, the r.h.s. of the equation above is less than or equal to the r.h.s. of (∗).
Fact 2 below shows that ARSP implies monotonicity, linearity, extremeness and mix-

ture continuity. Hence, Theorem 2 in Gul and Pesendorfer (2004) implies that a random

choice rule satisfies ARSP if and only if it is monotone, linear, mixture continuous and

extreme.

Fact 2: If the RCR ρ satisfies ARSP then it is mixture continuous, monotone, linear

and extreme.

Proof: Extremeness is trivial because N+(D,x) is empty unless x is an extreme point of

D.

For monotonicity, apply ARSP to {(D,x), (D\{y}, z)z 6=x,y}. This yields ρD(x) ≤
ρD\{y}(x) and hence monotonicity.
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Next, we show that

ρD(x) = ρD
0
(x0) if N+(D,x) = N+(D0, x0) (i0)

Apply ARSP to {(D,x), (D0, y)y 6=x0} to get ρD(x) ≤ ρD
0
(x0). Reversing the roles of D

and D0 yields the reverse inequality and hence the result. Linearity now follows because

N+(D,x) = N+(λD+(1−λ){y}, λx+(1−λ)y). To prove mixture continuity, we proceed
as above. First, we show that (i) and (ii) in the proof of Fact 1 above hold. To prove

(ii) apply ARSP to {(D,x), (D0, y)y 6=x0 , (D00, y)y 6=x00}. Since N(D,x) = N(D0, x0) implies

N+(D,x) = N+(D0, x0) (i) follows from (i’). Using (i) and (ii) it is again straightforward

to adapt the argument given in the proof of Theorem 2 to demonstrate that ρ is mixture

continuous.

Falmagne (1978) studies a model with finitely many alternatives. Let Y be a finite

set. A decision problem is a non-empty subset D of Y . Let D∗ be the corresponding
collection of decision problems. Let U∗ be the set of all one-to-one utility functions on Y ,

and let F∗ be the algebra generated by the equivalence relation that identifies all ordinally
equivalent utility functions (i.e. u ∈ F implies v ∈ F if and only if [v(x) ≥ v(y) iff

u(x) ≥ u(y)] for all x, y ∈ Y ). Let Π∗ denote the set of all probability measures on F∗.
Falmagne identifies a finite number (depending on the number of available alternatives) of

non-negativity conditions as necessary and sufficient for random utility maximization.

Definition: For any RCR ρ, define the difference function ∆ of ρ inductively as follows:

∆x(∅,D) = ρD(x) for all x ∈ D and D ⊂ Y ∗. Let ∆x(A∪{y},D) = ∆x(A,D)−∆x(A,D∪
{y}) for any A,D ⊂ Y ∗ such that x ∈ D, A ∩D = ∅ and y ∈ Y ∗\(A ∪D) .

Falmagne (1978) shows that the RCR ρ maximizes some µ ∈ Π∗ if and only if
∆x(A, Y \A) ≥ 0 for all A and x ∈ Y \A. This condition turns out to be equivalent

to ∆x(A,D) ≥ 0 for all x,A,D such that A ∩D = ∅ and x ∈ D.

Note that for A = {y}, the condition ∆x(A,D) ≥ 0 for all x ∈ D, y /∈ D corresponds

to our monotonicity assumption and says that the probability of choosing x from D is at

least as high as the probability of choosing x from D ∪ {y}. These conditions also require
that the difference in the probabilities between choosing x fromD andD∪{y} is decreasing
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as alternative z is added to D and that analogous higher order differences be decreasing.

While monotonicity is a straightforward (necessary) condition, the higher order conditions

are more difficult to interpret.

We can relate our theorem to Falmagne’s if we interpret Y to be the set of extreme

points of our simplex of lotteries P . Suppose Falmagne’s conditions are satisfied and

hence a RCR (on D∗) maximizes some RUF µ. We can extend this RUF µ to a RUF µ̂

on our algebra F (i.e., the algebra generated by the normal cones N(D,x)) by choosing a

single u from each [u] and setting µ̂({λu |λ ≥ 0}) = µ([u]) where [u] is the (equivalence)

class of utility functions ordinally equivalent to u. Hence, µ̂ is a RUF on F that assigns

positive probability to a finite number of rays and zero probability to all cones that do

not contain one of those rays. By utilizing our Theorem 1, we can construct some mixture

continuous, monotone, linear and extreme ρ̂ that maximizes µ̂. This ρ̂ must agree with ρ

whenever D ⊂ P consists of degenerate lotteries. Hence, any random choice functions that

satisfies Falmagne’s conditions can be extended to a random choice function over lotteries

that satisfies our conditions. Conversely, if a Falmagne random choice function can be

extended to a random choice function (on F) satisfying our conditions, then by Theorem
2, this function maximizes a RUF. This implies that the restriction of this function to

sets of degenerate lotteries maximizes a Falmagne RUF and satisfies the conditions above.

Thus, Falmagne’s conditions are necessary and sufficient for a random choice function over

a finite set to have a mixture continuous, monotone, linear and extreme extension to the

set of all lotteries over that set.
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